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Overview

Overview and Summary

This monograph is meant as a user guide for both tensor products and wedge products. These objects are
sometimes glossed over in literature that makes heavy use of them, the assumption being that everything
is obvious and not worth describing too much. As we shall show, there is in fact quite a lot to be said
about tensor and wedge products, and much of it is not particularly obvious.

Our final chapter discusses aspects of differential k-forms which inhabit the wedge product spaces,
with an emphasis on the notion of pullbacks and integration on manifolds.

We attempt to include both the mathematical view and the engineering/physics view of things, but the
emphasis is on the latter. The discussion is more about activities in the engine room and less about why
the ship travels where it does.

The study of wedge products is known as the exterior algebra and is credited to Grassmann.

Maple is used as appropriate to do basic calculations. Covariant notation is used throughout.

Equations which are repeats of earlier ones are shown with italic equation numbers.

Here is a brief summary of our document which has ten Chapters and eight Appendices :

Chapter 1 surveys the mathematician's description of the tensor product as a quotient space, and then
places the tensor product in the framework of category theory. This approach is resumed much later in
Chapter 9 for the wedge product, after the reader is more familiar with that object.

Chapter 2 reviews tensor algebra and then introduces a meaning for the tensor product symbol ® in
terms of outer products of tensors. After a quick review of tensor expansions and projections, the last
section introduces the notion of a dual space and includes the use of the Dirac bra-ket notation. The
notion of a tensor function is introduced.

Chapter 3 discusses the theory of Chapter 1 versus the practicality of Chapter 2 in terms of outer
products. It then derives the Kronecker product of two matrices in covariant notation. This topic is
somewhat tangential to the main development, but is included since it is sometimes not explained very
well in the literature. Maple is used to compute a few such Kronecker products.

Chapter 4 has four parts involving products of two vectors and their vector spaces: tensor product, dual
tensor product, wedge product, and then dual wedge product. This chapter serves as an introduction to the
four chapters which follow.

Chapters 5, 6, 7, 8 continue this order of presentation for products of k vectors and then for products of
any number of general tensors. The order is: tensor product (Ch 5), dual tensor product (Ch 6), wedge
product (Ch 7) and then dual wedge product (Ch 8). The chapters intentionally have a high degree of
parallelism, though some details are omitted from the later chapters to reduce repetition. The dual tensor
chapters involve tensor functions as the closure of tensor functionals onto a general set of vectors. The
tensor-product tensor functions are multilinear, whereas the wedge-product ones are multilinear and
totally antisymmetric. Alternate wedge product normalizations are discussed. The reader is warned that
these four chapters (especially the last two) are exceedingly tedious because there is a huge amount of
detail involved in laying out these subjects. The silver lining is that all notations are heavily exercised and
many examples are provided.
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Chapter 9 returns to the mathematician's world giving two descriptions of the wedge product in terms of
quotient spaces.

Chapter 10 presents an outline of differential k-forms and pullbacks with an emphasis on underlying
transformations. The contents of Chapter 2 on covariant tensor algebra and Chapter 8 on dual wedge
products (exterior algebra) come into play. Various k-form facts are derived and cataloged. Manifolds are
described without rigor, leading to a discussion of the integration of both functions and k-forms over
manifolds. A special notation is used to distinguish dual space functionals like A* = <u®| = dx" from
calculus differentials like dx*, and no wedge product hats * are suppressed. The topics of boundaries dM
and orientation are mentioned only in passing, with reference to other sources. Although the generalized
Stokes' Theorem for differential forms on manifolds is not derived, it is nevertheless used. Our goal is to
expose underpinning structures which are sometimes ignored. Multiindex and Dirac notations are used
side-by-side with full index display and normal vector notation.

Appendix A explains our permutation notation and the powerful rearrangement theorems used in
various proofs throughout the document. The Alt and Sym operator properties are presented in a generic
permutation space, and then those generic results are applied to tensors and tensor functions. The
permutation tensor € is given honorable mention, and a few obscure theorems are proved.

Appendix B discusses the direct sum of vectors, vector spaces and operators in those spaces.

Appendix C shows that when one antisymmetrizes a product of tensors, pre-antisymmetrizing one or
more of those tensors makes no difference in the result.

Appendix D shows how tensors and tensor functions are the same objects expressed in different bases.
Appendix E gives details of the "transformation kinematics package" for x' = F(x) translated to x = ¢(t).

Appendix F derives the fact that det(R*R) is the volume of an n-piped in R™ (n < m) , where R is a matrix
whose column vectors span the n-piped. This result is then used to write an expression for the volume of
the differential n-piped for the tangent space TxM associated with a point x on a manifold.

Appendix G shows that det(RTR) equals the sum of the squared full-width minors of R, and then relates
this fact to the measures appearing in pulled-back differential n-form integrals.

Appendix H describes properties of the Hodge dual operator (called *). It then derives certain Hodge
correspondences between differential forms and differential operators, and shows how the generalized
Stokes' Theorem produces many integral theorems of analysis. The last section converts Maxwell's four
partial differential equations to two differential form equations, one of which is do = 0.
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Notation

This list gives most of the symbols used in the document and should give the reader an idea of the general
flavor of the presentation. Vectors are sometimes bolded, sometimes not. Vector functionals and tensors

of rank

2 or greater are never bolded. In general, dual objects are given Greek or script symbols.

Unfortunately certain symbols have several unrelated meanings.

M', M* covariant transpose and matrix transpose of a matrix M, see 2.11 (f).
mxn used to describe a matrix which has m rows and n columns
det(M) determinant of the square matrix M

det[a,b,c...] determinant of a square matrix whose columns are vectors a,b,c...
R™ Euclidean space with m dimensions

rank rank of a matrix; rank of a tensor or tensor function

® tensor product of spaces or objects in those spaces

@ direct sum of spaces or objects in those spaces (App B)

X Cartesian product, as in VXW with element (v,w)

A wedge product of spaces or objects in those spaces

K a real field (such as the reals, or such as binary {0,1} )

72}
P

*

o Hh 09

F(x)
o(t)

R,S
RS
F*

Alt
Sym

a,b
aeb
V,v
Uy
Vi

Vi

scalars in K

is defined as

simple multiplication; complex conjugation; the Hodge star operator; pullback function F*
metric tensor; generic function name

generic function name

function composition operator, as in h = (f o g)

a general transformation x' = F(x)
a general transformation x = @(t) (alternate notation to the above)
the differential of transformation F (or ¢), down-tilt matrix element

differentials of transformations F and F~! written as matrices

corresponding Dirac space operators, see 2.11 (g)
pullback function for x' = F(x), defined (10.7.17)
pullback function for x = @(t)

total antisymmetrization operator (App A), short for Alternating
total symmetrization operator

real vector space of dimension n

vectors in V |]a> a Dirac ket
scalar product of two vectors (real) <alb> = <b|a>
vectors in V [v>

axis-aligned basis vector in V lus>

vector with label i in V [vi>

covariant component i of the vectorv = <ujz|v>
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e; tangent base vector in V les>
e dual of the above le*>
w real vector space of dimension n'
e'; basis vector in W le's>
w vector in W |w>
a®b tensor product of two vectors =a pure element of the vector space V2 = V®V
u;Ouy tensor product of two basis vectors = basis vector of VZ=VeV
a"b wedge product of two vectors = a pure element of the vector space LZ=VAV c V?
u;”® uy wedge product of two basis vectors = basis vector of LZ = VAV < V2
tensor of rank k |T> T=2ijip....4 T2 % 03, Qusy ... uy,
S tensor of rank k' |S>
R tensor of rank k" |R>
Ta general element of Lk Ta=Zi14p. .. .4y Tiii2--- ik (Ui M ug," Uiy )
Sa general element of L*'
R~ general element of L*"
V* dual space to V
a, vector functionals in V* a=<a|, aDiracbra
o4 vector functional in V* with label 1 o; = <0
At basis vector in V* At =<et | = (eMT
" cosmetic notation for A*, an example of a 1-form, used in Chapter 10
dx* a normal calculus differential

0i abbreviation for 6/0x*
AV = dxt AP A dx"
dA" =*dx" and dA = *dx

differential volume form in R™
differential "area" form in terms of Hodge dual of vector (App H)

multiindex notation for a tensor product of basis functionals
multiindex notation for a wedge product of basis functionals

dinl =0T = 'L A g2 Ay the above line in cosmetic notation

oa® B tensor product of two dual vectors = a pure element of the vector space V#2 = VEQV*
e tensor product of two dual basis vectors of V* = basis vector of V*? = V*®@V*

a”p wedge product of 2 dual vectors = a pure element of the vector space A% = V¥ \V* < V*?
At A3 wedge product of dual basis vectors, basis element of A% = VHEAVE o 2

ao,p names used in Chapter 10 for differential k-forms

da exterior derivative of a k-form a (Chapter 10)



g tensor functional of rank k <T| T=Ziqig. .. .ig Tigin. ... ix At
S tensor functional of rank k' <§|

R tensor functional of rank k" <R|

Fa general element of A* Ja= Zigip....ix Tigip....ix (At1n 2
S general element of A¥'

R general element of A*¥”

A (W) dual basis vector tensor function, rank-1 <u* [v>

a(v) general rank-1 tensor function <a |v>

J(v1,v2) rank-2 tensor function <T vy, vo>

I,J multiindices

21 Ligip. . .ig symmetric sum

>'r Zij<io<....<ig ordered sum (increasing)

VE vector space of rank-k tensors |T>

V*¥  vector space of dual rank-k tensors = rank-k tensor functionals <T|

V¥ vector space of rank-k tensor functions J(vy) = <T| vi> (k-multilinear)

Lk vector space of totally antisymmetric rank-k tensors

A¥ vector space of totally antisymmetric dual rank-k tensors

A¥e  vector space of totally antisymmetric rank-k tensor functions (k-multilinear)
T(V) Vievevievie... the tensor algebra

T(V*) vl avreviiaeveo.... dual tensor algebra

L(V) LPeL'eL?eL® +.. exterior tensor algebra
AV) AN eANteANZDdA® + .. dual exterior tensor algebra
€igip...ix rank-k permutation tensor

P permutation operator

S(P) swaps in a permutation

(-1)° ® swap parity of a permutation

TxM tangent space at a point X on a manifold M

Overview



Chapter 1: The Tensor Product

1. The Tensor Product

There are two theoretical paths leading to the tensor product. These are briefly summarized in a non-
rigorous manner in Sections 1.1 and 1.2 below, after a comment on terminology.

Tensor Product vs Direct Product

The tensor product described below sometimes goes by other names.

In quantum mechanics, a system of two particles might be in a quantum state [y1> ® [y>> which is an
element of a tensor product space V1®V, (as we shall describe below). Some quantum authors refer to
this tensor product as a direct product (e.g. Shankar pp 248-250) while others call it a tensor product (e.g.
Messiah p 252, 307). It happens that in quantum theory states like |y1> reside in a vector space which is
also a Hilbert space. Similarly, when a quantum system has a symmetry, such as rotational invariance
(e.g. an isolated atom), the quantum states can be classified into certain vector spaces associated with the
matrix representations of the symmetry group, and the tensor products of these spaces are usually called
direct products. For example, the rotation group has matrix representations called "j" = (n/2) for any
integer n (matrices are n+1 x n+1), and one writes for example j; ® j» to indicate the "direct product” of
two such spaces.

Sometimes the tensor product is called a tensor direct product, which phrase seems associated with
the outer product componentization of the tensor product noted in Chapter 3.

Occasionally the raw Cartesian product (see below) is called a tensor product, but usually there is
some additional structure involved.

Generally, the term direct product seems most suitable for the direct product of groups, rings,
modules and related objects, whereas in the current document we are discussing the tensor product of
vector spaces and of the tensors contained within those spaces.

Category Theory mentioned below attempts to put all these products into a uniform framework.

1.1 The Tensor Product as a Quotient Space

It does seem odd that one might think of a product V®W in terms of a quotient. We shall outline how this
path goes in a series of steps. The key results are stated in Steps 7 and 9.

1. Cartesian Product. Start with the inert Cartesian product set VxW with elements (v,w), where in our
application the sets V and W are vector spaces. This set VXW is "inert" in the sense that one has no
instructions for what can be done with its elements.

2. Space F(VxW). We now endow VxW with an addition operator + and a scalar multiplication operator
(indicated by juxtaposition) allowing us to form linear combinations of elements of VxW with scalar
coefficients. Let's define F(VxW) to be a space which contains all such linear combinations. A typical
element of this F(VxW) space might be 3(v1,w3) - 2.1(v2,ws). Of course (v1,w3) also lies in F(VxW) and

one might call this a pure element, whereas 3(vy,w3) - 2.1(v2,ws) is a mixed element. Because the sum

of two linear combinations is again a linear combination of the same form, the space F(VxW) is closed
under addition.

10



Chapter 1: The Tensor Product

3. Field K. We usually assume (as above) that the scalars are in the field R of real numbers, but to be
more general one can assume the scalars are elements of some arbitrary field traditionally called K
(though sometimes F or ). In addition to the reals R, there are various fields having an infinite number of
elements (like rational or complex numbers), and there are various fields of having a finite number of
elements (the Galois Fields).

Footnote: Sometimes the space F(VxW) is described as a "free vector space" which is a set of functions f
such that f: VxW — K. Usually such spaces are defined over a discrete set S, and it is not clear how this
works when the set S is continuous, this being the case for S = VxW. Moreover, the functions f mapping
to K cannot be identified with our linear combinations since for example (v2,vs) is not an element of K.
We therefore refrain from giving F(VxW) this moniker and the reader should regard F(VxW) only as we
have defined it above.

4. Equivalence Relations and Classes. Now define the following set of "equivalence relations"

(Vvitva, W) ~ (V1,W) + (V2,W) forall vi,vo €e Vand allw ¢ W

(v, witwa) ~ (v,w1) + (V,w2) forallv e Vandall wi, wo € W

s(v,w) ~ (sv,w) forallve Vandallw € Wand all s € K

s(v,w) ~ (V,sW) forallve Vandallw € Wand all s € K (1.1.1)

where ~ means "is equivalent to" and s is a scalar in K. Rewrite these relations as

(Vitvz, W) — (vi,w) — (v2,w) ~0

(v, witwz) — (v,w1) — (V,w2) ~0

s(v,w)— (sv,w)~0

s(v,w)— (v,sw)~0. (1.1.2)

We are declaring here that lots of linear combinations in F(VxW) are equivalent to 0. The reason we do
this is to make our tensor product space (to be defined below) have "nice properties” (i.e., it is then a
vector space).

These linear combinations taken together define an "equivalence class" which is equivalent to 0. Call this
class N (for null).

5. The Quotient F(VXW)/N. There then exists a space which we shall call F(VxW)/N, or F(VxW) "mod"
N. This is a standard structure in equivalence class theory where one takes the quotient of one space S
divided by another space of equivalent items in space S, often written S/~. The upshot is that the elements
of the new quotient space F(VXW)/N consist of all linear combinations of F(VXW) except that any linear
combination which has one of the four forms shown above is filtered out ("modded out") by setting it
equal to 0.

Example: 3(v3,wa) + (v, Witwa) — (V2,W1) — (v2,Ww2) = an element of F(VXW)
3(vs,wq) = the corresponding element of F(VXW)/N. (1.1.3)

11
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6. The Space VOW. We now give this space F(VXxW)/N a new name:

F(VXW)/N = V®W = the tensor product space of Vand W . (1.1.4)

The elements of VOW are linear combinations of elements called v®w instead of (v,w) as a reminder that
the equivalence class N must be respected. Whereas the comma in (v,w) was a mere separation operator,
the ® in v®w is regarded as a new "tensor product multiplication operator" with the properties listed
below which, in effect, implement the equivalence relations stated above.

7. Practical Summary. The end result of all this song and dance is the following:

The tensor product space V®W is the set of all linear combinations of elements (v,w) of the Cartesian
product set VXW, written as v®w, where the following rules are declared by fiat:

(Vitv2) ® w = (vi®W) + (vo®w) forall vi,v2 € Vand allw € W

vV ® (Witwz) = (VW) + (VRW3) forallv e Vand all wy, wp € W

s(VOW) = (sv)®w forallve Vandallw e Wandalls e K

s(VOW) = v&®(sw) . forallve Vandallw e Wand all s € K (1.1.5)

The first two rules state that ® multiplication is distributive over addition (from right and left), while the
last two rules state the scalars work in the expected manner.

If these rules were declared for a function f(v,w), they would appear as
f(vitva,w) = f(vi,w) + f(v2,w)
f(v,witwz) = f(v,w1) + f(v,w1)
s f(v,w) = f(sv,w)
s f(v,w) = f(v,sw) (1.1.6)

Such a function would then be described as being bilinear because it is linear separately in each argument
with the other argument held fixed. One can then regard the rules shown above for ® as expressing
bilinearity for the tensor product space VOW.

Usually the above scalar and distributive rules are combined into the slightly more compact form,

(s1v1ts2va) ® w = 51(V1i®W) + s2(v2@w)
V ® (s1W1tsaWw2) = s1(VOW1) + s2(vOW2) (1.1.7)

and similarly for a bilinear function,

f(s1vitsava,w) = s1f(vi,w) + s2f(v2,w)
f(v, sgwi1tsaw2) = s1f(v,w1) + sof(v,w2) . (1.1.8)
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8. v&w does not commute. Whereas the + operation within V®W is commutative, it should be clear that
the ® operation is not commutative. If v € V and w € W, then vw € V®W whereas w®v is an
element of a completely different space which is W®V. Even if W =V, one has v®v' £ v'®v if v£v'. The
fact goes back to the original Cartesian product set VXV where one has (v,v') # (v',v) if v£v' because (v,v")
is an ordered tuplet, not a set {v,v'}. If V=W =R, one would not identify the point (x,y) with the point
(y,x) in RxR = R?ifx # y. Another word for commutative is abelian.

9. VR®W is a vector space. The space VW is a vector space whose vectors are linear combinations of
v®w. We shall now verify this to be the case. We already know V®W is closed under addition since
F(VxW) has this property. The + inverse of v®w is (-1)(v®w). Addition is commutative and associative.
Any element of the form 0®w or v&®0 can be taken as the identity for addition (the "zero") since, for
example, using the first rule of (1.1.5),

0®w = (v-v)®w=(VOW) + ((-v)®&W) = (VOW) - (v®w) = 0 (0 in the space VW) . (1.1.9)

There is a scalar multiplicative identity since all fields K have an identity "1": 1(v®w) = (v®w). "Vector
multiplication" is distributive over scalar addition (here the "vector" is vQw),

(s1 + 82)(VROW) = [(S1182)V]®W = [s1V+82V]®W = (51 V)W + (52V)®W = 51(VROW) + 52(VROW).
(1.1.10)
Multiplication by a scalar is distributive over "vector addition" :

S (Vi®wy + va®wy) = s (Vi®wa) + s (Va®wy) . (1.1.11)

This property we more or less add by fiat to the earlier properties. It is the only reasonable way to do
things since elements of VW are linear combinations of pure elements of the form v®w.

10. Basis of V®W and general elements of VOW. In the above verification that VW is a vector space,
we used only pure vectors of VW, but general vectors of V®W are linear combinations of the pure
vectors so we really should rehash the above for general vectors. To do this, we first note that, since V
and W are vector spaces, each has a basis, and we call these bases {u;} for V and {u';} for W. It is not

hard to show that the set of elements of the form u;®u'y forms a basis for VOW, so a general vector T in

V®W can be expressed as
T = %33 T (ui®u's). // coefficients T e field K (1.1.12)

The inverse element -T is pretty obvious. Addition T + T' is commutative and T + T' + T" is associative.
The zero element is the same. Vector multiplication is still distributive over scalar addition,

(s1+52)T = (s1+s2)[ Zag T (us®u'y)] = iy T [ (s1 + s2) (us®u'y)]
= %33 TH [ 51 (ui®U'y) + s2(us®u'3)] =s1 [ Ty TH (ui®'y)] + 52 [ T35 TH (w1 ®u'y)]

— 51 T+s2T. (1.1.13)
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In this manner, all the required properties of a vector space can be verified for general elements of VOW.

11. Vector vs Tensor. Since V®W is a vector space, it is proper to refer to its elements v®w (or linear
combinations of same) as "vectors". On the other hand, we shall refer to v®w as a "tensor" (a cross
tensor) in the tensor product space V®W. In particular, it is a "rank-2 tensor" composed from v and w
which are vectors in their respective vector spaces V and W. The word vector must be evaluated in its
context. The subject of rank-2 tensors is developed more in Chapter 4.

12. Dimension of V®W. As noted above, the basis of the vector space VOW consists of elements of the
form u; ®u'y . If the dimensions of V and W are n and n', then i takes n values, j takes n' values, and the

dimension of the vector space V®W is n*n' ( = nn'"), the product of the separate vector space dimensions:
dim(V®W) = n*n' where n=dim(V) and n'=dim(W) (1.1.14)

13. Generalization. The above development is easily generalized to the tensor product of any finite
number of vector spaces. One first defines F(V,W,....Z) as linear combinations of elements of the
Cartesian product space VxWx..xZ , which elements have the form (v,w,...z). One then defines a large set
of equivalence relations analogous to those described above. One ends up with a large set of linear
combinations which are all equivalent to 0, and this defines the equivalence class N. One then creates
F(V,W,....Z)/N as the space of linear combinations where any pieces which are equivalent to 0 are filtered
out. One then defines

VROWR®...®Z = F(VxWx...xZ)/N = the tensor product of spaces V and W and... and Z.  (1.1.15)

The tensor product space VOW®...®Z is the set of all linear combinations of elements (v,w,...z) of the
Cartesian product space VxWx...xZ, written as vVOw®...®z, where the following rules are declared by

fiat:

(V1tv2)OW® .... ®z = viOW® .... ®z + VL,0W® .... Rz

VO(W1twW2)® .... ®z = vOW1® .... ®z + vROWL® .... Rz, etc.
and
S(VOW®...Qz) = (sV)OW®R...0z = vR(sw)®...0z , etc. seK (1.1.16)

When these rules are written for a function f(v,w,....z) one has,

f(vit+va,w,...z) = f(v1,W,...2) + f(va,w,...2)
f(v,wi1twa,...z) = f(v,w1,...2) + {(v,w2,...Z), etc

s f(v,w,...z) = f(sv,w...z) = f(v,sw,...), etc. se K (1.1.17)

If there are k factors in the tensor product VOW®...QZ, then the function f has k arguments, and a
function obeying all of the above rules is said to be k-multilinear. For k = 2 we have bilinear, for k =3
we have trilinear, and so on. One can mix in the scalar rule by saying for example
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f( s1vitsava, W, ...z) = s1f(v1,W,...Z) + s2f(v2,W,...Z)
f(v, siw1tsaw2, ...z) = s1f(v,w1,...2) + s2f(v,w1,...2), etc. (1.1.18)

We can then regard the set of ® rules shown above as describing k-multilinearity for the tensor product
space VOW®...QZ. Written in the second form,

(s1v1ts2va)OW® ..... ®z =51 (ViOWR .... ®z) + 52 (V2OWR .... ®7)
V® (s3W1tsaw2)® ... ®z =51 (VOWI® ... ®z) + s (VOWL® .... ®z). etc. (1.1.19)

An alternate approach to developing the tensor product of three or more vector spaces is to inductively
build up by grouping things. For example

VOWRX =(VO®W) ® X = the tensor product of two vector spaces, one of which is VW
VOWRX®Y = (VOWRX)®Y = the tensor product of two vector spaces, one of which is VOW®&®X
The results are the same with either approach.
1.2 The Tensor Product in Category Theory

Category theory is an attempt to abstract the essence of algebraic structures which apply generally to
objects like vector spaces, sets, rings, groups, modules and so on. One encounters certain category
diagrams which must allow for flow through the diagram in all possible ways (the diagram must
"commute"). A diagram consists of certain objects which are connected by arrows known as morphisms.
For our application, these arrows are function mappings between spaces, and two sequential arrows in a
path represent function composition in the sense fo g.

At a higher level, if the objects in the diagram are themselves categories, the morphism arrows are
called functors. For example, for the category C of "all vector spaces over a field K" where the diagram
arrows are linear maps, one can regard the equation V2 =V®V as lying in the map CxC — C, and this
map is then a functor, and the mapping is said to be functorial.

Category theory is a relatively recent addition to the mathematical house of many mansions. With
precursor work done by Emily Noether (whose work shows up in a lot of places), category theory was
developed in the early 1940's by Saunders Mac Lane (and others) who then summarized the theory in a
text Algebra (1967) with coauthor Garrett Birkhoff. These same authors wrote the classic textbook 4
Survey of Modern Algebra (1941/1997) which is known to many students as "Birkhoff and Mac Lane".

We give here just an outline of this rather slippery tensor product development. It seems more of a
fitting of our conclusions of Section 1.1 into category theory. The reader interested in more detail can
look in Algebra or in Chapter 14 "Tensor Products" of Roman's text Advanced Linear Algebra (2008).

We start with the following triangle diagram (an example of a category diagram),
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bilinear
VW % X=

\l

v (1.2.1)

In this diagram VxW is the Cartesian product of two vector spaces V and W, exactly as in Section 1.1
above. Elements of VxW are (v,w). There are two mappings f: VxW — X and g: VXW — Y where X
and Y are for the moment just spaces. They in turn are linked by a mapping traditionally called 7, so T : X
— Y. One says that "g can be factored through f".

The functions f and g are declared bilinear from the get-go. This is analogous to our declared
equivalence relations in the approach of Section 1.1.

The set of all bilinear mappings f: VxW—X is called homg(V,W; X) where K is the field of scalars.
The letters hom stand for homomorphism ("same shape") which is a structure-preserving map. Linear
maps (like T discussed below) preserve vector space structure.

The triangle diagram must commute, so we must have g =1 o f (function composition).

The space X is our candidate space for the tensor product V®W space.

One needs to construct the function t. To do so, use the fact that the diagram commutes to evaluate t
at the pure point v®w,

(VW) = g(v,w). (1.2.2)
Now "extend" t so it applies to linear combinations of v®w elements by declaring that, for s; € K,
T(s1 VOW + 52 VOW') =51 T(VROW) + 51 T(V'OW') =351 g(v,w) + sag(V',w') (1.2.3)

so T is now a linear function t: X—Y. It maps every element of X into an element of Y, and it is unique
by its construction.

Once we have 1 being a unique linear mapping, the "pair" (X, f:VxW—X) becomes a "universal
pair". The idea here is that any alternate "pair" like (Y, g:VxW—Y) is equivalent to (X, f:VxW—X) up to
the isomorphism implied by 7. In this sense, then, the mapping f:VXW — V®W is essentially unique -- it
is "universal for bilinearity" -- so the tensor product mapping is well-defined. Function 7 is called a
mediating morphism, f'is called the tensor map, and the elements of V®W are tensors.

From the top of the triangle one has

veOw = f(v,w) (1.2.4)

since f :VxW—X = V®OW. Our "rules" of Section 1.1 for operator ® now derive from the fact that fis a
bilinear function:

(V1tv2) ® w = f(vit+va,w) = f(vi,w) + f(va,w) = (vi®W) + (V28W)
v ® (witwz) = f(v,witw2) = f(v,w) + f(v,w2) = (vOW1) + (vOW2)
s(v®w) = s f(v,w) = f(sv,w) = (sv)®w seK

s(v®&w) = s f(v,w) = f(v,sw) = v&®(sw) seK (1.2.5)
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We then end up with the same space V®W and rules as in the previous quotient development, and we
have extra assurance that VOW is a unique and well-defined object (it is universal).

The above scenario directly generalizes to the tensor product of k vector spaces with the following
corresponding category diagram,

f (k-multilinear
VXWX..XZ ( X=VROWR..®Z

(1.2.6)
Lang (Algebra) for example shows the equivalent of this diagram on page 602 of his Chapter 16 (The

Tensor Product). Note that Lang also wrote a different book Linear Algebra. The diagram above also
appears in Roman's Chapter 14 on the Tensor Product, p 383.
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2. A Review of Tensors in Covariant Notation

In Chapter 1 we generally avoided mentioning components of vectors and tensor products. But in many
ways, "components" is what tensors are all about. Anyone who wants to use tensor analysis to actually do
something practical is going to use tensor components. The whole notion of what it means to be a tensor
of some rank requires components and component indices. Later when we deal with tensor functions, the
components will morph into the vector arguments of multilinear functions.

Tensor analysis (algebra) provides some very heavy-duty machinery to handle manipulations of tensors
and tensor components. A key idea is that a true tensor is something that transforms in a certain manner
relative to some defined underlying transformation which below is called x' = F(x). In the following
notes, we review this machinery.

The review is based on our document on tensor analysis and curvilinear coordinates (Tensor, see Refs.)
which follows the unusual path of developing tensor analysis in a "developmental notation" where all
indices are down and covariant objects have overbars, then later this notation is converted to "standard
notation" with the usual up and down indices. It is a large and complicated world, and below we report
out only those facts which are useful for our efforts here.

Equation numbers referring to Tensor are followed by a prime ' .

Bolding Vectors. For the time being we shall display all vectors in bold font because we feel it helps the
reader when dealing with covariant dot products and is compatible with Tensor. However, vector
components are not bolded. Thus vector V will have components V® and V,. The exception is when
vectors have extra labels, such as for the basis vectors e,. It's components are written (e,)® and (ep)a.
Eventually in Section 3.1 where we finally tie back to Sections 1.1 and 1.2 we shall quietly stop bolding
vectors and will then be compatible with those earlier sections. Higher rank tensors are never bolded.

2.1 R, S and how tensors transform : Picture A
Tensor is in large part based on the following "picture",

Picture A m

x'-space SR X-space

g g

(1.11) 2.1.1)

Below we shall be thinking of x-space as a vector space V having a set of basis vectors {e;} or {uj}.
Then x'-space is a vector space V'. Below we shall use V as a prototype vector in space V, soV € V.

The two vector spaces V and V' have the same dimension N. In what follows, repeated indices are

implicitly summed (Einstein convention) so for example Rabe means Tp=q" Rabe. Hanging indices
like a in R®%V® can take any value in the range a = 1,2...N. The implied summation convention reduces
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symbol clutter especially when there are many summed indices in an equation. Sometimes however we
will display sums for emphasis.

Figure (2.1.1) summarizes a generally non-linear transformation x' = F(x) between two spaces called x-
space on the right (metric tensor g) and x'-space on the left (metric tensor g'). The coordinates of x-space
are called x, and those of x'-space are called x'. Quantities in x'-space always have a prime, while those in
x-space have no prime. A vector V in x-space has contravariant components V2 and covariant
components V. The corresponding components V' and V', of V' in x'-space are these,

V2= R3 VP R3, = (0x'®/0xP) = Gpx™ (7.5.3) (7.5.2)
V'a= SP.Vp SP. = (0xP/0x"®) = 0'ax° (7.5.4) (2.1.2)

As noted, primed equation numbers refer to Tensor.

The matrices R and S in (2.1.2) and Fig (2.1.1) are linearizations of the generally non-linear
transformation x' = F(x) and x = F~(x") in the close neighborhood of a selected point x in x-space and x'
= F(x) in x"-space. Therefore, R and S are in general functions of x, though we suppress this dependence.

R is sometimes call the differential of the transformation x' = F(x). We call it the R matrix. Many texts
don't make up a symbol like R for the differential, and so tensor equations such as (2.1.8) below are

1a

strewn with partial derivatives of the form R?, = R This is useful in doing chain rules, but otherwise

obscures how the indices work. We settled on symbols R and S after rejecting various reasonable
alternatives. One should understand that R®y, is in general not a simple rotation matrix despite the letter R.

From the chain rule, one can see that the matrices R and S are inverses of each other,
S3, RP. =582, //SR=1 (7.6.1) (2.1.3)

If desired, the matrix S can be eliminated from the discussion by the fact that (reflect indices in a vertical
line between the indices)

Sab — Rba
S.°=R",. (7.5.13)' (2.1.4)

Then (2.1.2) can be then be written with only R's ,

V= R3%VP R3, = (0x"%/0xP) = Gpx"® // V'=RV
V'a= R®Vp R = (0x°/0x™) =0'ax° . (2.1.5)

Here is a table summarizing different forms of the differentials R and S :

S%, =Ryp? = (0x®/0x™®) = (0x'p/OXa) = 0'px® = 0°x'p
Sab = Rpa = (0xa/0x™®) = (0x'p/0x>) = 0'pXa = 0aX'p
g3 = RP2 = (0x®/0x'p) = (Ox"/Xa) = 0°x? = ?x"®
S.°=RP, = (0xa/0X'p) = (Ox™/0x®) = 0®™Xa = 0ax™ . (7.5.16)' (2.1.6)
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Notice how an upper index in a derivative denominator acts as a lower index and vice versa. The fact that
each item can be represented by two partial derivatives follows from (2.1.4), (2.1.2) and the raising and
lowering operations described in Section 2.2 below.

Vectors which transform under (according to) transformation F as in (2.1.5) are called rank-1 tensors.
Here is how the four forms of a rank-2 tensor M transform under F,

M™?P =R3,, RPy, M?'P' // pure contravariant

M3, =R%,: Rp® M?'y. // mixed

M'.°=R.*" RP: M, // mixed

M'ap=Ra? R? Map: . // pure covariant (7.5.8)' (2.1.7)

We sometimes refer to R®,: as the "down-tilt" R matrix, and R.2" asthe "up-tilt" R matrix. One sees that
a down-tilt R transforms each contravariant (up) index, while an up-tilt R transforms each covariant
(down) index.
From the above, one can intuit the way an arbitrary rank-n tensor transforms under F. For example

T'®% e =R%,: RP R%: Rq® R T2P' %400 . (7.10.1)' (2.1.8)
The various forms of the R matrix have these four orthogonality rules,

1:Rp2RP. =82, 2:RP,R,°=35,° // sum is on Ist index

3:R%LRL =62 4:RPR%=06,°. // sum is on 2nd index (7.6.4)' (2.1.9)
These are just renditions of (2.1.3) with (2.1.4) ( that is to say, SR=RS=1).

Using these rules, one can show (proof below) that the inverses of the vector transforms shown above in
(2.1.5) are these

V2 =Rp?VP (7.6.7)
Va=RP,Vy (7.6.8)' (2.1.10)

where the summation index b on R is not abutted against the following vector.
The inversion of any tensor equation can be obtained instantly using the following simple rule:
Inversion Rule: For each R, reflect the indices in a vertical line between the indices. (2.1.11)

Examples: V' P=R", V®, inversionis: V®=Rg" V™ R%m — Rp"
V' ®=R™V,, inversionis: V*=R™ V', R?™ — R™
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Proof': (2.1.8)#1
V'P=R% V® = RV 2= RyR V™ =8,V'=V' = V'=R,'V"= V =R,"V'™.

The proof of the 2nd example follows from application of the tilt reversal rule (2.9.1) to the first example.

General Proof: Recall from (2.1.4) that S, = Rp®. The vertical line reflection Ra|® — RP, = S, just
changes R into S, and S is the inverse of R as in (2.1.3). So V' = RV gives V = SV' and similarly for
higher tensor cases.

Exercise: Invert equation (2.1.7) which says M'®® =R, RP,: M2 :
Result: M?® =R, Rp:®> M2'P"

The canonical vectors are the differential distances dx* in x-space and dx'* in x'-space (near some point x
and corresponding x'). From (2.1.5) one then has,

dx® = R%dx // dx' = Rdx
dx's = RaPdxyp . (2.1.12)

From inversion rule (2.1.11) the inverses of (2.1.12) are,

dx® = Rp2dx®
dxa = RP.dx'y . (2.1.13)

The derivative operator 5 = 0/0x® transforms like any other covariant vector. It is in fact the canonical
covariant vector for the transformation F. Thus, from (2.1.5),

0x'2/0xP) = Opx"® 0% = 0/0xa 0'® = 0/0x'a

02 = R2 R
b b = (
R.° = (6x°/0x™®) = 0'ax® 0a = 0/0x* 0 =0/0x's . (2.1.14)

0'a= Rabab

For example, if ¢(x) is a scalar field (rank-0 tensor), 0.p(x) transforms as a covariant vector under F, and
0%p(x) transforms as a contravariant vector. Derivatives of tensors above rank-0 are more complicated,
see Comment 1 below.

The R matrix is really four matrices, and we have seen two of its forms above. The R object is not a
tensor because, as R®%, = (9x'/0x°) suggests, R has one foot in x'-space and one foot in x-space. In fact,
the first index of R is raised or lowered by g', while the second index is raised or lowered by g:

R%, = (0x"/oxP)

R*® =R%, g’ = (0x"®/0xp) // g pulls up the second index of R®,

Rab=g'aa'R? = (0x'a/OX®) // g' pulls down the first index of R%,

R.P=gla'R%'p g°'P = (0x'a/0xp) . // both actions at once (7.5.9) (2.1.15)
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Tensor fields

We have suppressed the fact that in general everything above is a function of x (or equivalently x'). For
example, when we compute R?, = (6x'®/0x°) we generally obtain R®,(x). The transformation of a vector
from x-space to x'-space was given in (2.1.5) as V'* = R3,V®. For general x' = F(x) this really a
statement about the transformation of vector fields: V'*(x') = R(x)VP(x). The rank-2 tensor
transformation in (2.1.7) really says M"P(x") = R®,:(x) RP, (x) M?'P'(x) and we are transforming a
rank-2 tensor field.

In special relativity it happens that X' = F(x) is linear so x' = F2,x® (usually written with non-bold 4-
vectors and Greek indices like x = AFyx"). In this situation R®, does not depend on x, and one can then
have vectors which are not fields like p* = A¥,p” (momentum of a point particle) and vectors that are
fields like A™(x") = AP,A%(x) (electromagnetic vector potential). Notice on the x'-space side of the
equation that the vector field A" is a function of the x'-space coordinate x', while on the x-space side A"
has argument x. In continuum mechanics and general relativity, R®, is a function of x so everything is a
field.

In the following examples, matrix R is the linearization of x' = F(x). In the neighborhood of the point
x one has dx' = R(x)dx as a "linear fit" to the generally non-linear x' = F(x). If F(x) is a linear
transformation, then x' = Fx so dx' = Fdx and then R = F = independent of x.

(@) T'®® g0 =R* .R®' LR °Rg ¢ TPy tensor (rank 4, mixed)

() T'®® g (x) =R® J(x)R® s(X)Re' *(X)Rq 4(x) T g tensor which is not a field in x-space
(c) T'*P ¢ g (x") =R* .R® ' \Rc ®Ra ¢ TP q4(x) tensor field, linear F(x)

(d) T'®® g (x) =R* 4(x)R® p(X)Re *(x)Rar ¥(x) T®cq(x)  general tensor field (2.1.16)

Item (a) is the generic form we use for a transformation of a rank-4 tensor. If F(x) is linear (as in special
relativity), then R®, does not depend on position, and it is possible for T'abcd and Tabcd not to be fields.

Item (b) is for a non-linear x' = F(x) where Tabcd is not a field. Obviously T'a'b'cvdv must depend
therefore on x, and hence x', and so it is a field. In this unusual situation, the entire dependence of T' on x'

is induced by the non-linearity of the transformation.

Item (c) is more standard, where the transformation is linear and a tensor field is being transformed. This
is the case in special relativity.

Item (d) is the same thing, but the transformation is non-linear so one has Rij(x).
Comments:

1. For situations where R®y, is a function of x, it is easy to see why there is trouble with derivatives. One
need only consider :
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V2(x') = R¥%(x)V2(x) and 8® =RP(x)d°
SO
V2e(x) = 0PVR(x') // V®® is just a new notation for a derivative

= (R°(x)0%)[R%a(x)VIx)] =R c(x) R%a(x) (0°VI(x)) + RP(x)(6°R?a(x)) VI(x) . (2.1.17)

It is this second term that causes 8V not to transform as a rank-2 tensor. It only transforms as a tensor if
it happens that x' = F(x) is linear so R®, is constant (as in special relativity). This problem is remedied by
introducing the covariant derivative V¥/¢ as discussed in Tensor Appendix F, see for example (F.9.5).
This new object then properly transforms as a rank-2 tensor,

Vlb;a(xv) — Rbc(X) Rad(x)vdic(x) . (2118)

2. We have chosen to write (6x'2/0x”) as R?p, as a space-saving notation. This object is often called "the
differential” of the transformation x' = F(x) at point x. Tensor deals only with transformations where x
and x' have the same number of components N, but the idea (6x'®/0x") as R, generalizes beyond this
restriction. Of course then the matrix R®, is no longer square and the associated linear algebra is more
complicated. This situation arises in Chapter 10 below.

3 Although we have used the letter R in R®,, one should not think that R is a rotation. It could be a
rotation, but in general it is more complicated, involving both rotation and stretching. It could be a
rotation which, although being a rotation, is a different rotation at every point in space, like Ry(0(x)).

2.2 The metric tensors g and g' and the dot product

Within each space (x-space and x'-space in the (2.1.1) Picture A), the metric tensor lowers or raises vector
indices,

Va _ gabvb Vla — glabvvb
V2 =g vy Ve=gyy | (7.4.4)" in std notation (2.2.1)

In the same way, the metric tensor lowers or raises any index on any tensor.
The contravariant and covariant metric tensors are inverses of each other,
2abg™C = 2.°=0.=08, // note that 833 = %5 =383 5 . (2.2.2)
Here the gap, lowers the first index on g°° to make g,® which is 8,° =84, c 50 Zangup = 1.
The objects gap, ga°, 2°a and g2® are true tensor objects whereas 5, and da,c are not. It just happens that

the value of g, is 8,°. In writing covariant equations, one should replace 3,° by g, before attempting
to raise index a or lower index c.

23



Chapter 2: Tensor Algebra

The metric tensor is a rank-2 tensor like any other rank-2 tensor, and so, looking at the first and last lines
of (2.1.7),

g|ab:Raa| Rbb' ga'b'
gap=Ra* Ry garpr . (7.5.6) (2.2.3)

Any metric tensor is symmetric,

ab _ gba Zab = Zba

g =gP2 gab = Eba - (5.4.3)' in std notation (2.2.4)

The metric tensor defines a (covariant) dot product in each space

aeb= gijaibj = gijaibj = aibi = aibi X-space

a'eb' = g'ija'ib'j = g'ija'ib'j =a'ib™ =a’b'; x'-space . (2.2.5)
The dot product is a scalar (rank-0 tensor) so it must be the same in either space

a'eb'=aebh. (2.2.6)
An exception to this rule is noted for fluid flow, see Tensor end of Section 5.2.

When applied to the canonical differential vector dx* we find

dx e dx = gijdxidxj =] dx |]® = (ds)? X-space

dx' e dx'= g’ijdx'idx'j = dx'||? = (ds")? x'-space (2.2.7)
Thus from (2.2.6) ds = ds' (invariant distance). In special relativity, ds is called the proper time dr.

The metric tensor gets its name from these last equations. The distance between two points x and y in a
metric space is determined by a function called "the metric" d(x,y). A commonly used metric is d(x,y) =
|[x-y|| where the metric is defined by the norm. The distance between two close points x and x+dx is then
given by d(x,x+dx) = ||x+dx-x|| = || dx || = ds. Squaring, d*(x,x+dx) = || dx ||* = gijxixj which shows how
the metric tensor g; 5 describes the squared metric d(x,x+dx) in the metric space of interest. One might
recall that in a raw vector space, there is no distance concept d(v1,v2). A vector space with a metric and
an inner product, such as that shown above as e is then a Hilbert Space. It happens that the same metric
tensor g; 5 has two roles to play: it determines differential distance, and it lowers an index. See Chapter 5
of Tensor for more details.
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As shown in (2.1.16) (d), for a general transformation everything (including g) is a function of x. For
example,

Va(%) = gap(X) V2(x) V'a(X') = glap(x)VE(X') (2.2.1)
g'an(x) = Ra* (x) Rp” (%) ga'p'(X) . (2.2.3) (2.2.8)
2.3 The basis vectors e, and e”

There are two sets of basis vectors called e, and e” which exist in x-space (vector space V). The integer n
is a label, not a component index. These basis vectors are defined as

e, = O0x/0x'™ = 0'nX tangent base vectors
e =0x/0x', =0"x . reciprocal base vectors (7.13.5)' (2.3.1)

where x = F_l(x'). The tangent base vectors e, are tangent to the "coordinate lines" in x-space. If in x'-
space a particular x™ is allowed to vary while all other x'* are held fixed, the locus in x'-space is a line
parallel to the n axis, while the mapping of that line in x-space is the (often curved) coordinate line
associated with x',. Then e, = Ox/0x™ evaluated at a point x on that coordinate line is a vector in x-space
tangent to that coordinate line. For coordinate line examples, see e.g. Tensor (1.12), (1.13)" and (3.2.8)',.
Meanwhile, the reciprocal vectors e” are "dual to" the e, in that ™ e, = 8"y, . In fact we have,

€n® ep= gvnm gvin en = ei
en o em = Snm = g’nm
eleg"=g™ gin e =e; (7.18.1) (2.3.2)

The equations on the left imply those on the right which show how to raise and lower basis vector labels.
Although the e, and e” are vectors in x-space, it is the metric tensor of x'-space which raises and lowers.

For "duality" see text above Tensor (6.2.8)". It is shown there that a unique dual basis b™ always exists for
any given basis by,

For a general transformation F, the tangent base vectors are functions of location and should be written
en(x), and of course the same is true for e”(x). Looking at (2.3.2), we see that €"(x) ® ey(X) = 3", manages

to be valid at every point in x-space. On the other hand, g'nm(X) = en(x) ® en(x) shows that the metric
tensor is also a function of x.

Example: In polar coordinates (r,0) one has e = & and eg =1 6, both of which obviously depend on

10
location in space. The metric tensor is gap = (O rzj and also depends on spatial location through r. The

coordinate lines for 0 are circles whose tangents are eg , while those for r are rays whose tangents are e.
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These basis vectors are like any other vectors in x-space, and so they have contravariant and covariant
components such as (¢™)* and (e™); . Going back to our definition (2.3.1) we see that

en= OX/0x™ =N (en)* = Ox*/0x™ =Ryt . // from (2.1.5) (2.3.3)
Looking at (en)* = Ry* we make these observations:

(1) the n label of (e5)* goes up and down with g' as shown in (2.3.2).

(2) the n index of Ry* also goes up and down with g' as shown in (2.1.15).
(3) the i index of (en)* goes up and down with g as shown in (2.2.1).

(4) the i index of Ry* also goes up and down with g as shown in (2.1.15).

Therefore the equation (en)* = Ry* is "covariant", even though it is not a tensor equation (since R is not a
tensor), so we can raise and lower indices at will on both sides. Therefore

(en)* = Rq? (en)s = Ras (€M1 =R™ (€")" =R™ . (2.34)
The e, and e also satisfy a "completeness relation",

(eM)a(en)” = 82" (2.3.5)
where the implied sum is over the label n. From (2.3.4) this says R®s Rn® = 8.° which in fact is just
orthogonality rule #2 in (2.1.9). This completeness relation is different from the "orthogonality relation"
e” e ey = 0"y of (2.3.2) written as (e"); (em)" = 8" . Here the implied sum is over the component index i.
Recall from (2.3.2) that

en®en=_gnm . (2.3.2)
There are two cases that are often of interest:

en®en= fn0n,m the {e,} form an orthogonal basis for V

en®en= On,m the {e,} form an orthonormal basis for V . (2.3.6)

Remember that the vectors e, exist in x-space, despite the fact that the metric tensor g'ny is for x'-space in
our transformation Picture A.

2.4 The basis vectors u, and u”

One can also define a set of "axis-aligned" basis vectors in x-space as follows

(up)* =8, = gt (u™);=8" =¢g% (7.18.3)' (2.4.1)
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which can be compared with (2.3.4) for e, and e”. Relations involving the u basis vectors are

Up ® Uy = Epm gin u, :ui
u’e Up = 81’lm = gnm
u®ey"=g" g™ u, =ut. (7.18.3)' (2.4.2)

Notice the similarity to the relations (2.3.2) for the e, and €”. The u” are dual to the u,. Whereas the e,
and e" involve the x'-space metric tensor g', the u, and u” involve the x-space metric tensor g.
We can easily calculate from (2.3.4) and (2.4.1) that

e®ouy = (e”)i(un)’ =R 8n* =R"%. (2.4.3)

According to (2.3.2), g' raises and lowers the label n on €”. According to (2.1.15), g' raises and lowers the
first index n on R™y,. Similarly, the label on uy and the second index of R™ are raised and lowered by g.

Thus our equation (2.4.3) is "covariant" (even though it is not a true tensor equation), so we can at once
write out all four forms of the dot products between the e and u basis vectors on the left below,

e"=R%pu" =R™Muy,
en=Romu™ =R, up
u"=Rp"e" =R™ ey

Un = Run € =R% e . (2.4.4)

e"eu, =R,
€n® Uy = Rpnm
epou” =R,"

en.um :an

g 0090

Each column implies the other. For example, for the third line,
=: u"=Zgp(epou”) e =, Ry e" /I (e ® u™) is coefficient of the €™ expansion of u”
= ut=3, Ryt e = exou" =2 Rp"exee™ = T Ry” 6" =Ry™. (2.4.5)

The equations on the right of (2.4.4) show that the R matrix is the "basis change matrix" relating the two
different bases e and u of x-space. These right-side equations are "vector sum equations" in which no
component indices appear.

The basis u; has a special place among possible bases for x-space. Above we call it an "axis-aligned"
basis since (un)* = 85> so for example in R? we would have u;* = (1,0) and uz™ = (0,1). Here the little
asterisk is a notation to show we are talking about contravariant components. To say that (ug)* = 85> does
not say that x-space is Cartesian, since x-space could have any metric tensor g; 5.

What is really being said by the statement (us)* = 8, is that the components of vectors (and higher
tensors) are being defined in a specific way.

If v is a vector, then v* has the following meaning: v* = u* e v. Another way to say this is that the v*
are the components of v when v is expanded in the u basis: v =3; v*u;. In particular, since uy, is itself a
vector, we have u, = X; (un)iui =3 6niui = up,. So the components of vectors are always defined
relative to the u basis when u is selected as the "axis aligned basis" with (up)* = 8,*. The component
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indices on all tensors of Chapter 2 are referred to the u basis, examples being the i and j of the metric
tensor g; 5 and of any tensor Mj 5 or Mj jx.

We shall see below that one could expand vector v on the ey basis, but then one gets v = X; v'*e;
where v'* = e* o v . The coefficient v'* here is of course different from v* since the bases are different. In
fact v = R*;v3.

2.5 The basis vectors e', and u', and a summary

Basis vectors €'y and u'y are just mappings of e, and u,, from x-space to x'-space,

unr=Ru, u,=Su'y
u”=Ru" u"=Su"
en=Re, en=Se',
e"=Re" e"=Se" . (2.5.1)

Each of these mappings is like any vector mapping V' = RV. The primed basis vectors exist in x'-space,
whereas the unprimed ones exist in x-space.

The components of these vectors are easily computed,
(u'n)* =R*j (up)? =R*j 38,7 =R%, /1 (2.4.1)
(en)'=R%j (en)) =R Ry =8'4=g% //(23.4)and 2.1.9)#3 . (2.5.2)

Whereas the u, were the axis-aligned basis vectors in x-space, we see that the e'n are the axis-aligned

basis vectors in x'-space.

Since (u'n)* = R*,, from (2.5.2), and since R*y, = (6x'*/0x™) = 0nx"* from (2.1.6), we can write u'n = OnX'
which is similar to the corresponding e, = 0'nx of (2.3.1) and shows that the u'y really are tangent base
vectors for the inverse transformation. We summarize :

(up)* = 85" axis-aligned basis vectors in x-space

en = 0'nX tangent base vectors in x-space

(e'n)" = 8" axis-aligned basis vectors in x'-space

u'p = OnX' inverse tangent base vectors in x'-space . (2.5.3)

The situation is depicted in this drawing,
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coordinate line

x'-space o

coordinate line

\ X axis-aligned
7.\?/ base vector

X X-space

tangent base

e’ . vector
o ,}‘ Uy tangent base -
axis-aligned \ vector
base vector x'2 x2
e1 =Sey
x't x*
(2.5.4)

The figure shows just one basis vector of each type. Here red e; is the tangent base vector for coordinate
x'1, whereas blue u'; is the tangent base vector of the inverse transformation x = F}(x') for coordinate x*.

In each case a light black curve represents a piece of a coordinate line (curve) whose tangent is the
tangent base vector.

The associated dot products are obtained from (2.4.2) and (2.3.2),

u'heu'y=gnn // =g ® Upy g™ u'y =u"

uteu'y= gnm

ueum =" gin U =u'y (2.5.5)
eheen=ghnm // = en®en gt e, =e'

eMeey= g’nm

eMeem=g"" ginu =u'y (2.5.6)

and the basis vectors can therefore be raised and lowered as shown on the right by an appropriate metric
tensor.

So far we have computed these basis vector components,

(up)* =ga* =8, (2.4.1) (en)* =Rp* (2.3.4)
(u'n)'=R%, (2.5.2) (€n)i= gia=0t (252 . (2.5.7)

By raising n, lowering i, or doing both, one arrives at 12 more equations to get this full set of 16,

I ()=t =" (' =Rs*
2 (uyn)l — Rln (evn)l — gvln — 61n
3 (=gt () =R™

4 (uyn)l — Rln (eyn)l — gyln
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5 (un)i = Zni (en)i =Rni
6 (u’n)i =Rin (evn)i = g'in
(u);=g"% (eMi=R"
8 (u™)i=R;" (eMi=gi" . (2.5.8)

The reason one is allowed to do this follows from the label raising and lowering relations shown on the
right side of (2.3.2), (2.4.2),(2.5.5), (2.5.6), and finally from (2.1.15) concerning indices on Rij .

Since (u'n)i = Rin , the contravariant u'y, vectors are the columns of R

Since (e”); = R™; , the covariant e vectors are the rows of R*x :

R = [uiu", .uy' ] = (2.5.9)

Using the fact that the dot product is a scalar, we can instantly obtain the following vector sum equations
from (2.4.4),

e =R°u™ =R™u'y
e'n=Rpmu™ =Ry"u'n
u?=Ry"e™ =R™e'n
' — m o _ pm U
s = Run €™ =R™, e'n . (2.5.10)

e"eu'y =R%,
eheu'n =Rpn
e eu™ =R,"

eey™ =R™

06090

again showing that the R matrix acts as a basis-change matrix this time in x'-space.
Fact: One can treat the ey, as an arbitrary set of basis vectors . (2.5.11)

Above we started off by assuming some arbitrary transformation x' = F(x) and then the en(x) are the
tangent base vectors for this transformation F.

From a different viewpoint, one can assume some arbitrary expressions for the e,(x) and try to find a
corresponding x' = F(x) for which those en(x) are the tangent base vectors. Given the functions en(x), one
would know the matrix of functions Ra*(x) from (2.5.8) item 1. One could then attempt to integrate
(2.1.12) which says dx'a = Ra°(x)dxp to find x' = F(x). Let's assume this is all doable so x' = F(x) can
always be found. From this point of view, one can regard the above equations concerning the en(x) to
apply to an arbitrary set of basis functions en(x). Of course they have to be linearly independent at each
value of x. The next section provides a very simple example.
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2.6 How to compute a viable x' = F(x) from a set of constant basis vectors e,

As a first step, select g = 1 so that x-space is the usual Cartesian space and u, = u” are the usual
orthonormal axis-aligned unit vectors of Cartesian space.
Suppose we are handed a set of constant-in-space basis vectors e, specified by their components

relative to the x-space axes. From (2.5.8) item 1,

(em)™ = Ry (2.6.1)
so we know the matrix Rab (the en are the rows of the up-tilt R matrix).

What is the simplest way to fit this scenario into the tensor environment of Picture A in (2.1.1)?

We try a linear transformation of the form x' = F(x) = Fx where F is a constant matrix (independent of
x). Since x = F2px® we find R?, = (6x'%/0x") = F3p, and then of course R,> = F5°. So we have found a

linear transformation F that works: Fab = Rab. Then the e, are the tangent base vectors for this
transformation F, and e" are the reciprocal base vectors (the dual vectors of ey).
The metric tensor g'nym can be computed from the dot product (2.3.2),

Zom=en®en = (en)" (em)i = (en)" (em)' = Rn'Ra’ . (2.6.2)
Since g = 1, the second index on R is allowed to move up and down "for free".
This g'nm can then be inverted to determine g™". The reciprocal base vectors are then given by (2.3.2),

e’ =g ey (2.6.3)
with components

(€' = g™ (en)' = g™ Ry . (2.6.4)

We then rewrite the above equations as

(em)n= Rumn // the ey, are the rows of matrix R, (2.6.1) lower n

2'nm = RniRmi = RpiR%im = (RR%)pm = g'=RR” /1 (2.6.2) lower i

e"=g"en = hpn €n // where we define hp, = g™ //(2.3.2)

(€Mi = hpnRpi = (hR)p;. // the €™ are the rows of matrix (hR), (2.6.4) (2.6.5)

Exercise: You are handed these three constant vectors e, in a 3-dimensional Cartesian x-space,

e1 =(2,-1,3) // for example, (e1)2 = ( er)?= -1
€2 = (_1,234)
es=(1,3,2) //es=1ur+3uz+2us
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SO

3
4 // =F; "the ey are the rows of matrix R" from (2.6.5) (2.6.6)
2

Use Maple to compute g, h and then (hR). Here we are just implementing the equations in (2.6.5).

First enter the three e, vectors and construct matrix R,

e[l] := [2,-1,3];
el:=[2,—1,3]

el[2] = [-1,2,4];
92:=[-1,2,4]

e[3] := [1,3,21,
QBF[LB,H

R = matrix(3,3, [e[l1l],e[2],=2[311).

2 -1 3
A= -1 2 4
1 3 2

Then compute the covariant metric tensor g' = RR” ,

gp = evalm(R &* transpose(R)),
4 & 3
g= 8 21 13
5 13 14

From this compute the contravariant metric tensor h = g'"* and then matrix (hR)

h := inverse(gp). hE := evalm(h &* R},
(125 .47 -1 [ g % 5
1369 1369 1368 37 37 5
B 47 171 -142 1 1 .
Tl 1389 1369 1369 hR = ey o =
1 S142 230 0 " .
| 1369 1369 1360 | - e =

The rows of (hR) are the vectors e" (called Ey, in the code),
for k from 1 to 3 do E[k] = row(hE k) od,
8 & 35
E=l oo
37 AT
-11 -1 7
Ey=|
37 3T 37

RS
3737 37

E3:
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As a check, we verify that €™ e e, = 8" :

check = matrix(3,3)
for n from 1 to 3 do
for m from 1 to 3 do

check[n,m] = sum{(E[n] [jl*e[m][]j],j=1..3);
od
od ;
print (check)
1 o0
0 1 0
o0 1

(2.6.7)

2.7 Expansions of vectors onto basis vectors

Given vector V in x-space and the corresponding vector V' in x'-space, one may write the following
expansions ( Tensor (7.13.10,11)),

1 V=3, V®u, where V" = u"eV axis-aligned basis

2 V=3, Vyu" where Vp = upeV axis-aligned basis

3 V=3X,V™e, where V'™ = ¢"eV tangent base vector basis

4 V=3,V ,e" where V™ = e eV tangent base vector basis

5 V=X, V" e, where V™ = eTe V' axis-aligned basis

6 V' =%, V,e" where V', = eho V' axis-aligned basis

7 V' =X, V'u, where V* = u™e V' tangent base vector basis

8 V' =X, Vyu" where Vp, = u'pe V' tangent base vector basis . (2.7.1)

Notice that expansions 7,8 are obtained from 1,2 by applying the R matrix, since V' = RV and u'y, = Ruy,.
Similarly, expansions 5,6 are obtained from 3,4

Any expansion can be directly verified by dotting the left column into an appropriate basis vector. For
example, for expansion 5, using e™ e e', =08y,

Vl — Zn an evn
emeV =eme (T, Vhen )=, V" eMeey = T V= V™| (2.7.2)

Notice that each set of coefficients appears twice on the right in (2.7.1), once for V and once for V'. This
duplication arises because a e b = a'  b' for any pair of vectors in either space. For example,

V:=u"eV = u"eV' appearsinlines 1 and 7 . (2.7.3)
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Looking a bit ahead, we shall be extending the notion of a vector expansion to that of tensors of any rank,
and the meaning of component indices is still governed by Fact (2.7.1). First, for expansions on the axis-
aligned u, we write,

V =3, V® u, rank-1 tensor, (2.7.1) line 1
M=3m M™ u,Quyg rank-2 tensor
T= X315y, .. .4k Ti1i2----ik (03, @ Ui, ....Quy,). rank-k tensor (2.7.4)

As discussed in (2.5.11) we may regard the basis vectors ey as being an arbitrary basis. The primed tensor
components are then the components of the x'-space version of the tensor under the transformation x' =
F(x) generated by those arbitrary e,. The corresponding expansions are then,

V=3,V"e, rank-1 tensor, (2.7.1) line 3
M=% M'™ e,®en rank-2 tensor
T=Zijip....5 T i1i2-.. -1k (ei;®es, ... Qey5,). rank-k tensor (2.7.5)

In the above, any pair of tilted matching indices can be tilted the other way. The meaning of the ® symbol
is discussed below, but we use it just momentarily here.

For an expansion on a mixed basis like e,®uy, , we will use the following notation

M=Zpm MEDP" o Quy, . (2.7.6)
Using this same notation we could write,

M=%mm M'™ e,®en = Zam M 2™ e,@en = Zpm [M ™ e,Qep . (2.7.7)
Exercise: Consider these two expansions shown above of the rank-2 tensor M,

M= M?® u,Quy //(2.7.4) (2.7.8)

M =3 M?® e, ®ey . //(2.7.5) (2.7.9)
Verify that the coefficients M'®® and M?® are related as expected.

Use the result in (2.4.4) line 2 that eq = Ry u; to get for (2.7.8),
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M =M?* u,Qup // all implied sums
=M*® (R, e1) ® (R e5)
= (R*;RI,M?®) €;® e;
so comparing to (2.7.9) one concludes that
M'®® = R*,RI,M?P
which is the correct statement that M transforms as a rank-2 tensor as shown in (2.1.7).

Confusion about vectors and scalars

The following issue is a subtle one that is worth nailing down early on because it can lead to confusions
and seeming paradoxes. Consider this fact,

WweV= uteV' . (2.7.10)

Being the dot product of two vectors, this object transforms as a scalar under x' = F(x) as shown in
(2.2.6). We might express this fact by writing

s® =yPev §'®) =y ey g =g n=12..N. (2.7.11)

What we have here is a set of N scalars, s™ forn= 1,2..N, where n is just a label. One would never

claim that this set of scalars s ™ transforms as a vector, which would require that s'™ = R%, s™ . We

don't have such a relation; what we have is s' ‘™ =g

Now it happens that s ™ = '™ = V® where V™ is the component of a vector. Notice that :
v*®= R, V" true : the V™ transform as a vector
ve=v"t false
g =g(n) true : each s™ = u™ ¢ V transforms as a scalar

'™ =R 5™ false (2.7.12)

We can summarize this discussion as follows:

Fact: Just because the scalars s‘™= u™ o V take the values V® does not mean that the scalars s ™

transform as vectors, nor does it mean that the vector components V" transform as scalars. (2.7.13)
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2.8 The Outer Product of Tensors and Use of ®

Consider two vectors which transform in the usual rank-1 tensor manner relative to some underlying
transformation x' = F(x) (for which R is the linearization),

a'i = Zj Rij aj
b* =3, R¥, b from (2.1.5) (2.8.1)

where we temporarily show the summation symbols. Multiplying these equations together gives
(a'")(b"™) = (Z3R*32)(EaR* ™) = Zjn R¥;R¥n(ab")

and then hiding the sums again,
(a'*b'*) = R*jR*x(a%b™) . (2.8.2)

Looking at the first line of (2.1.7), we see that this object is transforming as a rank-2 tensor, therefore it is
a rank-2 tensor, and we can write it as

M 'tk = R RF M where M*I =a'bd. (2.8.3)
The rank-2 tensor M*3 = a*b7 is said to be the outer product of two rank-1 tensors (vectors).
This idea can be generalized ad infinitum. For example, if K is a rank-2 tensor and v is a vector, then
MPIE = KK (2.8.4)
is a rank-3 tensor because it transforms as one using the same argument shown above. Next, consider,
Mmabede — gabged e (2.8.5)

If K is a rank-2 tensor and v is a rank-1 tensor, then M is a rank-5 tensor. Of course since this is a "true
tensor equation" (a covariant one), indices may be shuffled any way one wants, such as

M?pe%e = K%K Ve . (2.8.6)
Just imagine applying g«» several times to both sides of (2.8.5) to get (2.8.6).

There are so many possibilities for creating outer product tensors that one sometimes forgets that not all
tensors can be "factored" into products of lower rank tensors.

The ® Symbol Appears subtitle: "the rabbit goes into the hat"

In Sections 1.1 and 1.2 we had v®w being an element of a "tensor product space" VOW and we described
two approaches to the development of the meaning of the symbol ® : quotient space and category theory.
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Here we provide a third approach to the meaning of ® which is equivalent to that of the first two
approaches. This third approach is geared to dealing with tensor components so there are lots of indices
floating around, whereas in Sections 1.1 and 1.2 components were not even mentioned.

Recall our previous two equations

Mabcde — Kachd Ve ) (2. 8.5 )
Mabcde = Kachd Ve . (2.8.6)

In order to display the outer product as a unified entity, we had to make up a new symbol M to represent
the outer product tensor. We can avoid having to do this by writing M = K&®K®v, so that the ® symbol in
our "third approach” is just a way to name an outer product tensor. The above equations are then

(K®K®y)3Pede = gapged e (2.8.7)
(KOK®V)?pce = K3 K2 ve . (2.8.8)

Here K and v are tensors, they are not spaces, so this is more like v®w than V®W. In fact, as a special
case we can use this idea to name the outer product of two vectors to be rank-2 tensor a®b,

(a®b)*I =a'b? abeV. (2.8.9)
Notice that ® is a non-commuting operator: a®b # b&a .

In our "third approach" the ® symbol exists only within the context of V®V, since vectors a and b both
belong to the x-space of Picture A (2.1.1) which we identify with vector space V. However, one can
extend this meaning of ® to apply more generally as the outer product of vectors in different vector
spaces,

(vew)'l =viw? veV weW. (2.8.10)

If we try to fit this into our notion of tensor transformations, we would need two copies of Picture A, one
for U—V and the other for X—W with vector transformations

yMi =RrM™ ijV (03 RV ij = linearization of some transformation x' = F () (x)

w®i =MW ijw(x) 3, R™ ij = linearization of some transformation y' = F W) (y) . (2.8.11)

Then the transformation of the outer product "tensor" would be written as,

(v (i, (W) i) =RM iaR (W) jb (V(U) aW(X)b)

or
[(vOw) V™13 = RWLIRMI [(vew) T X 2P URX — VW (2.8.12)

One might refer to (v&®w) VW a5 a "cross-space rank-2 tensor" (cross temsor). Normally the word
"tensor" is used when W = V. Then the above reads,
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[(vOw) VY1) = RWMERWI [(vew) (D 2P U®U — VOV
or

(v®w) 13 = R*RI, (vOW)®®. // Picture A (2.1.1) (2.8.13)
The outer product thus has the same form in x'-space and in x-space, being a rank-2 tensor,

(a®b)*I =a'b? abeV.

(a®b)*I =a'*b? a'h'eV' . (2.8.14)
As a final outer product example, consider the outer product of three vectors,

M*I¥ = aipIck abceV , (2.8.15)
Using our ® naming method for outer products, this becomes

(a®b®c)*I*¥ = a*bIck (2.8.16)
with this obvious extension to the outer product of any number of vectors

(a®b®c®...) - =gipIck. .. (2.8.17)

Associativity of ®

The outer product operator ® as defined here is an associative operator, because multiplication of real
numbers is associative. Consider for example,

(A®B®V)abcde — AabBche
(multiplication of reals is associative)
[(A®B)®v]?P°% = [(A®B)3P°%] v® =[ A®PB°9]v® = APB°4® | (2.8.18)

Adding the parentheses on the second line in (A®B)®v does not alter the value of the components. This
is true for the tensor product of any number of tensors,

(T1®T2®Ts...QTy) 11213 - - IN = T 11T, 127,13 | T TN (2.8.19)
where each I; represents a set of indices to go with T;. For example,
(T1®(T2®T3)...®Ty) 11213 - I = T, 11(T,®T3)213 | TN
=T1 [ ToT2T3™3] . Te™ =T1 M 1T,T2T513 . Ty

= (T1®T®Ts... @Ty) 11213 - - IN (2.8.20)
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Therefore we have,

Fact: The ® operator is associative for any tensor product, so parentheses can be added anywhere in a
tensor product. (2.8.21)

The associativity of the product of a set of real numbers along with the outer product definition of ® is
what causes the ® operator to be associative. With the abstract ® definitions of Chapter 1, associativity of
® is added by fiat as an axiom.

2.9 The Inner Product (Contraction) of Tensors

When any tensor structure contains a pair of implicitly summed indices which are "tilted", one says that
those indices are contracted. It is easy to show that, due to the orthogonality rules (2.1.9), such internal
index contractions behave as a scalar, which is to say, behave as if they weren't there at all with respect to
a transformation. A proof appears in Tensor (7.12.2). Such contractions in a tensor structure reduce the
rank of the tensor by two, resulting in an inner product. The contracting sum must occur only on a "tilted
pair" of indices.

Tilt Reversal Rule: Any such tilted index pair can have its tilt reversed "for free". (2.9.1)

Proof: Using (2.2.1) and (2.2.2),

where dashes indicate up or down tensor indices we don't care about. This "tilt reversal rule" applies to
any contracted index within a tensor expression. It applies as well in other cases where g raises and
lowers things so the above proof still works. The classic example involves expansions of the form (2.5.1)
V=V,e" =V7e, . (2.9.2)
The tilt can be reversed even though the n on e is a label and not a tensor index. The reason is that
e =g e; en=ghi € (2.3.2)
V'n — g'nbV'b V.n — gvnb va . (22 ])

The standard first example of an inner product is the inner product of two vectors. Consider,

M?*? =a*b? =arank-2 tensor, which we now contract to form,

s=M?*; =a'b; =azb* =a rank-0 tensor (a scalar) . (2.9.3)
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Using our notation (2.2.5) this is written
s=aeb // <a | b> in Dirac notation (2.94)

which is an "inner product" of two vectors. This is of course the inner product / scalar product / dot
product which makes our vector space V be a Hilbert space.

In this example, creating an "inner product" of the two vectors a* and b3 which has rank-0 goes in the
opposite direction of the "outer product” that creates M*? = M*J = a*b? of rank-2.

The term "contraction" is more often applied to reducing the rank of tensors than is "inner product"”,

and perhaps it is best to reserve the term "inner product” for the above dot product of two vectors.
Here are other examples of rank reduction by contraction. Define
M2Ped = k3P = rapk-4 tensor (2.9.5)
T2 =M3°, = K®Q% = rank-2 tensor . (2.9.6)

In this last example, contraction on the b index happens to occur between the two rank-2 tensors from
which M was constructed as an outer product. One more step,

S=T2,= K*Q.p = rank-0 tensor (scalar) . (2.9.7)

Using the ® notation introduced in the previous section, we can write the inner product s =a e b as a
contraction of the outer product a®b

s=(a®b)*; = (a®b);* and  |a|? = a*a; = (a®a)?; . (2.9.8)

Similarly (2.9.5,6,7) can be written

(K®Q)*°? = K2*Q°? = rank-4 tensor (2.9.9)
T3¢ = (K®Q)*°, = rank-2 tensor (2.9.10)
S =T3, = (K®Q)®,p = rank-0 tensor (scalar) . (2.9.11)

Dot products in spaces VOV, VAW, VRVR®YV and VOWRX
Recall that (2.2.5) defines the (covariant) dot product of two vectors in V

aeb= gijaibj = gijaibj =a;b* =a'b; . x-space =V (2.2.5)
It is possible to define an inner product operator e for use between two elements of VOV :

(a®b) ¢ (c®d) = Z;5(a®b)*I(c®d); 5 (a®b), (c®d) € VOV

(2.9.12)
= Zijalbjcidj .
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With this definition, we have a tiny theorem:
Theorem: (a®b) e (c®d) = (aec)(bed) abcdeV (2.9.13)
Proof: (asc)(bed) = (Z; a*c;)( Ty bldj) =i a*cibIdy =2i5 a'bd cid;

=¥;3(a®b)I(c®d);; = (a®b) o (c®d) .

Suppose dim(V) = n and dim(W) = n'. Then we can extend the above theorem to V®W in this way. First
define the dot product as,

(a®b') o (c®d') = Z;21"T 321" (a®b") I (c®d); 5 (VOW),(VOW') € VOW
o (2.9.14)
=ZX;ja'bctd .
The corresponding Theorem is then
Theorem: (a®b') e (c®d') =(aec)(b'ed') aceV b'deW (2.9.15)
Proof: (asc)(b'ed') = (Zi=1" a’ci)(Z4=1" b'd'y) = Zijatcib?d'y = ZijatbIcid'y
= %5 (a®b)*? (c®d');5 = (a®b') o (cRd') .

In a similar fashion one can show using (2.8.17) that with the following definition,

(a®b®c) ¢ (ARe®f) = 5k (a®b®c)*T* (d®e®f); 5k VOVRV (2.9.16)
one obtains
Theorem: (a®b®c) o (dR®e®f) = (a e d)(b e e)(c o) all vectors € V (2.9.17)

with a similar extension to VRW®X,

Theorem: (a®b'®c'") o (dRe'®f"")=(a e d)(b'ee')(c"of") adeV; beecW,; c"f"eX
(2.9.18)
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2.10 Tensor Expansions

Having a name for the outer product of two vectors allows us to write expansions of tensors of rank
greater than 1 in a compact notation. The template is the vector expansion from (2.7.1) line 3,

V=3,V?e, . (2.10.1)
(a) Rank-2 Tensor Expansion and Projection
As shown in (2.7.5) and (2.7.9), one can expand a rank-2 tensor on the tangent base vectors as follows,
M=2., M e,Qey . (2.10.2)
To verify that this is the correct expansion, we take the ij components of both sides,

[M]*? = [Zap M'®® e,®ep] ™2

Tap M 2P (e,®¢p) 13

= oo M ®P(e'2) (e'p)? /1 (2.8.14), outer product in x'-space
= Tap M3 5,15, //(2.5.8) line 2 used twice
= M3 (2.10.3a)

so the expansion is correct. Similarly,
M= Zap M* u.®uy

IM]*3 = [ Zap M?® u,®up]*?

= Tap M (ua®uy)*3

= Sap M?® (ua)* (up)? // (2.8.14), outer product in x-space

= Tap M §,45,7 // (2.5.8) line 1 used twice

= MY . (2.10.3b)
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A convenient notational method for projecting out the coefficients of any tensor expansion is the use of
tensor-product-space dot products defined in Section 2.9. To demonstrate, we use a tensor expansion in
V®W where the basis vectors are e, and e'y, for V and W, using notation of (2.7.6),

M =3 [M® 2% e, Qe . M e VOW . (2.10.4)

The appropriate projector is (e*®e'?), which is just the expansion's basis ea®e'y, with up/down toggled on
the indices, and dummy labels like i,j selected. Using this projector one finds,

(e*®e) e M =3 M 27122 (e*®e'?) o (e,Qe'y)

= Tap M2 (&1 ae,)(e' oel) // theorem (2.9.15)
= T M2 5153, // dual pairs as in (2.3.2)
BIVICRONE (2.10.5)

and indeed, the coefficient is duly projected out of M. Here is a more complicated example where M is
now a rank-3 tensor, and where we use a perverse mixed basis,

M =Sape [ME P2 ° 2 @ u'y ® e M e VOWQRX. (2.10.6)

The projector is (e; ® u'? ® e"*

) and we use it to project out the coefficient in (2.10.6) :
(e:@ui®e™) oM =(e;Qu? ®e™) 0T, M " QUL ®e'c

— Zab [M (e,u’' ,e")]abc (ei ® uvj ® enk) ° (ea ® u'b ® enc)

= Sap M%) 10 (65 0 €)' e u)(e"™ oe") // theorem (2.9.18)
=Yap M &) ¢ 5.2 83, 8%, // each pair is dual as in (2.3.2)
= Mk (2.10.7)

(b) Rank-k Tensor Expansions and Projections

A rank-k tensor T in V¥ has this expansion on the ey basis,
T=Siji,... .5 T2 k(e ®es,...®e;,). (2.10.8)

To verify, we take components of both sides,
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[TP132 3k = 3, 5, 5y THR20 3k (e ey, ... ® 5, ) 71923k
= Tiji,.. . i TR0tk (5 )1 (e5,)72 L. (egy )k //(2.8.17)
= Yiji,... .4 THR20ikR; JIR; 2 Ry Ik //(2.5.8) line 1

= ' ' jk Tri1iz....i
= Zigip.. .. [Rig?Rip?2 LRy Ik T2 k]

TI1d2 Ik (2.10.9)
To get the last step, we use the inversion rule (2.1.11) applied to the known tensor transformation
T9132 Jk = RI1, RIZ; . RIk THE2-oik (2.10.10)
The coefficients T'*1*2- - - -*k can be projected out from T as in (2.10.5),
(e'1®e'2®... ®elk) o T =T1%2- - 1k (2.10.11)
with an appropriate generalization of the dot product e to the space V¥ = VQV..®V ,
(V1®V3...Qvk) @ (W1®W,...Qwy)
Sigig....ix (Vi®V2..®v) 12 Ik (W1 @Wo. . @Wi)iyi,. .. iy

= Ziqigp....ix (V1) 1(v2)*2... (vi) 'k (W1)ig(W2)ip... (Wi)iy // outer products

(viewr)(vaewy) ... (Vi ® wg) . (2.10.12)
Using the notion of a multiindex I (an ordinary multiindex),

[=11, 12, .....0k // each iy ranges 1,2...n n =dim(V) (2.10.13)
and a shorthand notation for the basis vectors

er= e;,®e;, .0 €5, el=e'l @el2 .. .® 'k (2.10.14)
the expansion (2.10.8) can be stated in the following compact form,

T=3: T er (2.10.8) (2.10.15)
and the coefficients T'* can be projected out according to (2.10.11),

efeT=T"T. (2.10.11) (2.10.16)
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With no comments, we now repeat the above set of steps for the expansion of T on the u, basis:
T=Ziji,. .. .5 T2 Yk (ug, ®uy, ...®uy,) (2.10.17)

1] Ik iqin....1 1] j
[T]Jljz...jk = Zi1i2- LoLip T 112 k (ui1® ui2 ..... ® uik)Jljz...Jk

= Zigip. gy T2 3 (0 )9 (03,)72 o (ugy )R //(2.8.17)

= iy ... THR200ikG J15; 325 K //(2.5.8) line 1

= T332 Ik (2.10.18)
(u'1®u*2Q®... ®u'k) e T = T*12-- -1k (2.10.19)
Ur= ui; ® us, ... uy, u'=u'l @u2..® u'k (2.10.20)
T=3: T ur (2.10.21)
uteT=T" . (2.10.22)

2.11 Dual Spaces and Tensor Functions

We denote dual-space vectors and tensors by Greek or script font letters.

The dual space V* is by definition the space of linear functionals over V. If a € V*, we can then write
a:V-oK av)=k €K (2.11.1)

where K is any field (but we always use the reals). Since a is a linear functional, o(v) is a linear function.

In normal calculus, if f: V — R, one refers to f as a function, and f(v) as that function evaluated at some

point in V, though loosely speaking f(v) is also called a function. To emphasize the distinction, we shall

refer to f as a "functional" and f(v) as a "function".

Comments: Much of the rest of this section will be repeated in later Chapters. We have found that the

notations involved can be a major stumbling block, and feel it is important to exercise the notation in

many ways to make the reader (and author) feel comfortable with it. As with most endeavors, it is a
matter of practice. We also try to explain why certain notations are used.
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(a) The Dual Space V* in Matrix and Dirac Notation

For every column vector v in V, there exists a row vector v* such that (v7); = v;. For example, for N=2,

vz(ﬁ) = |v> VI=(a,b) = <v| . @2.11.a.1)

Here we have snuck in the Dirac bra-ket notation where the ket |[v> is a column vector and the bra <v| is
the corresponding row vector. The notation v* means that the row vector is the Transpose of the column
vector.

We now have multiple ways to write the dot (inner, scalar) products of Section 2.9 :

vey = VTV' — (a, b) (a ) = aa+bb' = <v | v> . (21132)

bv

Because our vectors have real components, the above can also be written
a
viev =v'Ty = (a,b) (b) =aa+bb' =<v'|v> . (2.11.a.3)

We mention real components only because in the Dirac notation one has <alb> = <b|a>* where * means
complex conjugation, so if this scalar product is real, then <a|b> = <bla> .

We regard v or [v> as being a vector in the vector space V, while v¥ or <v| (the row vector) is a vector in
the dual space V*. This is really a simple concept. Sometimes the dual-space vector v* = <v| is referred
to as the covector of v=|v>.

Suppose a” = <a | is a vector in the dual space V* . One can regard this dual-space vector <a | as being a
functional which acts on vectors in the space V. Then,

o = <o | = functional
a(v) = <o | v>=a e v =function = a scalar number (2.11.a4)
a: VoK. // K = any real field, such as the real numbers

Just as the space of column vectors V is a linear space (a vector space), so also the dual space of row
vectors V* is a linear space, so we know that the functional <a | is a linear functional. That in turn implies
that the function o(v) is a linear function, which we now show directly:

a(sv)= ae(sv) =s(aev)=sauV)

a(vtv)= ae(v+tv)= aev+ aev' =qv)+ oV'). (2.11.a.5)
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(b) Functional notation

We have now a slight notational conundrum. We like to write a scalar-valued function F(v) in non-bold
font, whereas a vector-valued function would be F(v). Thus we have written a(v) above with a non-bold
a, since (V) is a scalar-valued function. On the other hand, a(v) is really a function of the vector a, so it
seems misleading to refer to it as a(v), and we ought to call it a(v) so then a(v) = <a | v> has everything
bolded on both sides. But then the functional would have to be called @ = <a | . But this contradicts our
notation earlier that a is a vector, a® is the transpose, and we should write a® = <a |. If we use a = <a |

then we avoid that contradiction. This is what authors end up doing, writing a functional as a scalar entity
which for us means an unbolded entity. A possible solution would be to say,

fa = <a | = functional
fa(v) = <a | v>=a e v = function (2.11.b.1)

where f is non-bold, and the subscript label a is bold, but then we have introduced a new symbol f which
seems superfluous. So the conclusion is this: o = <a| = functional, a(v) = <a | v> = function, and one
must understand that a(v) is a function of the vector quantity a. Obviously there is a unique functional
a(v) for each vector a in V (and thus for each a” in V*). The spaces V and V* have the same dimension n

and are isomorphic to each other in the sense just noted.
(c) Basis vectors for the dual space V¥

Now recall that our axis-aligned x-space basis vectors u; have dual basis vectors u* where u*e uj = 8*;
which is the idea of orthogonality in the covariant world (which might be non-Cartesian). In our notations
above,

uteu; = (uhHTuy =<ut|uy> =8
= uje u’ =(ui)T u’ =<ui|uj> =Sij = 0i,§ - (2.11.c.1)

Since u; and u* are in general different column vectors in V, (uz)T and (u*)* are different row vectors in
the dual space V*.

Just as the column vectors |u;> and [u*> form two distinct bases for V, the row vectors <u® | and <u; |
form two distinct bases for V*. Certainly dim(V) = dim(V*).

Definition of A

Above we discussed o = <a| as a vector functional, and a(v) = <a|v> as the corresponding scalar function.
Whereas <o/ is some general vector in V*, we now consider in its place a basis vector <u*|in V*. With

what notation shall we represent this functional? In analogy with a and oa(v) we could use ut and ut(v)
where the u* is unbolded to indicate a scalar function. Or we could use fui =<u'| and fui(v)=<u®|v>.
The first notation is not uncommon (see wiki dual space where u* = e*), while the latter notation is
unpleasant. Other common notations are v**(v) or e**(v) which for us would be u**(v).
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We shall use the following notation,

At =<u?| basis functional in V* /At = uh)T®
SO = = = =
A(v) = <u'lv> basis function in V*¢ /A V) = (uh)Tv. (2.11.c.2)

The A is unbolded, consistent with a(v). A is a Greek letter consistent with our plan to use Greek or script
letters for dual space objects. The index on A* is up, matching the index on u* in <u*|. Notice that

Auy) =<utluy> =355 . (2.11.c.3)

We think of A* = <u?| as being in the dual space V* while A*(v) = <u*|v> lies in a directly corresponding
space of functions which we call V*¢. This is our first example of what we shall call a "tensor function".

Comment: Lang [1999] uses Ai(p 130) for the his dual space basis functionals. Sjamaar used symbol A;
in his 2006 notes (p 84), but changed to B; in his 2015 update (p 91). Spivak uses @i (p 76). Wiki (dual
basis) uses basis vectors v; instead of e; so their A* is called v*. Wiki (dual space) uses e* while Lang
[2002] uses f* (p 143). There seems to be no standard notation as in physics where F = ma is universally
recognized as Newton's Second Law which would be hard to identify if written G = nb. Probably u* or u*
(unbolded) is the most logical choice if the V basis vectors are u;, but it is so easy to confuse functional
u* with the vector u* (especially when we drop our bolding of vectors starting in Chapter 3) that we shall
stick with A*.

Eq. (2.7.1) line 1 gives the expansion of a vector v onto the u;

V=2 vi uj where vi=uley
or

v> = %; v'|u;> where vi=<u'|v>=utev . (2.11.c.4)
Notice therefore that

Av) =<utlv> =utev=vl. (2.11.c.5)

The function A*(v) is sometimes called "the i*™ coordinate function" since it projects out the i*®
component the vector v. As summarized in (2.7.13), since each dot product u® e v is a scalar, the
functions A*(v) i = 1..N transform as scalars despite the fact that the values of these scalars are the
components of the vector v*.

Transposing (2.11.c.4) produces a vector functional expansion in V¥,
vi=3%; v (uy)t  or <v| = 33 vi<ui| = Z; vi <u?]. (2.11.c.6)

Using Greek letters for dual space objects we write this as
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a=<a| = I; a3 <u'| = T; ozt (2.11.¢.7)
Then,

o= Ziaiki functional (2.11.c.8)

a(v) = 2050 (V) = Ziosvt =aev function (2.11.c.9)

or in bra-ket notation,

<a| = Ziai<ui| functional

o(v) = Eiai<ui|v> =305V = aev = <al|v> function (2.11.c.10)
and we replicate the result (2.11.a.4).
Definition of A'*

We have defined A* = <u?| as a notation for a certain basis functional in dual x-space. We would like to
somehow define an object A'™* which is a basis functional in dual x'-space. How should this be done?

One might intuitively feel that one should set A" = <u'*| . Or one might think that once A* is defined as
above, then the meaning of A'* is forced upon us by some equation like A" = Rijkj . Both these notions

are not what we want to do. We are not forced to say A'* = <u'*| just because A* = <u| since we are
making two separate definitions. And A'* = Rijlj is complete nonsense for the following reason. The N
functionals A* for i = 1..N are each vectors in V*, so {Xi} is a set of vectors, not a set of numbers,
whereas when one tries to write A" = Rijkj one is implying that A3 is a set of numbers which form a
vector.

Recall that the u; are the "axis-aligned" basis vectors in x-space since (uz)? = (ui)j =01, 5
Recall that the e'; are the "axis-aligned" basis vectors in x'-space since (e's) = (e'i)j =01, 5.

This suggests that the proper definition of A" is the following:

A= <e'| . (2.11.c.11)
One then finds that, for v' a vector in x'-space,

AV = <e|v> =v* (2.11.c.12)
which is then analogous to

Awv) = <ud|v> =vh . (2.11.c.5)
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In both cases then A* and A'* are the "i*® coordinate functions", projecting out the i* coordinate from a
vector.

Since v'* = Rijvj we can certainly write
Av) =R AM(v) (2.11.¢c.13)

as a statement relating two vectors of scalars. Notice this does not say A'™* = Rijkj which we already
noted above does not even make sense. If we display the fact that R*; in general is R*(x) then

AV =RY5(x) M) . (2.11.c.14)

Since this does not fit into any of the molds shown in (2.1.16), one cannot quite claim that A3(v)
transforms as a vector field, but the transformation is similar.

We can study (2.11.¢.13) in Dirac notation as follows (see below for Dirac notation details),

AV =<etv>= <etlv> = <et| 1| v> =<e'lu; ><ul|v>=ereu; MI(v) =R*jAI(v)

(2.11.c.15)

where the last step comes from (2.4.3).
Once one has a functional A'*, one can define a general rank-1 functional o in dual x'-space as follows:

o =305t functional in V'* (2.11.c.16)

a'(v') = Zia'ik'i(v') = S05vt =a' ey function in V'*¢ . (2.11.c.17)
It then follows that

a(v') =a'evi=aev =q(v) (2.11.c.18)
and in some sense one could say that a(v) transforms as a scalar field, where v plays the role normally
occupied by the position vector x. On the other hand, the vector |[v> and the dual vector (functional) o =
<a| transform as vectors and so o is a vector functional.
We now define a(v) to be a "rank-1 tensor function". Spivak would call it a "1-tensor". We have this
seeming contradiction that a(v) is a rank-1 tensor function, yet that function transforms as a rank-0 scalar.
The rank-1 description really applies to the functional a = <a| which is in fact a vector and transforms as a

vector. When this is closed with the ket |[v> one obtains the scalar object a(v) = <a. | v>. (2.11.c.19)

Vector space names: V, V* V*¢ and V', V'*, V'*¢ (2.11.¢.20)

Here we have associated vector space names V and V* with x-space in Picture A (2.1.1), while V' and
V'* are associated with x'-space. All these spaces have the same dimension n and all are isomorphic.
There is a 1-to-1 relationship between V and dual space V* as noted above, and there is a 1-to-1
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relationship between V and V' since for every vector v in x-space there is a unique corresponding vector
v' = Rv in x'-space. We refer to V* as dual x-space and V'* as dual x'-space. Associated with the dual
space V* of functionals is the space V*¢ of corresponding functions, and similarly for V'* and V'*¢.
(d) Rank-2 functionals and tensor functions
A rank-2 tensor may be represented as

T= Zap T?® us ® up (2.11.d.1)

V=3%,Vu,

where on the second line for comparison we show a general rank-1 tensor (vector). In Dirac notation, we
write

| ua, Up™> = |uy> ® |[up> > u; @ up (2.11.d.2)

which represents any of the n? basis vectors of the tensor product space V2 =V®V. We could write this
as | Ug, Up>2 = |ug™>1 ® |up™>1 to distinguish the fact that some kets are in V1! and others in Vz, but the
contents of the ket usually make it obvious to which vector space a ket belongs. In Dirac notation, the
tensor T is written

T>= 2T ju> ® [up> = T3 | ua, up> (2.11.d.3)

and this is a general element of the space V2. The corresponding rank-2 linear functional in the dual
space V*2 is given by

<T| = ZapTap <v® | @ <u®| = ZpTap<u? u’ . (2.11.d.4)
This is done in analogy with the vector case

V>= X, V?|u>

<V|=3%, Vo<u®| . (2.11.d.5)
We are careful to have the index "tilt" have the form of a contraction, even though we are not really
contracting indices on a tensor. The rank-2 functional <T] is linear in both V* spaces of V*®V*, so it is
called a bilinear functional. If we let (subscript 1 and 2 are labels of two vectors, not components of v )

‘ Vi, Vo> = ‘V1> ® ‘V2> (2.1 1d6)

represent an arbitrary (but pure) element of VZ=V®V, then we may construct

51



Chapter 2: Tensor Algebra

g =<T] rank-2 tensor functional
J(v1,v2) =<T|vy, v2>  rank-2 tensor function (a Spivak "2-tensor") . (2.11.d.7)
It follows that

F(v1,v2) =<T|v1,v2> = ZapTap <0 u” vy, vo>
= LapTap <u?| v1> <u®| v>
= SapTab (V1) (v2)° (2.11.d.8)
where we have used the fact that the scalar product for elements of V*2 with elements of V2 is the
product of two V*-with-V scalar products, as seen for example in (2.9.13). In the last line above we see
that the tensor function J(v1,v2) is the contraction of a rank-2 tensor with two rank-1 tensors, and so is a
scalar. Thus,

J'(V'1,v'2) = J(V1,v2) (2.11.d.9)

and a rank-2 tensor function transforms as a "scalar field of two arguments". The "rank-2" description
applies to the tensor functional <T|, and when this is closed with an element of V2 the result is a scalar.

Note from (2.11.d.8) and (2.4.1) that (u;)® =3;%,

5(lli,llj) = Zaplab (lli)a (llj)b = Zaplab Sia Sjb = Tij (21 1d10)
so the tensor function evaluated at the basis vectors gives a corresponding element of the tensor.
Using A=< ui| as defined above in (2.11.c.2), we can rewrite (2.11.d.4)

<T| = ZapTap <u® | ® <u”)
as rank-2 tensor functional

T = ZapTap A2 ®A° (2.11.d.11)
which is analogous to

<o | =25 0a <u?|

rank-1 tensor functional
0= Za 0g A% (2.11.d.12)

We continue to use script or Greek fonts to represent functionals, such as o and J.

Taking the special case of a rank-2 functional which is just A* ® AP we construct the following rank-2
tensor function,
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%vo> = (v0)® (v2)°

A ® Xb)(Vl,Vz) = <u? u’ vq, Vo> = <u?|vy><u
=2\3(v1) Kb(vz) ) (2.11.d.13)

This function is manifestly linear in both arguments, since A®(v1) is linear, so it is a bilinear function. For
example,

(* ® A2)(vi+vi'v2) = (vitvi)? (v2)° = (vi)® (v2)° + (V'1)® (v2)°
= (A ® AP)(v1,v2) + (A2 ® AP)(v'1,v2) . (2.11.d.14)

Whereas <T| shown above is a general rank-2 tensor functional, we can consider the special case of a
pure rank-2 functional formed from two vector functionals o = <a| and f = <P| . In that case one finds,

(a®B) =<0| ®<P| =<a, P | rank-2 functional

(0' ® B)(Vl,VZ) = <U‘, B | Vi, V2>
=<a|vy> <p|vz> =a(vi)P(vz) rank-2 tensor function

(00 ® B)(ui,ug) = o(ui)p(uy) =aify=(a®P)iy  rank-2 tensor (2.11.d.15)

where the very last item is a;P5 expressed in the tensor product notation of (2.8.9). Once again,
evaluation of a tensor function at two basis vectors creates an element of the tensor.

Comment on vertical bars in the Dirac Notation

Let |[a> be a vector in V, and <b| a vector in the dual space V*. Notice that
<b| |a> = <b|ja> = <bla>. (2.11.d.16)

The official notation for the scalar product is <b | a> not <b || a> so one replaces the || with | . The same
. . *2 2
replacement is made for example doing a scalar product between elements of V' “ and V

<a|®<b| |c>®|d> =<ablc,d> =<ab]|c,d>

or
<a|®<b| [c>®|d> =(<a| |c>) (<b| |d&>) = <ale><b|d>. (2.11.d.17)
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(e¢) Rank-k functionals and tensor functions

It is a simple matter to generalize from k = 2 to k = k, so the vector space is V¥ and the dual space is V*¥,

V = VxVx...xV k factors // Cartesian product of k spaces
VE=VRVR...®V k factors // tensor product of k vector spaces
VK = VIQV®... QV* k factors // tensor product of k dual spaces . (2.11.e.1)

We then have as a most general element of V¥ (a rank-k tensor),

T=Siji,.. .4 T2 % (w3 Qus, ... @us, ) . T= 2T u; (2.11.e.2)
with
(Ui, ®uiy .. @uiy) = (Ui > @ Uz, > @ Uy > = [ Wig, Wiy e, Ugy >k (2.11.e.3)
= [ Uiq, Uiy ey Uy > ur =u;; @ ui, ....Quyy

On the right in red we show our equations expressed in the multi-index notation introduced in (2.10.20)
and (2.10.21). The letter Z which appears below is used to represent the set of integers 1,2...k.

Then the rank-k tensor T in V¥ is represented in Dirac notation as
|T> = Zi1i2 o Tiliz ik | Uig, Uiy oo > Wiy > ‘T> = ZITI |u1> (2.1 1.6.4)
The rank-k tensor functional <T| of V*¥ is then
<T|= Ziqip. .. .ig Tigip....ip <UL u*2... u'k| <T| =Tz <u’|
or (2.11.e.5)
G = Zijiy. . ig Tigig... .1 M1®A2 @A . F=3;Tr A
A general pure element of V¥ is specified by

V1, V2, .Vi> = [V1> ® |[v2> ® ... ® |vi> . [Vz>= |[v1i> ® [vo> ® ... @ |vi> (2.11.e.6)

The corresponding rank-k tensor function is given by
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J(v1, V2, ..vk) =<T| vy, va, ..Vi>
= Ziyip. iy Tigig. .. ap <WL w2 uMe vy, vo, v
=380, .. .4 Tigin....ip < utlvi><u2vy> . <ukvie> (2.11.e.7)
=Ziyip. . ix Tigig.. .. (VD' (v2) "2 (v ™ G(vz) = 1Tz (V)"

This shows that the rank-k tensor function is a linear combination of the products of the argument
components weighted by the components of the corresponding rank-k tensor. Since this is the contraction
of a rank-k tensor with k rank-1 tensors, the result transforms as a scalar, so then

J(v'1, V'2, . V%) =39(V1, V2, ...Vk) . J'(v'z) =T (vz) (2.11.e.8)

That is to say, the rank-k tensor function transforms as a scalar field, where the term "rank-k" is
associated with the functional 5 = <T| which is an element of the dual space V** . Finally we see that

5(lljl,llj2, ujk) = <T | Ujq,Ugp, -oee Ugy >
= Ziqip....iy Tigip....ip (U571 (u3,)*2.(ug) "%
= T3195. .. 5k - Fus)=Ts (2.11.e.9)

From (2.11.e.7) one sees that the tensor function J(vi, Va2, ...Vk) is manifestly k-multilinear, which is the
generalization of linear for k = 1 and bilinear for k = 2.

Once can construct a rank-k tensor functional purely from the dual basis vectors,

AM@A2® .. ®\TK) = <u®l| ® <u?| ... <u*| rank-k tensor functional AM=<uf|  (2.11..10)

AMOA2® .. AR (Ve,Va....vi) = AL (vA2(v2).. AT (vy)

= (v1)*1(v2)*2 ... (vi)'k rank-k tensor function A(vz) = (vz)t (2.11.e.11)

AMOA2® ... QA K) (5,5, o U3) = AM(Ug A 2(us,)... AR (uy,)
= (llj]_):L:I'(lljz):l'2 (lljk)lk

= 8j1i18j212 Oy K evaluated at basis vectors . A(ug) =85 (2.11.e.12)
As an alternative to the most general rank-k tensor functional J and the all-basis-vector rank-k tensor

functional (\*1®@A*2® ... ®A¥), one can consider a "pure" rank-k tensor functional constructed from k

dual vectors which we shall call <a;| . In this case we find,
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<ai, O2....0x| = <o1| ® <ay|.... ® <ay|
pure rank-k tensor functional
=01 ® 0z... ® ax = (01®02...Q0k) (2.11.e.13)

((11®(12...®(1k)(V1, Vo, ...Vk) = 0,1(V1)(12(V2) ....Otk(Vk)

= (a10v1)(020V2) ....(0x®VK) pure rank-k tensor function (2.11.e.14)
(01®02...Q0x)(U31,U5,, ... UWjy) = 01(Ujq)o2(U5,) ....0k(U3)

= (a1 uj;) (020 uj,) ... (Ox® uy,) evaluated at u,

= (01)31(02)35--(0k) 3, = (01®02...00K) 5155+ 35 outer product notation (2.11.e.15)

Hopefully after this long slog, the following paragraph makes some sense to the reader:

A rank-k tensor function is the bra-ket closure (inner product) of a rank-k dual tensor functional <T| of
V*¥ with a pure rank-k non-dual tensor |vq,v2...vi> of V¥ such that 5 (V1,v2,...vx) = <T|v1,va...vi>. The
tensor function is k-multilinear in its arguments, and transforms as a scalar field with k vector arguments.
When the rank-k tensor function is evaluated at the basis vectors uy, it replicates the non-dual rank-k

tensor with which is it associated, which is to say, F(uj; ,uj,, .... 5,) = T315,... .5, - Spivak on page 75

refers to a rank-k tensor function as a "k-tensor". (2.11.e.16)
As we shall see later, a motivation for using tensor functions is their crashingly simple description of the
tensor product of an arbitrary rank-k tensor with an arbitrary rank-k' tensor to produce a rank-(k+k")
tensor :
k<T | V1,V2..vi>k k"< S| Vi41,Vk+2...Vk4k ' k"
=[x<T® x'<S|] [[V1,V2...vi>k ® |Vk41,Vk+2...Vktk' k']
= ktk ' <I®S | V1,V2...Vi4k  ktk (2.11.e.17)
or
J(V1,V2,...Vk) S(Vk+1,Vk+2,--.Vktk') = (T®S)(V1,V2 ... Vkik') - (2.11.e.18)
This equation appears below as (6.6.13) and also appears in Spivak page 75.

As noted by Benn and Tucker page 2, the relationship between the vector space V¥ and the dual vector
space V*¥ is a reciprocal one. One could, as they say, perversely regard V** as the starting vector space
and then V* would be the dual space of V**. This amounts to swapping bra < ket in the Dirac notation
outlined above. Instead of having a functional a(v) = <a|v>, one would have a functional v(a) = <v]e>.
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We find that things are hard enough to understand without doing this "perverse" swapping of things right
off the bat as they do. They refer to a rank-k tensor as a tensor of degree k, while other authors refer to
rank as the order of a tensor. We us the term rank and promise not to confuse it with the different notion
of the rank of a matrix which is the number of linearly independent rows or columns, or with various
other meanings of the word "rank" in mathematics.

(f) The Covariant Transpose

Whereas the matrix transpose of a matrix Ma> would be (MT),® = Mp? (swap the rows and columns), it is
the covariant transpose (MT)ab = MP, that is significant in covariant notation. We quote from Tensor
where M is a general rank-2 tensor while R and S are the "differentials" of (2.1.2),

(MT)ab — Mba (RT)ab _ Rba (ST)ab _ Sba
M) =Mp*  (R)% =Ry (ST = Sp*
MNLP=MP,  (RN°=R% (SNa"= 5"
MNab=Mba  (R")ab=Rea (SMab = Spa - (7.9.3) (2.11.£1)

Equations in any column can be obtained by lowering one or both indices in the top equation, so that the
covariant transpose M is a rank-2 tensor if M is a rank-2 tensor.

For all-up or all-down indices, the two kinds of transposes are the same: (MT)® = (MT)ab =M,
The covariant transpose has the indices reflected in a vertical line between the indices.

The following facts involve the covariant transpose,
det(M) = det(M™) = det(M") (7.9.7) (2.11.£2)

RR"=R'R=1 SS"=8"S=1 RS=SR=1
R'=R1!=5 ST=81=R . (7.9.8) (2.11.£3)

The fact that R' =S and ST =R and is just a restatement of (2.1.4) and RS = SR =1 is (2.1.3). The fact
that det(M) = det(MT) is well known, where one swaps the rows and columns. The fact that det(M) =
det(M") is proven in (A.1.22).

(g) Linear Dirac Space Operators

Consider these three ways of writing the same real number, where M is a matrix sandwiched between
vector b on the right and transpose vector a on the left,

% %k % *
a” (Mb) M acts to the right (***)[(***][*]]

k k% %

k ok ok *
(aTM)b M acts to the left, and note that (aTM) = (MTa)T ¥ [(* * %) [ * %k % J ] [ % ]

k ok % %
a™™ b can think of M acting either to the right or to the left. (2.11.g.1)
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F M) = MTa)* =(MN}jad = Mytad = adMyt = ™M)
In writing these equations, one normally thinks of M as being a matrix
MYy =MEhEy orM =M

By default, the matrix elements are taken in the axis-aligned u; basis on both left and right (and this
applies to all indices as discussed at the end of Section 2.4 so that

UH™ (u3) = Za,b (UH)a M, (u3)° =Za b 8*a M3 357 =M*5 /=MD, (2.11.g2)

and then M™ = M. One could, however, do this in some other basis, for example using the tangent base
vectors ej,

(e*) ™™ (e3) = Za,b (€9)a M?, (€5)° = Za,» R*a M3, R5®=(RMR")*; //=(MI®])E; (2.11.g.3)

and the result is a completely different matrix. In this case the matrices are related by a covariant
similarity transformation by R

mlel =r MIEIRT | //M'=RMR" (2.11.g.4)
It is useful to think of the object M as being a basis-independent abstract linear operator which, when
sandwiched between certain basis vectors, has certain matrix elements. Different types of basis vectors
yield different matrices. One could also have mixed basis elements,

(uh) ™M (e3) = Za b (0)aM?s(e3)° =Za,b 8'aM*BRs® = (MRD)*5 /=M™ =) (2.11¢.5)
so in this case we get

mle-el = pMIuIRT, (2.11.g.6)
The abstract operator M only becomes a matrix when it is properly sandwiched between basis vectors.
This notion of thinking of the object M as a basis-independent linear operator becomes more pronounced

in the Dirac notation. We restate the above equations as follows, all of which evaluate to the same real
number,

<a|( M |b>) M acts to the right =<a|Mb >
(<aM) |b> M acts to the left, and note that <a|M = <M'a | =<M'a |b>
<a| M |b> can think of M acting either to the right or to the left. (2.11.g.7)

The space between the vertical bars is inhabited by abstract linear operators like M. The matrix elements
shown above are then
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<u* |M|uy> = M) =M
<e*|M|es> = M = RMRT)Y
<u* |M|es> = MM el = (MR /M =MM (2.11.g.8)

To emphasize this notion of abstract operator, we shall write the operator in a different font, so M is a
matrix and J is a Dirac-space operator, and then

<a| M b> = <a|( M |b>) = <a|[Mb> = ascalar product of two vectors
<a| M |b> =(<a]M) |b> = <M'a | b> = ascalar product of two vectors
<u* | M| uyp> = MY =M etc . (2.11.8.9)

Here then is a review of the matrix and Dirac notations,

a = Ma)=M)a=> (YT = (Mb)* =bT M’ matrix notation
la™>= |[Ma>= M|a> <b'| = <Mb| = <b|./l/lT . Dirac notation (2.11.g.10)

Then consider the following claim
Fact: <a|.M|b>=<b| M |a> (2.11.g.11)
where both JM and M are the names of abstract linear operators.
Proof:

<a|JM|b>= <a|Mb> = a*(Mb); = a*[ M;bs] = a* M;7 b;

= byM;J at = BT);(MN)3; a* = T)3[M'a]’ = <b|M'a> = <b| M |a>.

Operator M is defined by its action on an arbitrary ket vector M | b>= | M b>
Operator M is defined by its action on an arbitrary ket vector M | b>=| M' b>
Notice in the proof that the covariant transpose M is the correct transpose to use since M3 = (MT):'| i
Exercise: Show that wev is a scalar under any transformation x' = F(x) :

wev' =<w'|v’> = <Rw[Rv>=<w|R'R|v>=<w| ] [v> =<w|v> =wev . (2.11.g.12)
In this example R is a matrix, whereas R is the corresponding Dirac space operator. The statement

RR=1 (2.11.g.13)
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is the operator version of our (2.11.f.3) matrix statement

R'R =1 (2.11.g.14)
which we verify as follows,

(R'™R)?. = (R")?,RP. = Rp2 RP. =53 //(2.1.9) #1 (2.11.g.15)
and which is valid for any transformation differential matrix Rij.

Ways of representing U

One may represent a Dirac operator J in various ways, for example,
M= Zi5]ui> M5 <u?]
= Zij ] es> M1 35 <e?|
= %34 up> (Mol <o) (2.11.g.16)
as can be verified by closing with the appropriate basis vectors. For example, for the last line above,
<0 | M|e> = <u®| {Zyy]u> MR <ed)) | ep>
= Zi5 <u®ug> MR <ed| ep>
= ¥;5 8% Ml E 8,
= MMwelya (2.11.g.17)
When M = [ we find
1= Zi5|u>dYy<ud| = Z; | up><u?| (2.11.g.18)
which is just a statement that the | u;> basis is complete, as discussed more below in section (h).

We can compare the abstract Dirac operator M with the abstract rank-2 "vector" M,

M= Zi5 ] uz> Mij <u?| // Dirac operator
M=ZX;4 Mij u; ® u? /1 (2.8.10), "vector" in vector space V2
or
M> = Eij Mlj |u;>® | u> . (2.11.2.19)
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The first object M is an operator in the Dirac Hilbert Space V.
The second object M or [M> is a vector in the tensor product space V ® V.

M and M are completely different objects, though they both involve the same matrix elements Mij. In
each case, we can project out those matrix elements in an appropriate fashion:

<u®| M| up> = <u?| { T u> MY <o) Jup> = M3
[<ua| @ <uP|]|M>=[<ug ® <u’|]Zi3 MY |us>® [ ud> = M3, | (2.11.g.20)

Non-square matrices

The above discussion is presented implicitly for a square matrix M, but only small adjustments are needed
for it to apply to a non-square matrix. In this case, in a™ b one thinks of vectors a and b as having

different dimensions. Perhaps b lies in x-space which is R™ while a lies in x'-space which is R™ with m >
n, and then Mij is an m x n matrix. The x'-space V' has n basis vectors |u';> while the x-space V has m
basis vectors |u;>. Then one would have, for example,

<u® [ M| u'y> = MYy

M= Zi1™ Ty [ ug> My <u'?]

IM> = Z321™ 252" MY | u> @ [u'd>

1" = 35 | u's><u"?| completeness in V'

1 = 3 | ug><u’| completeness in V (2.11.g.21)
This is exactly the situation we shall encounter in Chapter 10 where the matrix R is an m X n matrix.

Linearity of M

We emphasize that any Dirac operator like M is a linear operator. This is so because the action of M is
defined in terms of the matrix M which is of course a linear operator. Specifically,

M| s1a+ sob>= | M(s1a + sab)> // definition of M
= | sgMa + s, Mb > // matrix algebra
= | sgMa>+| s Mb > // the ket vector space V is a linear space
= s1| Ma> + sp| Mb > // the ket vector space V is a linear space
=siMla>+s,Mb> . (2.11.g.22)
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Following the same steps, one finds that M is also linear when it acts to the left on vectors in the dual
space V*,

<sjatsph | M =< MT(sla +s2b) | =51 <M'a | +s2 <M'b | =si<a|M+sy<b|M (2.11.2.23)

M acting on tensor product spaces

Tensor product spaces and wedge product spaces (regular and dual) are described in later Chapters of this
document, so our presentation is a little out of order here. We just want to have all material for Dirac
operators collected in one place.

It is possible to extend the definition of M to describe its action on a tensor product space. Suppose |T>
and |S> are elements of V2 = V®V (to be discussed in Section 4.1). Calling this extended operator J(?,
we first define it to be a /inear operator,

MP [s1T> + 85[S>] = s0MP | T>+ 5,2 |S> // definition
Then we state instructions for how J?) acts on a vector in V2, using a general expansion for [T>,

MPT> =MD [Z45Ts5 [us>® Jug>]= Zi3Ts5 MP[|us> @ |uz>]

2i5Ti5 Mui> ® Mus> // definition
= Zi5Ti5 [Mui>® [Mus>.
In general, if | a>and | b> are vectors in V1, then
MP [|a>®|b>] = Ma>® Mb> = |Ma>® | Mb>.
Normally we write ‘) just as M so the nature of M is implied by the space on which it acts. Then
M[s1|T> + s2|S>] = s M|T>+ s M [S>
M|a>®|b>] = M a>® M b>=|Ma>® |Mb>. // M acting on V2 (2.11.g.24)

In generalizing the above equations to the tensor product space V* = VOV®...V (Chapter 5), the first
equation above stays the same, where then M on the left side means M™) | while the second equation
changes, so

M[s1|T> + s2|S>] = s1M|T>+ s1M [S>
M| vi>®|ve> Q... ® |vy> ] // M acting on V* [ see (5.6.17) ]

= Mvi> @M ve> ®.... ® Mvp> = | Mv1>Q | Mvy> & ...Q |[Mvy> . (2.11.g.25)
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Parallel statements apply for the dual space V** (Chapter 6)
[s1<T| + sp<S| M = s1 <T|M+ s1 <S|M
[<V1| ® <vy| ® ...Q <vy| | M // M acting on V** [ see (6.6.18) ]
= <viM @<Vl M ® ... @ <vplM =<M'vi] ®<M'vy| ®..®<M'vy| . (2.11..26)

M acting on wedge product spaces

As will be shown in Chapter 7, the last two equation sets above have the same form for action on wedge
product spaces, but ® is replaced by *, so

M[s1|T> + s2|S>] = s1M|T>+ s M |S>
M| vi>" | va> ALl > ] // M acting on L™ [ see (7.9.d.15) ]
= M vi>" "M va> N A Mve> = Myve> A Mv> A LA [Myvg> . (2.11.g.27)
For the dual space A",
[ s1<T| + sz <S| JM = s3 <T|M + sy <S|.M
[<vi| M <wvy| NN <vy| | M // M acting on A" [ see (8.9.d.15) ]
= <vi|M A<Vl M A A<vgl M =<Mvy| A<Mvy| Ao A<Mvy|. (2.11..28)

We give the M definitions above for tensor products and wedge products of vectors, but the equation
numbers "[ see (...) " show the results generalized further to the products of an arbitrary set of tensors.

Special Case R

As a special case of the general matrix M and its Dirac linear operator MM, we can consider the
transformation differential matrix R and its corresponding Dirac operator R, where then R|a> = |[Ra> .
The matrix R can be non-square as was noted above for M, and this situation will arise in Chapter 10. The
main point is this:

Fact: The operator R is a linear operator with respect to any of the Dirac spaces it acts upon.
(2.11.g.29)

These spaces could be V?, V*¥* L" A" or any tensor/wedge products of these spaces such as A™ * A™
For activities in x'-space, the vector space names are V'™, V'*?, L™ A™ .
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(h) Completeness

Let b; be a set of basis vectors for vector space V. Then b? is the dual basis and we have
85 = b*ebs = (b)) by = (**)(*) (2.11h.1)

where we show the dot product and vector forms of the scalar product.
By the definition of a basis, any set of basis vectors for vector space V is "complete", which means
that those vectors are sufficient to expand any vector vin V,

v="3i=1"v'b; where v'= b*ev =" . (2.11.h.2)

One can then write the above equation as

V= Sim® b [vE] (:)=zi=f‘(:)[vi]
= Zit" b [(0Y)Y] = (1)1 o(3)
= Zia” [bi(dY)"]v = Zi" [(:)( * *)](:)
— {Zaa® s v ~ iz (L) 1 (s)

Il
TN
* %
* %
~—
TN
~—

= Myv (2.11.h.3)

On the right we show the vector/matrix structure of each expression in the simple case of R2. We end up
then with v =M v. Since this must be true for any v in V, it must be that M = 1, the identity matrix, so

Tia® bi(bH)T =1 (2.11.h.4)

which is the official statement that the basis b; is "complete". To make this statement in terms of the
components of the basis vectors, we can apply (uj)T on the left and (ux) on the right to get

)T [ 2321 bi(YHT Jux = (W) 1 ue= () ux = ud o uy =%

or

Zi=1® ()T [by(bH) ux = 8%
or

Zi21” ()T bs] [(bH) ] = 8%k
or

2i=1" [u? e bi] [b* e ux] = &
or

Pio1® (b:)d (b = 8. // like (2.3.5) (2.11.1h.5)

We now repeat the above development in the Dirac notation shown on the right,
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v>=3;21"v* |b;> where  v'= <b?|v> (2.11.h.6)

vV = 2i=1n b; [Vi ] |V> = 2i=1n |bi> [ Vi ]

Tic1® bs [(bY)TV] Tiz1® bi>[ <b*| v>]

Tia® [bi(HT]v Tiza™ [ bi><bY| ]| v>

{Zima” [bi®D]} v = {Zima" bs> <b¥[ } | v>. (2.11.h.7)
Completeness expressed in Dirac notation is then

Yo [bs><bY =1 . (2.11.h.8)
where / is the Dirac operator form of the matrix identity matrix 1.
Applying <u3| on the left and |u> on the right this becomes

Yo" <ud| bi> <bilue> = <u|ue> =64
or

Zi=1" (b)) bV = 8% (2.11.h.9)

which replicates (2.11.h.5)
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3. Outer Products and Kronecker Products
3.1 Outer Products Reviewed: Compatibility of Chapter 1 and Chapter 2
Vectors were unbolded in Chapter 1, but were bolded for clarity in Chapter 2. Here we express all vectors

in unbolded notation. Also, we quietly switch from contravariant (upper) to covariant (lower) tensor
indices.

Chapter 1 developed the idea of the tensor product space VOW with elements v&w which satisfy a set of
bilinear rules (1.1.5),

(Vitva) ® w = (vi®Ww) + (vo®w) forall vi,vo € Vandallw e W (1.1.5)
v ® (Witwz) = (VW) + (VW) forallv e Vand all wi, wz € W
s(VROW) = (sv)®w = v®(sw) forallve Vandallw € Wandalls € K (3.1.1)

The essence of the tensor product is this bilinearity, and there is no requirement to describe the objects
v®w in more detail. In the formal sense we are done and fini. However, for "engineering purposes", it is
useful to add more structure to the tensor product by defining "tensor components", and that was the
subject of Chapter 2. We conjured up a way to add components to the theory by defining tensor product
components in terms of the outer product of two vectors,

(VOW)iy = Viwy veV weW. (2.8.10) (3.1.2)

The components v; and w3 can be elements of any field K and the juxtaposition of viwy implies
multiplication in that field (we have in mind that K = R, the real numbers).

The key point: because the function viwy is manifestly bilinear, this extra specification does not conflict
with any of the earlier tensor product "rules". For example we can evaluate,

[(Vitv2) ® W]ij = (V1tV2)iW;
(Vi®W)ij + (V2®OW)i5 = (V1)i W3 + (V2)i W5 . (3.1.3)

The first ® rule of (3.1.1) says the left sides of these two equations must be equal, but we can see that the
right sides are also equal, so our "tensor componentization" does not conflict with the no-components
theory of Chapter 1. Thus it is that we simply glom this component structure onto the tensor product
concepts of Chapter 1.

We extended the tensor product idea to include the tensor product of k spaces VOW®...®Z with this
associated set of k-multilinear rules,

(s1v1ts2va)OW® ..... ®z =51 (ViOWR .... ®z) + 53 (VoOWR .... ®7)
Vv (51W1tsow2)® ... ®z =351 (VOW1® ... ®z) + s (VOWL® .... ®zZ).
etc. (1.1.16) (3.1.4)
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Onto this skeleton we hang a component structure again using the outer product of vectors,
(V®W®Z®....)ijk, ... T ViWyZg.... (2818) (315)

The function v;w;zy.... is manifestly k-multilinear, so this structural enhancement is compatible with the
general theory of Chapter 1.

We have tried to keep things general up this point by using VOW®...®Z where all the vector spaces can
be different, but now we assume they are all the same,

VE= VRVR...®V // k copies, fancy notation MV (2.11.e.1) (3.1.6)

and this is our main interest, since the elements are then true "tensors" in the sense of Chapter 2. There is
then only one set of basis functions {e;} to worry about, the basis for V. In this case, if a and b transform

as vectors, then a®b transforms as a rank-2 tensor and thus provides a name for the outer product tensor
whose components are asb; .

It has already been shown in Section 2.8 (in the components world) how the ® product can combine
tensors into tensors of higher rank using the outer product idea. We had for example for the combination
of a vector with two rank-2 tensors, the following rank-5 tensor

(K®K®y)3Pede = gapged e (2.8.7) (3.1.7)

Another example would be this,

A =a®b Aij = (a®b)ij = aibj
B=c®d Bij = (C@d)ij = Cidj (318)

One can then define the tensor product of A and B in a fairly obvious manner,
A®B = (a®b)®(c®d) =a®b®c®d e V* . // associative (2.8.22) (3.1.9)

This equation has no indices and so is acceptable in the component-free world of Chapter 1. The
components are then taken in the following obvious manner,

[A@B]ijke = [ a®b®c®d]ijke = aibjdel = AijBkZ . (3110)
The above lines shows that A®B is in fact a rank-4 tensor constructed by taking the outer product of two
rank-2 tensors (or the outer product of four rank-1 tensors). In Section 3.2 we shall have use for an object

defined in this strange manner

[A®B]ik,5¢ = [A®BJijke = AiiBxe (3.1.11)
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and we just mention it here in passing. Note that the indices are shuffled relative to the LHS of (3.1.10).

Using the same method as above, one can construct a rank-6 tensor from the tensor product of three rank-
2 tensors,

[A®B®Clabedes = AabBedCes (3.1.12)
or from the tensor product of two rank-3 tensors
[A®Blabcdes = AabcBdet - (3.1.13)

In general, one can take the tensor product of any set of tensors to create a new tensor whose rank is the
sum of the ranks of the tensors that were combined by the ® symbol. If A,B,C... are arbitrary tensors,
having multiindices I,J,K (for example I = {i3,i2,i3} if A is rank-3), one could write a general formula for
the components of the tensor product of any number of pure tensor objects in this manner,

(A®B®C®..)15k... = Ar B5 Ck...... // outer product (3.1.14)

The tensor here is A ® B ® C ® ..., and it is the tensor product and the outer product of the individual
tensors A,B,C.... The equation specifies its components.

3.2 Kronecker Products

The subject here is the tensor product of two linear operators and is included here because it seems
therefore to fit into the topic of "tensor products". This is a stand-alone section and nothing in it is
referenced in later sections of our document. For that reason, a reader uninterested in Kronecker Products
would do well to skip this section and continue into Chapter 4 on the wedge product development. The
energetic reader can regard this section as an exercise in using the covariant tensor product machinery of
Chapter 2.

Let V and X be vector spaces of dimension n and m. Basis(V) =u; Basis(X) =u;
Let W and Y be vector spaces of dimension n' and m'  Basis(W) =u'; Basis(Y)=u'y . (3.2.1)

We imagine that vector spaces V,X,W,Y have metric tensors g, g, g', g' which can be used to raise and
lower subscripts in the standard manner shown in (2.2.1). Often one assumes that all these spaces have a
Cartesian metric tensor, so up and down indices are the same, but we shall carry out the development
below in full covariant notation as part of our "exercise".

Rather than use Einstein implied sums, we shall display all sums explicitly in this section.

Consider linear operators S and T such that,

x = Sv = a vector in X S: V-X xt =301 StV i=12..m
y=Tw =a vectorin Y T:-W—Y ¥ =T TIw? j=1,2.m' . (3.2.2)
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Notice that on S*, the first index is an X-space index which can be raised and lowered by metric tensor
g, whereas the second index on S, is a V-space index which can be raised and lowered by g. So we can
regard S*, as the components of a "cross tensor” involving the spaces X and V. In any equation below,
we are free to change the "tilt" of any contracted index pair in the manner of (2.9.1) because such tilted
index pairs will always be associated with the same metric tensor. Similar comments apply to Tp.

The linear operator S is represented by matrix S*, which has m rows and n columns (m x n).
The linear operator T is represented by matrix T95, which has m' rows and n' columns (m' x n').

We want to create a meaning for S®T which is the tensor product of these two operators S and T.
A candidate definition for this meaning is the following,

(S®T)(vOW) = (Sv)®(Tw) . /= (x®y) S®T: VW — X®Y . (3.2.3)
(S®T)| vOw> = (S®T) [v> ®w> = S|v> ® Tiw> = x> ® [y> = [xQy> // Dirac notation
Consider the following processing steps,

(S®T)([avy + Pv2]®w) = (S[avy + Bva])®(Tw)  //(3.2.3)

= (o Svi+ BSv2) ®(Tw) // S:V—X is linear
=0 (Sv1)®(Tw) + B(Sv2)®(Tw) // using the first ® rule in (3.1.1)
=0 (S®T)(vi®w) + B (SR®T)(v2®w) . //(3.2.3) used twice (3.2.4)

This shows that (S®T)(v®w) is linear in v. A similar argument shows it is also linear in w. Thus, the
operator (S®T) as defined above is a bilinear operator on V®W, and we confirm the essential
characteristic of the tensor product, which is its bilinearity. We accept the candidate definition (3.2.3).

Exercise: Compute the action of (S®T) on a general element of VOW .
Apply (S®T) to a general element of VOW using tensor expansion like (2.10.3b) and then (3.2.3),
(S®T)[ Z35F* u;®u'3] = Z33F (S®T)(ui®u'3) = X335F* (Sus)®(Tu'y) . (3.2.5)
The action of S on a vector v (and T on w) can be written
X = (SV) = Za[SV]*Ua = Za(Z6S%V")ua = Zan(S*pV")ua

y = (Tw) = Z[TW]U'c = Zo(ZqTaw)u'e = Tea(Taw)u'c . (3.2.6)
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Select v=u* and w=1u" in these last two equations to get,

(Sui) = ZapS%(ui)® ua
(Tu'y) = ZeaTq(u'y) u'e . (3.2.7)

Then the tensor product appearing in (3.2.5) can be written
(Sup)®(Tu'y) = [ ZapS?p(u1)® ta] ® [ TeaTa(u's)® u'c]
= Yabed Sab(ui)chd(u’j)d (ua®uvc) (328)

and so the action of the tensor product operator (S®T) is given by,

(S®T)[ Z35F* u;®u'3] = Z345F* (Sus)®(Tu's) //(3.2.3)
= % japea FII8%(us)°To4(0'5)® (ua®u'c) //(3.2.8)
= Yac { Tispa FIS%(us)°T4(u's)® } (4a®u'c) // regroup
=Yac G®¢ (ua®u'c)  where G3° = Xi 3pa FI8%5(us)°T4(u'y)? . (3.2.9)

We have then shown the action of operator S®T on a general element of VW :
(S®T) { ZisF T us®U'y } =Tae G2 (ua®u'c)  (S®T): VOW — X®Y

where G*¢= Eijbd Fij Sab (ui)b Tcd (u'j)d . (3210)

It is useful now to consider the component analysis of the action of S®T on a pure element of V®W in
the sense of outer products. Then

(x®y) = (SRT)(vOW) = (SV)®(Tw) (3.2.3)
" x®y)*' = [(SOT)(vOW)]*' =[(SV)(Tw)]**" . (3.2.11)
The right side of this last equation can be expanded using (3.1.2) and (3.2.2) to get

[(SV(TW)]* = (SVH(Tw)*' = (25 S*5vI)(Z4 T 5w )

= X450 SHTH 50 vIwd' = 2450 SHTH 0 (vOW) ' /= (xQy)** (3.2.12)
so then (3.2.11) may be written

[(SOT)(vOW)]*' = =35+ [ S*5T 501 (vOw)IT' | /] = (x®Y)ij (3.2.13)
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We now define
S®T)*' 350 = SHTH 5, (3.2.14)

The comma is used to distinguish the left side from the rank-4 tensor (S®T)**" 55+ = S** ' T35+ which is a
different animal.

Since S and T are (cross) tensors, we can raise and lower indices on the right side of (3.2.14) using
the appropriate metric tensors as discussed below (3.2.1), and then the left side indices follow since this is
a definition. For example.

(S®T)iir, 55 = Si3Tirgr . (3.2.15)

This definition was mentioned in (3.1.11) where it was compared to the usual notation used for a rank-4
outer product tensor (S®T)iji+'5+ = SijTir4+. In (3.2.15) the two first indices of S and T are listed
before the comma while the two second indices appear after the comma.

Installing (3.2.14) into (3.2.13), one gets

[(S®T) (VW)™ = £45.(S®T)*' 55, (v@wW)II" | /] = (x®y)**’ (3.2.16)
The structure of this equation suggests that we are multiplying a vector (v®w) by a matrix (S®T), but the
usual summation index is replaced by two summation indices j and j'. In a multiindex notation one might
write the above as

xt= [(SOT)(vOW)]' = Z5 (S®T) ;5 (vOw)’ . I={ii} =4 (3.2.17)
Is there some way to write S®T as a standard matrix with two indices instead of four?
Start with (3.2.16) written as

(x®y)*' = Zy50 (SO 55 (vOW)I'
or

(xyt) = Zy50 (SO 550 (vIwd). (SO 550 = (ST 50) . (3.2.18)
We want to write this somehow in a form

qr =Zs Mrsqs - (3.2.19)

For illustration purposes, assume n = 2 and n' = 3. Then write the components (v?w? ) as a single column
vector in this obvious manner, where the w component index moves fastest,
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viw! q1

V:I'W2 qJ2

1_3

Yo | = | B | =g with ts qs where s = 1,2...n*n 3.2.20
V2wl = | q = q with components qs where s = 1,2...n*n' . (3.2.20)
viw? Js

V2W3 6

Ifviwl' — gs, one can compute s from j,j' as follows: ( here 3 =n'= dim(W) for this special case )

s= D3+ = GD=E3E) = 5=+l

-1 -1
= int(3)=j-1 and rem (5 )=j-1. (3.2.21)
Thus for general n' we can compute j and j' from s in this way (integer part and remainder)
. . s-1 . s-1
j= 1+1nt(F) j' = I+rem( F) s=1,2..n*n" . (3.2.22)

One can similarly consider x'y* — 'y where the column vector q' has m*m' components. The rules here
are analogous to those above,

1 1
i= (o) 0= Trem( ) r=12..m*m' . (3.2.23)

Therefore, comparing (3.2.19) and (3.2.18), the desired Mg is given by

Mzs =(S®T)*' 550 = S*5T"'y where

1 B
i= 1+int(—r) j=1+int(55) s=1,2...n%n'

-1 -1
i'= 1+rem( rm_’) j'= l4+rem( Sn—,) r=12.m*m'. (3.2.24)

Thus we have reconfigured our multi-index equation x* = 5 (S®T)* 5 (v®w)” into an ordinary matrix
equation q'y =Xs Mys qs Where M, is given as stated above.

This matrix Mgs = (S®T)**" 535+ = S*3T*'5: is known as the Kronecker product of the matrices
S and T. The subscripts 1,i',j'j' are all functions of r and s as shown in (3.2.24).

Symbolically we write this Kronecker product as M = S®T. Normally in writing M = S®T one would

imply M®?,°q = S*, T4 which is unrelated to the Kronecker product.

It is a bit tedious to compute and display one of these M matrices by hand, so we let Maple do it for us.
For this example we use the following dimensions m, n, m', n' for the spaces X, V, Y, W :

S=mxn =2x3 rows = m*m' =6
T=m'xn'" =3x4 cols=n*n'=12 (3.2.25)
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The code simply does what (3.2.24) says to do:

restart

m:= 2 n := 3

mp = 3 np := 4

smax = n*np rmax = m¥*mp

i = 1 + iguo(r-1,mp} # 1 + int{({(r-1)/mp})
ip = 1 + irem(r-1,mp) # 1 + rem{(r-1)/mpg))
3 = 1 + iguo(s-1,np) # 1 + int((s-1)/np))
Jjp = 1 + irem(s-1,np) # 1 + rem((s-1)/np})
M = matrix{(rmax, smax)

for r from 1 to rmax do
for s from 1 to smax do
M[r,s] := S[i,j1*T[ip,jpl.
od;
od

print (M) , (3.2.26)

S1T1 FaThe ST SaTha ST SeTie SueTs S eTig 52T S,aTh2 FuaTya 513704

12 ST SiaTea S22 freTe S1eTes SreTea S1aTor S13Tee S13T2s S13Tog
S,17310 S11T32 S0 T35 S 1754 812731 S12T52 S 2733 812754 513731 §1,373 2 f13733 51,373 4
So1T 1 ST Ao 1Ts Se1Tg So 271 So,2Te S22T13 So2Tiq 523711 23712 f23713 52,3714

S0 1Ty S 1Tap S 1To3 So1To g S0 2T 1 S00Tn 2 S2 0703 8o 0To g Sp3To 1 So3Tn o f33Ta 3 85370 4

152,1T3,1 S2,1T32 891733 531734 S5 0T3 1 S00T3 0 B30T 3 S 0T34 33731 833732 %5 3733 3373 4]
(3.2.27)

One should interpret each matrix element of the form SapTeq as ST -- we don't know how to make
Maple display things this way. If all metric tensors are Cartesian, then (3.2.27) is correct as is.

Staring at the above matrix, one can see that the T submatrix is repeated six times, and one can write this
matrix in a shorthand notation as

T, T, T T2,

where T= | T?1 T?2T?3 T?; | | (3.2.28)

_( S'1T S',T S'3T )
T3 T3, T3, T3,

S2T S2,T S%5T

This provides an easy way to manually construct such matrices. This construction can be understood if we
look back at the M matrix definition,

Mzs =(S®T)*' 55 = S*5T"'y+ where

1 B
i = l+int( ) j= 1+int( %) s=1,2..n%n

-1 -1
i'= l+rem( rm_’) j'= I+rem( Sn—,) r=12..m*m' . (3.2.24)
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The indices i,j on S select a rectangular subregion of the M matrix due to their integer part definitions.
Then within each subregion the 1'j' indices run through their full ranges so a copy of matrix T appears in
that subregion, multiplied by the S*; for that subregion.

One is commonly interested in the case where

S: VoV S =n x n matrix
T: WoW T =n'x n' matrix (3.2.29)

Withn=m=2andn'=m'=2 the above code generates this matrix M,
ST STz ST fehe

S11To1 STy S12T1 Frefeo

So 1711 So1Tr e S22 AT

R 8o 4 T Se o T R
M2, 12,1 %2, 1°2,2 =2 2°2/1 *2,2-°2, 2] (3.2.30)

which can be compared with a result quoted on the (current) wiki tensor product page.

Some other properties

Suppose S;1 and S, are two matrices of the same dimension as S, and T1 and T, are two matrices of the
same dimension as T. Recall from above,

(S®T)*' 550 = SHTH 50 . (3.2.14)
It then follows that

(S1+S2)®T =S1®T + Sp®T
S® (Tl +Ty) =S&®T;1 + S®T;
(Sl + Sz) ® (T]_ + T2) = S1®T; + So®T1 + So®T; + So®To (3231)
which is just the statement that S ® T is a bilinear operator. To prove the first line use (3.2.14),
[(S1+S2) @ TI 550 = (S1+82)"5T 50 = (S0)™5TH 50 + (S275TH 50
= (S1®T)** 550 + (S20T)* 550 . (3.2.32)

Suppose S; and S are both n x n and T3 and T, are both n' x n'. Then one can write,

(81S2)®(T1T2) = (S1®T1)(S2®T2) (3.2.33)
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Proof: Again use (3.2.14),
[(S1S2)®(T1 T 550 = (S182)%5(T1T2)* 5
= (S0 (823 (T & (T 5 = (S (T)™ 'k (S2)*3(T2)" 5
= (S1®T1)™ e+ (S2®T2)* 55 (3.2.34)
so that in multiindex notation,

[(S1S2)®(T1T2)] 5= (S1®T1)k(S20T2)%s . (3.2.35)
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4. The Wedge Product of 2 vectors built on the Tensor Product

We now back up and reconsider the space V®W and its elements v®w. The goal of the next two sections
is to establish the parallelism between the vector space VOW and the "dual" vector space V¥*@W*. Some
repetition is used to review and reinforce earlier stated facts. Then Sections 4.3 and 4.4 introduce the
wedge product developed in a similar parallel fashion.

At the end of each of the four sections below a selection of equations is re-expressed in Dirac notation.
4.1 The tensor product of 2 vectors in v?

Note: The u'; used below are unrelated to the u'; of Chapter 2.

Basics. Consider two vector spaces V and W (defined over field K) of dimension n and n'. Let

{u;} = basis of V dim(V)=n v=3%;-1" v* u; = general vector in V vi e K
{u';} = basis of W dim(W)=n' w= Zj=1n'wj u'y = general vector in W wl e K
u; = [uz > u'y = Ju'y> // Dirac notation

{u;®u'y} = basis for the tensor product space VOW dim(V®W) = n*n'

v®w = a pure "vector" in the tensor product space VOW  vOwW # wQv if v#w
®: VxW — VW ® : (v,w) — vOW (4.1.1)

The last line shows ® as a mapping — between two sets, while — shows how set elements map.

Note that vOw # w®v. For VW, w®v does not even make sense since that requires w € Vand v e W.
For V = W the objects v&w and w®yv are still different unless v =w.

Outer Product Revisited. The notion of an outer product was discussed in Sections 2.8 and 3.1. We had
for example (where a; and b are the covariant components of vectors a and b both € V),

(a®b)iy =ajiby // outer product of two vectors (3.1.8)
(A ® B)abca = AabBeca. // outer product of two rank-2 tensors (3.1.10)
The "outer product” of two vectors a and b may be written in vector/matrix notation as follows,

a1

albl a1b2
(a®b);;=(ab")is  (4.1.2)

(a® b)sx=ab” = 42 (b1. ba...by) = [ azby azbz ...

an
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The same vector/matrix notation used above can also be used to express the "inner product” (dot product)
appearing in (2.2.5), with the caveat noted below,

by

bz

aeb=a'b =(a'. a%..a" = Se=1"a¥be  =<a|b> (4.1.3)

bn
If the a components are contravariant, the b components must be covariant, and vice versa.

Chapter 1 Tensor Product Revisited. By convention one represents an element of a tensor product space

using the ® symbol. It is a certain kind of "product" between a vector in one vector space and a vector in
another vector space. On can treat ® as an operator ® : VXW — (V®W) in the sense that

®(v,w) =(v) ® (w) = (v®w) = element of tensor product space (VOW).

Certain ® rules were declared in (1.1.5) which make the tensor product space be a vector space, and
which in an intuitive sense just seem "reasonable",

(sV)®@wW =v® (sw) =s (VOW) /I s =scalar (€ K)
v ® (Wit wz) = vOwi + v®Owa // left distributive property
(Vi+Vv2) ® W =viQw + vo®w . // right distributive property (1.1.5) (4.1.4)

In the last two equations, the + on the left represents addition in either W or V, whereas the + on the right
side represents addition in V®W. These lines say that multiplication ® "distributes" over addition +. The
scalar rule can be combined with the distributive rules to obtain this equivalent rules restatement:

Vv ® (s1w1t sow2) = 51(VOW1) + s2(VROW?) //'s1,82 =scalar (€ K)
(s1v1 T 82v2) ® w =51 (V1®W)+ s2(Vo®w) /81,82 =scalar (e K) (1.1.7) (4.1.5)

The above rules in effect say that ® defines a "bilinear" operation -- it is linear separately in each of its
operands.

Notice that the following two rules are incorrect:

VOW=wQR®v // wrong! (unless V=W and v=w)
(sv) ® (sw) = s(v®w) // wrong! (unless s =1)

As noted in Appendix B the second rule applies to a direct sum .
Using the correct "rules" above, one may write
vOwW=(2;:vu;)®( ijjuj') = Eijviwj (ui®u'y) (4.1.6)

showing how this pure tensor product vector can be expressed in terms of the basis functions.
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General tensors in VOW and V2. A general "vector" (rank-2 cross tensor) in W®YV can be written as a
linear combination of the basis vectors, as was shown in (2.10.4),

T= %35 TH u;®uy Te VOW . Tijy = Zi=1"Ty" (4.1.7)
If W =V, we refer to the space VOW = V®V as V2, and then

T= %35 T u;Quy Te VOV =V2 Yij = Zi=1"Ty1" (4.1.8)
Although we have said T is a "vector" in the abstract sense that a vector space (even a tensor product
vector space) has "vectors" as elements, the usual terminology is to say that T is a "rank-2 tensor" in the

space V2.

Meanings of tensor. The word "tensor" has a weak and a strong meaning. In the weak meaning, a rank-2
tensor is something that has components with two indices like T*3. In the strong meaning, a rank-2 tensor
is a set of components T*3 which transform in a certain manner with respect to some underlying
transformation,

T3 —R2_, RP,, T2'P' Picture A T e VOV (2.1.7)

Covariant expansion forms. The rank-2 tensor T can be expanded in various ways as shown in Section
2.10, and each such expansion has its own characteristic coefficients. Here are all four versions of (4.1.7)
obtained using the tilt reversal rule (2.9.1) :

T= %35 T u®u'y Te VOW

T= 35 Ti) u'®uy

T= 335 TY ui®u?

T= 335 Tiy uw'®ud. (4.1.9)

Notation Comments:

e In (4.1.9) one could replace T*3 by [T™™®"1*3 to be more precise about the meaning of the
coefficients, namely, that they are those which arise when one expands on the basis u; ®u's.

e Then in (4.1.8) one could write T*3 as [T™7*3 or [T™]*3, but in this case T*7 is the "default"

notation for expanding on the axis-aligned u; basis vectors as shown back in (2.10.3b).
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Dot Products. One can define a covariant dot product between two elements of V2 in this manner

AeB=3;5A"B;5 = %;3A:5B7 = 5;5B*A;5 = Be A . (4.1.10)
If A or B is a pure rank-2 tensor, one can write as well

(a®b)eB = X;32*bIB; ;5

Ae(c®d) = Z;5A T c;d;

(a®b)e(c®d) = Tija*bicidy = (aec)(bed). (4.1.11)
The last line appears as (2.9.13).

Dirac Notation for Section 4.1 . It seemed best not to clutter that above text with these alternate forms.
The Dirac version of an equation gets a D subscript on its equation number.

u; = |[u;> u'; = |u's> bases for V and W
u®u'y = |jui>® ju'> basis for the tensor product space VOW
vOW = |v> ® |w> a pure "vector" in the tensor product space VOW (4.1.1)p

T=|T> = Zij T3 |u>® lu's> rank-2 tensor in VW
(a®b)ij =<ui| ®<uj| |a>& |b> = <ujz|a> <u;b>=ajb; outer product
aeb =<a|b> dot product
[v>® |w>= Zijviwj ui> ® |u'y> expansion of pure vector on basis vectors (4.1.6)p
T=|T> =Zi5 T |us> ® lu'y> expansion of a rank-2 tensor (4.1.7)p
<u? @ <u®| |T> =<v? @ <u® Zi5 T |ug> @ fu's> =

Yiy TH <u®ug><u®lu'y> =335 T 5%8°%; = T2°

<a| ® <b| |¢> ® |d> = <a|e><b|d> = Z;iac; T3bIdy = Ti5a*bIcidy dot productin V2 (4.1.11)p
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4.2 The tensor product of 2 dual vectors in v#2

The dual space V* of V was discussed in Section 2.11. Space W* is dual to W. We continue our
convention of using Greek or script letters for dual space objects. The current section is basically a
generalization of Section 2.11 to the case where V and W are different vector spaces. We show
corresponding Section 2.11 equations in italics.

Note: The A'* used below are unrelated to the A" of Chapter 2.
Basics. Consider the two dual vector spaces V* and W* (defined over field K) of dimension n and n'. Let

{A*} = basis of V* dim(V¥)=n a=3%;-1" a; A* = general linear functional in V*
11 = basis o im =n' =¥:21" B4 '3 = general linear functional in
AN =b f W* dim(W#*) B=325=1" Py A g 11 fi 1 in W*

At =hHT = <o A= @' = <u?| // matrix and Dirac notation

{X*®\'3} = basis for the tensor product space V¥*QW* dim(V¥*®W*) = n*n'

a®p = a pure "vector" in the tensor product space V¥QW* a®B # PRa ifa# P

® : VEXW* — V¥FQW* ® : (0,p) — a®P (4.2.1)

Note that a®p # B®a. For V¥£W*, B&®a, does not even make sense since that requires p € V* and o €
W*. For V* = W* the objects a®p and f&®a are still different unless o = .

Vector expansions in V* and W*. Linear functionals in V* and W* can be written as linear combinations
of the basis functionals,

o= Eiaili_ a(v) = Ziaik%(v) a:V—-oK (2.11.c.8)
B =2;B517 B(v) = Z3BsAN'(v) B:W—K . (4.2.2)

The middle column shows the corresponding functions o(v) and B(v), and we now have

o(ui) =03 (2.11.d.15)
B(u'y) =B . (4.2.3)

Basis tensors in V¥*®W*. The basis functionals for V*®W* are the A*®)"3 where,

AN (v,w) = A*(V)AI(w) = scalar * scalar = scalar € K (2.11.d.13) (4.2.4)

where (recall these are called the "i*® coordinate functions")
M) =v*
A w) = wt (2.11.c.5) (4.2.5)
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so that
AN (v,w) = viwI . (2.11.d.13) (4.2.6)

This function is manifestly bilinear in its two vector arguments.

The ® Rules for V*®QW* . The "rules" (1.1.5) for the ® operator in the space V*®W* are the same as
those for ® in the space VOW, since V*®W* is, after all, a tensor product of two spaces,

(s)®P =0 ®(sP) =s(a®P) seK,aeV* B e W*
o ® (P1tP2)=a®B1+ o®P2 // distributive property
(01 T 0a2) ® B =01®P + 0P . // same idea as above (4.1.4) 4.2.7)

Rank-2 cross-tensor expansion in V*®W?*. A general functional of the dual tensor product space V*QW*
can be written

§= X5 Tig AL g e VZ@W* Yi5 =252 50" (2.11.d.11) (4.2.8)

The Tj 5 here are exactly the same T; 5 which appear in the V®W expansion (4.1.7), T = EijTij u; ®u'y .
Evaluating at a point (v,w) in VXW one gets,

5(V,W) = Zij Tij (7\.i®}\.'j)(V,W) = Zij Tij Xi(V) Xj'(W) = Zij Tij Vin (211d8) (429)
so one may regard 3 : VXW — K, and J(v,w) as manifestly bilinear in its arguments.

Setting v =u;3 and w = u';y , one finds that
J(uiu'y) = Tiy e K (2.11.d.10)  (4.2.10)

This may be compared with a(u;) = a3 in (4.2.3).

An arbitrary rank-2 tensor functional J can be represented either by its expansion J = ZijTini@)X’j or
by the corresponding tensor function J(v,w).

As a special case, consider o € V*and B € W* as shown above. Then,
0 ® P = (Za0aA®)OEpPor®) =Zap taPp A2OL® € V¥FQW* (4.2.11)
(0 ® B)(V.W) = Zap0aPp(A*GL)(V,W) = ZantaPoh*(V)A”'(W) = ZantiaPpvw” (4.2.12)
which then is just a particular example of (4.2.9). Continuing the above,
(@ ® B)(V.W) = ZaptaPovW® = [Zatav?][Lpopw”]

= a(v) B(W).. (2.11.d.15)  (4.2.13)

81



Chapter 4: Products of Two Vectors

In particular,
(a ® B)(ui,u'y) =oa(us) B(u'y) =aifs = (@ ® P)ij . (2.11.d.15)  (4.2.14)

If it happens that W = V, then W* = V* and we write V*QW* = V*QV* = V*2, The equations above
then revert to those given in Section 2.11 (referenced in italics above).

The vector spaces V2" and Vz*f

We can regard both § = <T| and J(v,w) = <T|v,w> as representations of the same rank-2 tensor
functional <T| in V*®W*, The object J is a bilinear rank-2 tensor functional, whereas J(v,w) is a
bilinear rank-2 tensor function (a Spivak 2-tensor). There is a 1-to-1 correspondence between J and
J(v,w) . We shall say § € V*®QW* while J(v,w) € (V¥*®W*)¢ (f= function), and the two spaces are
isomorphic. If W=V, then § € V¥* and 5(v,w) € V**¢ and V*" and V?"¢ are isomorphic.

Fact: The vector space V*2 g equivalent to the vector space V*2¢ of bilinear functions on V2. (4.2.15)

Dirac Notation for Section 4.2

At =@HT = <ui\ A= )T = <u'i| bases for V* and W*

AN = <ut|®<u?| basis for the dual tensor product space V¥*QW*

a®p =<a| ® <P| pure element of V* @ W* (4.2.1)
o=<a| =Zios<u’| a(v) = <ajv> =Z;a;<u’|v> vector functional expansions

B=<Bl =Zspa<u"’| B(v) = <Blv> = ZsPs<u'v> (4.2.2)0
o(ui) =<ajui> =0z vector function a(v) evaluated at v =u;

B(ui) =<aju;> =P; vector function B(v) evaluated at v=u; (4.23)p
AN (v,w) = <ut| ® <u'| [v>® |w> = <u?| v><u'Iw> = viw? (4.2.4)p (4.2.5)p

F=<T| = Z35Tis<u* |® <u?| =Z;5 Ti; A* ® A" rank-2 tensor functional in V¥*@W*  (4.2.8)p

Jv,w)=<T| |v>® w> =<T |v,w> rank-2 tensor function for V¥QW*
= ZijTij<ui | ® <u’j\ v>® |w> = ZijTij<lli |v> <u’j\w> = EijTijVin (4.2.9)p
(a® B)(v,w) =<0 | ® <P| [v> & |[w>=<a|v><p|w> (4.2.13)p
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4.3 The wedge product of 2 vectors in L2
(a) Definition of the wedge product of 2 vectors and the space L?
Momentarily jumping ahead, consider this equation,
viw = (VOW - wRV)/2 . veVandw e W
If V and W are different vector spaces, this makes no sense since the second term w®v implies that w lies
in the left space V and v lies in the right space W. So in our discussion of wedge products, we require that

W = V. This being the case, instead of using letters v and w as representative vectors, we shall use a and
b. Then u; are the basis vectors for both component spaces in the tensor product space V®V.

So, we start off by defining the following "wedge product” ("exterior product") of two vectors a,b € V,
a”b = (a®b - b®a)/2 . dim(V)=n (4.3.1)

Notice therefore that a ~ b is an element of V®V = V2 since it is a linear combination of elements of
V®V. It is "antisymmetrized" under a <> b. Since not all elements of V®V can be written this way, the
set of elements a ~ b exist in a subset of V®V which we shall call L2, so L2 = V2. Some authors write L2
as VMV,

The above definition trivially implies that

a"b=-b"a a,be V (4.3.2)
and

a”~a =0 aeV. (4.3.3)

In (1.1.5) we stated certain scalar and distributive properties of the ® operator. These properties are
passed through to the wedge " operator by the above definition. For example,

(sa)*b= [ (sa)®b - b®(sa)]/2 = s[ a®b-b®a ]2 =s(a”b) s = scalar
(atc) b= [(atc)®b - b®(atc)]/2 = [a®b + c®b - b®a - b&c]/2
=[a®b-b®a]2+[c®b-b&®c ]2 =(a”b) + (c"b) distributive
and similarly for a * (sb) and a * (b + ¢). To summarize, we have a set of " rules as follows:

(sa)"b = s(a"b) (atc)"b = (a”b) + (c"b) seK
a”(sb)=s(a”b) a”(b+c) =(a”b) + (a™¢) abceV. 4.3.4)

The operator " is then seen to be "bilinear" over elements of V: it is separately linear in each operand.
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To more precisely define the space L2, we claim that the most general element T of the space L2 can be
written this way,

Ta =333 T u; Ay . Yi3=2im" Ty” (4.3.5)
where T3 are the expansion coefficients. For example, if T*3 = a'b3 this would be,
Ta= Zi5a*bT uz “uy = (Zsa*us) A (Zybduy)=arb (4.3.6)
and then a ~ b is included in L? for any vectors a and b in V.
We can take the ab component of (4.3.5) as follows
Ta? = %35 T (u; A uy)?®
= %35 THUi®u; - u3Qu;)®® /2 =35 TH[ (us®u3)?® - (u3®u;)2°] /2
= %33 T [uius®-u2ui®]/2 = i3 TH [8;285°-85268:°)/2

(1/2)[ T2 -T%?]

= TA3P=_T.P2 (4.3.7)
This shows that the expansion (4.3.5) can only represent an antisymmetric rank-2 tensor Ta.
One could rearrange the n? basis vectors of V®V into these two groups,
(uit u3) = [ui®uy - u3®u;]/2 n(n-1)/2 independent elements in this set
(4.3.8)

(ui *uy) = [Ui®uytu3®u;]/2 n(n)/2 independent elements in this set

for a total of n(n-1)/2+ n(n)/2 = n? basis vectors. One would say then that L? is spanned by just the first
set of basis vectors.

It was noted above that L? is a subset of V2. A stronger statement is that L%isa subspace of V2. First of
all, L% is obviously closed under addition of vectors since

Zij Tij uz uy + Eij T'ij uz uy = Zij (Tij+T'ij) ug uj . (4.3.9)

And if (a * b) is an element of L? then so is s(a * b) = (sa) * b € L? . Finally, since a * a = 0, L? includes

the 0 element. So L? then is a vector space which is a subspace of V2,
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(b) How big is the space L? compared to the space V22
Consider this most general element of L?:
Ta= Zij Tij (ui A Uj) = zi;&j Tij (ui A Llj) /! (ui A ui) =0

=%ic5 T (us A uy) + Zisy TH (us * u3)

=i T (ug » ujy) +Zg53 T3t (uj " uy) // i<} in second sum

=%y T (ug " ug) - Zicy TP (us M uy) /1 (u3 " ug) = - (ug " uj)

= Tiqs (T -T3) (uz M uy)

=Yic5 AM (ui Muy) AtI= (TP -7 API=_ A (4.3.10)
Thus, the number of elements in L? is equal to the number of antisymmetric n x n matrices A one can
construct which contain elements of field K. An n x n antisymmetric matrix has only n(n-1)/2 places to
insert independent values since the diagonal is all zeros and one triangle is the negative of the other. If the
scalar space K contains N elements ( N = oo for the reals), one could then construct exactly Nn(n-1)/2
antisymmetric matrices A.
Meanwhile, the most general element of V2 can be written

T= 25T (Ui ®uj). (4.1.9)

Now each matrix T*3 defines an element of V2. Using the same counting method as above, the total
number of elements of V2 is Nn%. We conclude that

2

# elements in L2 -1/2 n‘-n 1
L, _ Nn@-lyz 1)~ =) (1-7) . 43.11)

#elementsin V2~ Nn?

The conclusion is that L? contains less than half the number of elements in V2. This ratio is of course the
same as the (4.3.8) count ratio of L? basis vectors to V2 basis vectors: [n(n-1)/2]/ [n®] = (n-1)/2n.

Below we use this terminology,

Ta= Zi5 T3 (ug uj) = the "symmetric expansion" of T
Tr=Zi<5 A* (ug A uj) = the "ordered expansion" of T~ .
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(c) Wedge products and determinants: the geometry connection
From (4.3.6) and (4.3.10) with T*3 = a*b? we get,
a"b= Zij aibj (ui A Uj) = Zj_<j (aibj— ajbi) (ui A Uj)

igdi

—Siesdet| 05 03 ) (uitug) ASS = (atbd- adb) = det | % O (43.12)
i<j a] b] i) aJ bJ . o

The determinants which appear here are 2x2 minors of a matrix having n rows and 2 columns. The two
columns are the vectors a and b, each of which has n components. Below that matrix is shown on the left,
and some of the 2x2 minors (row i < row j) are shown in gray on the right:

Il

ab

g

W M

(4.3.13)
If V = R? (so n=2) there is only one term in the sum (4.3.12), the one with i=1 and j=2, so
1.1
a 1,2 .21
a"b= det(az bz)ulAuz = det(a,b) u1”uz; =[a’b® - a°b"] w1 uy . (4.3.14)

If one draws a parallelogram (2-piped) in the x-y plane with edges a and b, one knows that the area of that
2-piped is |a x b| which is then |alb2 - a2b1| = |det(a,b)|. There is then some connection between the
wedge product of two vectors in R? and the geometry of R?. Later in (7.5.6) we will show that for V = R>
the triple wedge product of three vectors is given by,

a”b”c = det(a,b,c) (ur” uz” us) (4.3.15)
and here det(a,b,c) is the volume of the 3-piped spanned by the vectors a,b,c, so again there is a geometry

connection. However, for R? the wedge product of two vectors is more complicated. Using the above
expression, we find

N a® bt . a® bt N a? b2 N
a“b= det a2 p2 JWuz +| 343 jutuz +| 33 juxtus
=[a'b? - a®b ] us”uz + [23b! - a’b3] uzrur + [a%b> - a3%b?] ux us . (4.3.16)
The coefficients are those which appear in the normal "cross product" of two contravariant vectors,

axb =[a'b?-a%b] usz + [a%'-a'b3Juy + [a%b3-a3b?]uy
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We do not wish, however, to identify for example u;”uy with us. After all, us is a basis vector in V,
whereas ui;”uy is a vector in the tensor product space V®V. One can, on the other hand, define a
correspondence of sorts where one says (each line in cyclic order, and <» means "corresponds to")

u1us > us
u2’uz < up
ll3/\ll1 <~ U2 /]=- ul/\U3 (4.3.17)

in which case one can say

a"b [a'b? - a®b*] us”uz + [a%b! - a’b3Justuy + [a%b> - a®b?] ux us

axb = [a'b?-a’bus + [®b'-a'b3luy  + [a®b3-a®b?wuy (4.3.18a)

so there is then a correspondence between the wedge product and the cross product in R3. This
correspondence was described by Scottish mathematician William Hodge (1903-1975) around 1941 and
the relationship <> is formalized by the Hodge dual star operator *, see Appendix H. For example
*(uy uz) = us and *u3 = uz” uz in R3. We can make the correspondence between ” and x more explicit
by writing u; * uy = €35k Ax where for example u; * uz = €123 Az = Az = *u3 (defines Az which
suggests area). Then the Hodge correspondence takes this form,

a"b = aibj uiA Uy = aibjaijk Ak = Ak [skijaibj] =Ae ( axb ) . (4318b)

For R™ with n > 3 there is no cross product of two vectors, but there is a wedge product. With V = R* for
example, using the result (4.3.12) stated above,

b d (alblj . iy (alblj . id (al 1) .
a e et 32 b2 u;‘uz et| a3 b3 u;‘us et| a4 b4 u; " ug

a2 b2 a? b2 a3 b3
+ det a3 b3 uz”us +det 2% bl ux’ug + det 2% bl uz’ug | (4.3.19)

There are enthusiastic workers (e.g. Denker) who recommend deep-sixing the cross product altogether
and replacing it with the wedge product for the study of topics like angular momentum. The wedge
product plays a role in the so-called Clifford algebras, and a very famous such algebra is that involved in
Dirac's relativistic theory of the electron, which theory predicts antiparticles. Elements of this Clifford
algebra are the 4 x 4 "gamma matrices" y". This is the same Dirac whose bra-ket notation we are using, so
somehow we have come full circle.
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(d) Components
For the tensor product of two basis vectors we have these outer product forms,

(ui®u'j)rs = (ui)r(u'j)s = SirSjs /I VW
(ui®uj)rs = (ui)r(uj)s = Sirﬁjs /I V®V = V2 . (4320)

For the wedge product (u;i” ujy) we have instead,
(us u3)™® = (1/2)[us®u; - u3®us]™ = (1/2)[(us®u3)™ - (u3®us)™] = (1/2)[(us)*(uz)® - (u5)*(us)®]
= (1/2) (857 85° - 8:°857)
(Uit uy)™® =- Wi uy)®* = - (U3 uy)* . // two forms of antisymmetry (4.3.21)

We now examine the pure wedge product a * b using both the symmetric expansion (4.3.5) and the
ordered expansion (4.3.10).

Using the symmetric double sum expansion form (4.3.5) with T*3 = a*b3 one has from (4.3.6) and
(4.3.21),

(a n b)rs = Zij aibj (ui a uj)rs = Zij aibj [Siréjs - Sjréis]/z
= (a%b® - a%b%)/2 . (4.3.22)

Using the ordered double sum expansion (4.3.10) with T*3 = a*b3, we find instead

o ai i
(a A b)rs = Zi<j (albj- ajbl) (ui A uj)rs = Zi<j det (aj bj ) (ui A uj)rs

a
= (1/2) Z1<i<j<n det(aj bj) [SirSjs - Sjrﬁis] . (4.3.23)

For r = s, one clearly has (a * b)"® = 0. If r <'s, then only the 8;°84° term can contribute to the ordered
sum, since this will make i <j , otherwise only the second term contributes. Then using 6(Boolean) = 1 if
true else 0, we can evaluate as follows,

r 1. r s s

2(a " b)™ =det(:s bs) 0(r<s) -det(:r br) O(s<r)

r r

a® b* a
= det (as bs) 0(r<s) + det (as bs) 0(s<r) // swap rows 2nd term

r r

ar br a ry.s sS1.r
det aS bS [ B(r<s) + O(s<r)] =det aS ps ) —@ b® -a°b" . (4.3.24)
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Combining the results for r=s and r#s we get
(a”"b)** = (a"b® - a®b")/2 /] Ta®S = (T*%-T®%)2 =A% /2 (4.3.25)
in agreement with (4.3.22) which used the symmetric sum.

We now repeat this comparison for general elements of L2

Using the symmetric double sum (4.3.5),
Ta™ = 235 T (ug Mug)™ = Ty T (857 85° - 8:° 857)/2
= (T*5-T%%)2 = A™5/2.. (4.3.26)
Using the ordered double sum (4.3.10),
Ta™ = Ticy A* (us M ug)™® =Ty AT [3:785° - §578:%)/2. (4.3.27)
For r=s one has [..] = 0 so TA*® = 0. Otherwise,
2 TA™S = A™° 0(r<s) - AS70(s<r) = A™° 0(r<s) + A¥50(s<r)
= AT3[ O(r<s) + O(s<r)] = A*® (4.3.28)
with the conclusion that
TA%S = AT5/2 for all r,s € (1,n) (4.3.29)
which agrees with (4.3.26) using the symmetric expansion.
(e) Dot Products
Since a’b is an element of V2 as well as of L%, we may use the V2 dot product to write
(a”b) @ (c®d) = {(a®b-b®a)/2}e (c®d) = (1/2) [ (a®b)e(c®d) - (b&a)e(c®d)]
= [(aec)(bed) - (bec)(aed)]/2 //(2.9.13) (4.3.30)
with this special case
(uiuy) o (c®d) = [(uzec)(ujed) - (usyec)(uied)]/2 =[cidy - c3di)/2 . (4.3.31)

The dot product of two-vector wedge products is the same as (4.3.30),
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(@"b) e (c"d) = {(a®b-b®a)/2} e {(c®d-d®c)/2} =

= (1/4) [ (a®b)e(c®d) - (b®a)e(c®d) - (a®b)e(d®c) + (b®a)e(d®c) ]

= (1/4) [ (asc)(bed) - (bec)(aed) - (aed)(bec) + (bed)(aec) ]

= [ (asc)(bed) - (bec)(aed) J/2

= (a"b) e (c®d)

= (a®b) » (c"d) (4.3.32)
so then the special case is the same as (4.3.31),

(us*uz) @ (cAd) = [cady - c5ds]/2 . (4.3.33)

Dirac Notation for Section 4.3 (a selection)

Section 4.3 (a)

|a>" b> =( [a>® [b> - [b>® |a>)/2 (4.3.1)p
|a>" |b>=- |b>"|a> (4.3.2)p
and |a>"|a>=0 (4.3.3)p
Ta =|Ta> = 233 T Jug>~ jus> (4.3.5)p

T =<u? @ <u®| [T~> =<u¥®@<u®| Zi3 T jug>"juy>
= %33 T <u? @ <u®| [ |ui>® [us>- [us>® [us>1/2
=%;5 T [ <u? jus> <u® Juy> - <u? [us> <u® [uz> /2
= %35 T [8%:8P5- §338°:)/2 = (TP -T2 =-T~> (4.3.7)p
Section 4.3 (b)

Ta =|Ta> =Zic5 A* [us> " uy> (4.3.10)p
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Section 4.3 (¢)

ja> A [b> = T35 atb? > A us> = Sies det (ZJ bij ) jus> ~ fug> (43.12)p
|a> " [b> " |e> = det(a,b,c) [up>" [uz> " juz> n=3 (4.3.15)p
Section 4.3 (d)
@a”b)** =<u"|@<u®| [a>"|b>= <u®|®<u®| ( [a>® [b> - [b>® |a>)/2
=[ <u|®<u®| [2>® b> - <u¥|®<u®| |[b>® |a>]/2
=[ <u” [a><u® |b> - <u” |b><u® |a>]/2 = (a"b® - a°b")/2 (4.3.25)p
Section 4.3 (e)
(uituj) @ (c®d) = [(uzec)(ujed) - (uyec)(uied)]/2 = [cidj - c5di]/2 .
<ugl A <uy| [e>® [d> = (1/2)[<uz] @ <uy| - <us| ® <us|] [e>® |d>
= (1/2)[ <ui| e><uj|d> - <uj| e><ui|d>]=(1/2) [ cidj - c3d;] (4.3.31)p
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4.4 The wedge product of 2 dual vectors in A?

Section 4.3 considered the wedge product of two vectors in V2. Here we consider the wedge product of
two vectors in the dual space V*2, We mimic the approach of Section 4.3, omitting some details, and we
match equation numbers even though this leaves some "holes" in the sequence.

(a) Definition of the wedge product and the space A?
We start off by defining the following wedge product of two vectors (linear functionals) a and § of V*,
a”"B=(a®P- P2 . (4.4.1)

Notice therefore that o~ f is an element of V*®V* = V*2_since it is a linear combination of elements of
V*®V*, It is "antisymmetrized" under a <> B. Since not all elements of V¥®V* = V*2 can be written this
way, the set of elements o * B exist in a subspace of V*2 which we shall call A%, so A2 = V*2. Some
authors write A2 as V¥ V*. The proof that A? is a subspace and not just a subset of V*? is the same as in
the Section 4.3 (a).

The above definition trivially implies that

a"B=-p"a a,pfe V* (4.4.2)
and

a”a =0 oae V¥, (4.4.3)

The "rules" for the ~ operator in A? = V*2 are found just as they were for L> = V2, namely :

(so) "B = s(a”p) (aty) B = (@*p) + " P
a”(sf)=s(a”p) a’PBry) = (@*p) + (@a™y) (4.4.4)

where a,f3,y are vectors in V* and s is a scalar in K.

To more precisely define the space A2, we claim that the most general element of the space A? can be
written this way (that is, A2 is the space spanned by the A; * A5 basis vectors)

G =335 Ti3 VAN [/ A AN = <u*|~<u?d| in Dirac notation (4.4.5)
For example, if T35 = a3 P4 this would be

Ga= Zi5 iP5 A A0 = (Zioudt) A (Z3BsAY) =~ B (4.4.6)
and then o B is included in A? for any vectors o and  in V*,
A? is spanned by the n(n-1)/2 independent basis vectors (A A7) for i <j. (4.4.8)

A%isa subspace of V*2, just as L%isa subspace of V2 as shown near (4.3.9). (4.4.9)
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(b) How big is the space A? compared to the space V#29
Just as in Section 4.3 (b), we can show that
G =335 Ti3 A A9)
= Tics Asy (M 10)) Ag3= (Taz-Ty) Asy=- Az (4.4.10)
where A*7 is an antisymmetric n x n matrix. Using the same argument presented there, we find

# elements in A2 _ Nn(n-1)/2
# elements in V¥* ~  Nn?

n®-n 1
= (12)—z =(12)(1-7) . (4.4.11)

(c) Wedge products and determinants
From (4.4.6) and (4.4.10) with T*7 = o*#7 we get,
a®B= Zij 035 A AAI) = Tics (0iBs- azBi) (WA AT)

ai Pi

. . O3 ﬁi
=y. . 1 J L. o= R 42R:) =
Zi<y det (aj ﬁjj (A~ AT Aij = (01f3- a3Bi) = det (aj ﬁjj . (4.4.12)
See Fig (4.3.13) for an interpretation of this sum.

If V¥ = R? (so n=2) there is only one term in the sum (4.4.12), the one with i=1 and j=2, so

o1 P1

o 32)7‘1 A2 = det(o,B) At AA% =[01P2 - azBi] AP A2 (4.4.14)

o” B =det (
For V = R the triple wedge product of three vectors is given by,

a” By = det(@py) (A7 AA%A22) (4.4.15)
It does not seem useful to discuss "geometry" in the space of functionals, but we could be wrong.
(d) Tensor Functions

In Section 4.3(d) we discussed components (u;®u's)*® and (ui“uj)*®. In the dual world, the
corresponding objects are the tensor functions AN (ve,ws) and (ki’\ kj)(vr,ws) .

For the tensor product of two dual basis vectors we have these tensor functions,
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W ONI) (Ve ws) = M (VeI (W) = (Vi) (Ws)] /I V*®W?*; rand s are vector labels
W) (Ve,ve) =2 (VIR (ve) = (Vo) (ve) /| V*@V*
and
W@ (ugu's) = (ue)'(u's)’ = 8,78 /| V¥@W*
AN (ug,us) = (ur)*(us)? =887 . /] V¥@V* (4.4.20)

For the wedge product (A** A3) we have instead,
WA (Vvs) = [AF®A)(ve,vs) - PR (ve,ve) )2 = M (VM (V) - M (vok ' (vs))2
= (1) [ (V) (ve) - (ve) (ve)'] /] A2 = VEAV*
W A (upus) = (1/2) [ 8:1857 - 5.756]
WA (Vevs) =- WA M) (Ve,ve) =- (AWIAA)(Ve,vs) . // two forms of antisymmetry (4.4.21)

We now examine the pure wedge product o * B using both the symmetric expansion (4.4.5) and the
ordered expansion (4.4.10).

Using the symmetric double sum expansion form (4.4.5) with Ti5 = a;5 one has,
(@ B)(Vr.vs) = iy asPs (A A M)(vevs) = X5 sy [N (vMI(vs) - M (Vo)A (ve)]/2
= 15 03B5[(ve) ' (va)’ - (Ve) (va) 12 = [ a(Ve)B(Vs) - a(va)B(v))2 .
(@ " B)(ugpus) = Tij 5Py [6°207s - 878512 = (arPs - 0sPr)/2 . (4.4.22)
where in the last equation we set vy = u, and v = ug and use (2.4.1) that (ur)i = 6ri .

Using the ordered double sum expansion (4.4.10) with T; 5 = a3, we find instead

a;i PBi

(@ B)(Vave) = Tics (03By- a3Bs) (WA W)(Veve) = Tics det(aj Bj](x”xj)(vr,vs)

Z; %1] ) [ MV (vs) - V(A (ve)]/2

i Bs Mvz) M(va)
= Tigs det(zj [[333) (1/2) det(ki(zs) Xj(zs))'

= 2i<j det(

(@ B)(ug,us) =iy det ( Z; [[3313 ) (1/2) [6*:876 - 87:8%5] . (4.4.23)

where again in the last equation vy = uy and vg = ug .
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Repeating the argument (4.3.24) this becomes
(o™ B)(ug,us) = (0xPs - 0sPr)/2 // later this will be called [Alt(a®B)]rs (4.4.25)
in agreement with (4.4.22) which used the symmetric sum.

We now repeat this comparison for general elements of A2,

Using the symmetric double sum (4.4.5),

Tr(Vevs) =Ziz Tag OF MM (vevs) = iy Tag [M (Ve (ve) - P(vol'(ve))2

Fa(Ugg) =T34 Tis [0*287s - 87:8%s]/2 = (Tes - Tsx)2=Ars/2. // see (4.4.10) (4.4.26)
Using the ordered double sum (4.4.10),

Fa(Upus) =Zics Asy (A A M) (Upus) = Tics Az [67207¢ - 878562 (4.4.27)
For r =s one has [..] = 0 so J~(ug,us) = 0. Otherwise,

2T ~(Ur,ug) = Ars 0(r<s) - Agr0(s<r) = Ars 0(r<s) + Ars0(s<r)

= Ars[ 0(r<s) + 0(s<r)] = Ars (4.4.28)

with the conclusion that

FTa(up,us) = Ars/2 for all r,s € (1,n) (4.4.29)
in agreement with (4.4.26).
Section 4.3 (e) on dot products like (a”b) e (c®d) has no useful analog for functionals.

The vector spaces A% and Azf

Looking at (4.4.21), (4.4.22) and (4.4.26), one sees that (ki’\ Xj)(vr,vs), (a” B)(Ve,vs) and Ta(vy,vs) are

all antisymmetric bilinear functions of the two arguments vy, vg € V .

In Section 4.3 we declare that the rank-2 tensor T = |T~> is antisymmetric (alternating) if Ta® = - TAP2 .
In similar fashion, we declare that the rank-2 tensor functional ~ = <Ta| is antisymmetric (alternating) if
Fa(v,v') =- Fa(v',v). That is to say, saying that the functional is alternating means that the corresponding
tensor function is alternating.
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We can regard both 9+ = <Ta| and Ja(v,v') = <Ta|v,v’> as representations of the same antisymmetric
rank-2 tensor functional <Ta| in V¥~ V* = A% The object I~ is an antisymmetric bilinear rank-2 tensor
functional, whereas J(v,v') is an antisymmetric bilinear rank-2 tensor function (a Spivak 2-tensor). There
is a 1-to-1 correspondence between J~ and J(v,v') . We shall say I+ € A? while § A(V,V') € NP (f=
function), and the two spaces are isomorphic. Therefore,

Fact: The vector space A is equivalent to the vector space A?¢ of antisymmetric bilinear functions on
% (4.4.34)

This may be compared to our earlier statement for the larger space V*2 = V*®@V* |
Fact: The vector space V*2 s equivalent to the vector space V*2¢ of bilinear functions on V2. (4.2.15)

Dirac Notation for Section 4.4 (a selection)

Section 4.4 (a)
<o " <p| = (<a| ® <[ - <a| ® <f| )2 (4.4.1)p
<a| " <p| =-<p[ " <a (4.4.2)p
<o/~ <a| =0 (4.4.3)p
G =<Ta| =35 Ti3 <u|*<ud| /A =<u (4.4.5)p
Ga =<Ta| =Zi505B5 <u’| * <ul| = (Zias<u’| )( Z3Bi<ud|) = <a| "~ < (4.4.6)p
Section 4.4 (b)
Ga =<Ta| =Ziqj Ayy <u| " <u?| (4.4.10)p
Section 4.4 (¢)

a. -
a’P=<a|*<B| =Zi<s det(af Ps

) <ui| A <uj| (4.4.12)p
] Bj

Section 4.4 (d)
WA (Ve ve) = <ut| A <u?| | ve> ® | ve> = (1/2) (<u*| @ <ul| - <u?| ® <u?|) | vi> ® | ve>

= (172) (<u*|vy><ud| ve> - <utlve><ud| vi>) = (12) [ (vo)'(vs) - (v2) (vs)'] (4.4.21)p

96



Chapter 5: Tensor Products

5. The Tensor Product of k vectors : the vector spaces V* and T(V)

Our task is now to generalize the tensor product from V2 to V¥, where
VE = VRV® ... QV . // tensor product of k vector spaces, each one is V 6.

We are setting up for a parallel treatment in Chapter 6 where ® becomes », so certain rather obvious
statements will be made here to allow for comparison later with the wedge product.

5.1 Pure elements, basis elements, and dimension of A\

A generic pure ("decomposable") element of V¥ is this tensor product of k vectors,
Vi ®vy ® ... Q v allv; e V (5.1.1)
= V1> ® |v> ... ® [vi> = |[V1,Va, ... Vi> . // Dirac notation

Since ® is associative by (2.8.21), one can install parentheses anywhere in (5.1.1) without altering the
meaning of the object, for example, vi ® (v2 ®v3) ® .0 vk = vi O vy vy ® ...Q v .

The basis elements of V* are (these u; are those of Section 2.4),
ui1® Uip oo ® Ui, = |u-11> ® |u12> L. ® |uik> = | Uiq, Uiy ...uik> . (5.1.2)

In (5.1.1) and (5.1.2) the subscripts are labels, not components. The components of these two tensor
objects are given by the (2.8.17) outer product form,

(Vi ® V2 ® ...® vi)I132 Ik = (v1)31 (v5)32 . (vy)Ik (5.1.3)

(U5, ® U, @ U3, ) 3132, 9% = (u; )1 (ug,)32 ... (ugy)T* = 835,71 8;,92...8;, % . (5.1.4)
If n = dim(V), the total number of such basis elements is n*, so

dim(V¥) = n*. (5.1.5)

In the full set of tensor-product basis elements shown in (5.1.2), two or more of the u;  might be the

same. This will always be the case if k >n where n = dim(V). For example, for k = 3 and n = 2 one such
element would be u; ® u; ® up # 0.

In Dirac notation, we can write (5.1.3) and (5.1.4) as

<ut w32 w3k | vyva, v = <uIlvi><ud2v> < uIkjvies = (v1)IT (v2)I2 L (vi R (5.1.3)

L . B . . . 5 3
<uwltuwlZ ulk|usgus,, oug> = 85,7185,72 .85, 7% M/ <uTur> =81 (5.1.4)p
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5.2 Tensor Expansion for a tensor in V* ; the ordinary multiindex

Note: This section is subset of Section 2.10 (b) with new equation numbers and with Dirac notation
equations added at the end.

A rank-k tensor T in V¥ has this general expansion on the uy basis,

T=Siji,.. .4 T2 kU ®uy, ...®uy,) . (5.2.1)
As expected,

[TP132 Ik =5, ;5 T2 k(g @uy, ....@uy,)192. 5k

= Tiji,.. . ay THP20 e (3 915 92§ Tk = 7132 Ik (5.2.2)

The coefficients T*1*2" - -*k can be projected out from T as in (2.10.19),

(u'1®u*2Q®... ®u'k) e T = T*12-- -1k (5.2.3)
with an appropriate generalization of the dot product e to the space V¥ = VOV..®V,

(Vi®V2..Qvy) o (W'®u?..Qu*) = Ti 5, . 5 (Vi®V2..Qv) 1 2k (ul@u. . ®@uN)i s,

= Ziqig... i (v1) 1 (v2)*2... (vi)*k (ul)il(uz)iz... (uk)-lk // outer products

(vieul) (voeu?) ... (v o u¥). /=) (v2)? (vi)F (5.2.4)
Using the notion of a multiindex I (an ordinary multiindex),

[=14, 1, ...k // each ig ranges 1,2....n n =dim(V) (5.2.5)
and a shorthand notation for the basis vectors

ur = ui;®us, ... ®uyy ui= vl ®@ui2...® u'k (5.2.6)
the expansion (5.2.1) can be stated in the following compact form,

T=%: T ug . (5.2.1) (5.2.7)
and the coefficients T* can be projected out according to (5.2.3),

uleT=T". (5.2.3) (5.2.8)
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. . uati v ,
The Dirac notation restatements of selected equations above are
_ igin....i
‘T> - z:i]_iz R T*1%2 k | Uiqg, Uig oeeen auik> . (521)D
[T]P172. 3k = <yl1 yl2 . u'k | T>

_ iqig....1 1 .3 '
= Zijip. ... i T 172 o<yl w2 ulk fusg,us, ug>

=3 T2tk (§; 9159205 k) = TI132 3k (52.2)p

iqig....ix
or

[T =<u!|T>=3:T <vjur> =2, T 8% =717

(U'l®u*2®... ®u'k) e T =<u'l u2, _u*k|T> = T1%2---*%k )/ =g, u*2, _u'k) (52.3)

<vi,va..vil uhu? uk> = <viuls<viful>. <viu> = (vi)l(va)® o (vi)® (5.2.4)
IT>= 2 T* |ur> (5.2.7)p
<ul| T>=T" . (5.2.8)p

5.3 Rules for product of k vectors

The tensor product of k vectors is "k-multilinear" meaning it is linear in each of its k factors. This was
discussed in (1.1.16) and later in (3.1.4). For example,

Vi®(vy + V2)®V3®....0vk = Vi®Vo®Va® ....Qvk + Vi®VL,Qv3® .....Qvyk
V1®(SV2)®V3® ..... ® Vk = S(V1®V2®V3® ..... ®Vk) s = scalar (5.3.1)

2nd

Here we show linearity in the factor. All the other factors have similar equations. We impose this k-

multilinearity by fiat with the result that:
Fact: The space V* is a vector space. (5.3.2)

The proof of this fact follows that of the text near (1.1.9). For example, the "0" in V* is represented by
(5.1.1) with one or more vectors being 0, since for example,

V1®0® ..... ®Vk = V1®(V2 - V2)® ..... ®Vk = V1®V2® ..... ®Vk - V1®V2® ..... ®Vk =0. (533)

"Vector multiplication" is distributive over scalar addition (here the "vector" is vi®v,® ....Qvy), as one
finds applying the rules (5.3.1),
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(s1 T 82)(Vi®V2a® ....Rvk) = [(s1152)V1]|®V2® .....Qvk = [s1V11+52V1 |OV2® ... Qv (5.3.4)
=351(V1®V2® .....0vK)+ 52(V1i®V2® ....Qvy) s1,82 € K
and multiplication by a scalar is distributive over "vector addition",
S[(Vi®V2® .....Rvy) + (V'1®V'2® ....0V'K)] = s (Vi®V2® ....Rvg) + 5 (V1i®VL® ...QV') .  (5.3.5)
All the above equations are meaningful for any positive integer k, regardless of the value n = dim(V).
5.4 The Tensor Algebra T(V)
Direct Sums

A direct sum of two vector spaces Z = VOW is a new vector space and has elements v®w. Similarly, a
direct sum of three vector spaces Z = VOW®X is a new vector space with elements vow®x. The idea
can be applied to any number of vector spaces. Below we use Z = V®@V@®V2® .... The reader unfamiliar
with direct sums will find a detailed description in Appendix B including a simple "tall vector" method of
visualizing such spaces.

The Tensor Algebra

Normally one does not add apples and oranges, so one does not add items of the form a®b e V2 to those
of the form a®b®c € V3. However (as Denker notes) fruit salad is great, and so we could define a very
large vector space of the form

TV) =V evevievie... = %07 VE. (5.4.1)

Here V° = the space of scalars, V=V the space of vectors, V2 =V®V = the space of rank-2 tensors,
and so on. The most general element t of the space T(V) has the form

t=s® ZiTi u; @ Zij T3 ui®uj @ Zijk T3k ui®uj®uk + se K (54.2)
with all coefficients in a field K.

Fact: This large space T(V) is in fact itself a vector space. (54.3)

We know this is true since T(V) = Z®k=o°° V¥ and we showed in (5.3.2) that each V* is a vector space.
For example, the "0" element in T(V) is the direct sum of the "0" elements of all the VE. See Appendix B
for more detail.

To show that T(V) is an algebra, we must show that it is closed under both addition and multiplication. It

should be clear to the reader that T(V) is closed under addition and has the right scalar rule. For example,
if k; and s are scalars,
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ki ® a @ b&®c © f®g®h =sum of 4 elements of T(V) = an element of T(V)

stky ® a @ b®c @ f®g®h)=(sk1) @ (sa) ® (sb)®c @ f&®(sg)®h = element of T(V).
(544
This additive closure is of course necessary for T(V) be a vector space.
The space is also closed under the multiplication operation ®. For example

(b®¢c)®(f®g®h) = b®c®f®g®h =e V> =e T(V). //(b®c)e V2, (f®g®h)e V3  (54.5)

Here we have used the associative property (2.8.21) applied to vectors. This closure claim is stated more
generally in (5.6.6).

For later comparison with the corresponding wedge picture, here we have:

Object lin comb is Rank(grade)  Space

S scalar € K 0 VO

a vector 1 vi

a®b rank-2 tensor 2 V2

a®b®c rank-3 tensor 3 V3

a®b®c®d rank-4 tensor 4 &

a®b®c®d.... rank-k tensor k vk

arbitrary element of T(V)  multivector mixed T(V) (5.4.6)

Since T(V) is closed under the operations @ and ®, it is "an algebra" (the space V* alone is not an algebra
because it is not closed under ®). The T(V) algebra is different from that of the reals due to its definition
as a direct sum of vector spaces. The elements of T(V) have different "grades" as shown in the right
column above, and T(V) is known therefore as a "graded algebra". The grade here is just the tensor rank.
Sometimes T(V) is called "the tensor algebra" over V, see for example Benn and Tucker page 3.

Any linear combination of a set of tensor products of k vectors is a rank-k tensor. More generally, a
rank-k tensor has the form shown in (5.2.1). A multivector is any linear combination of rank-k tensors
for any mixed values of k

The dimensionality of the space T(V) is as follows, where n = dim(V),
dim[T(V)]= 1 +n+n®+n®+.. = o (5.4.7)

Here are a few Dirac notation restatements of equations above
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ky @ |a> @ |b,c> @ |f,g,h> =sum of 4 elements of T(V) = an element of T(V) (5.4.4)p
stky @ |a> @ |bec> @ |f,gh>)=(ski) @ [sa> @ |sb,c> @ |f,sg,h> =element of T(V).
Ib,c>® [f,gh>=|bc,fgh> =e VP=¢e T(V). //be>e V2, [fgh>e V3 (5.4.5)p
5.5 Comments about tensors
The following fact is doubtless obvious to the reader, but we feel it is worth stating explicitly. First,
suppose T*7 are the components of a rank-2 tensor. Define Q*? = T?*. Then Q is also a rank-2 tensor

(although one different from T if T is not symmetric). Here is a formal proof of this claim:

transformation (2.1.7) ie>j and a<b reorder
(T =rank-2 tensor) = T'*3 =R*,RI,T?* = TI*=RI R}, T** = R}, RI,T*®

= Q'*I=T73*=R* RIL,Q*® = (Q =rank-2 tensor) (5.5.1)
In similar fashion the reader can verify the following :

Fact: If T*1*2----*k are the components of a rank-k tensor, then TI132- - -3k are the also components

of a rank-k tensor, where the {j,} are any permutation of the {i,}. The permuted tensor is in general a
different rank-k tensor from the unpermuted one. (5.5.2)

Corollary: Any linear combination of permutations of T*1%2- - - -k g a rank-k tensor. (5.5.3)

Example: If T*3 is a rank-2 tensor, then so is A*3 = (T*3 - TI%). Thus, the A*I shown in (4.3.10) is a
rank-2 tensor given that T*7 is a rank-2 tensor.

5.6 The Tensor Product of two or more tensors in T(V)

The tensor algebra T(V) shown in (5.4.1) is closed under both @ and ®. It seems evident how one would
add two tensors of T(V) of the form (5.4.2), but how would one multiply two tensors?

During this set of steps, we try to gracefully transition into multiindex notation by doing a "real-time
translation" for each line.

Consider two tensors of rank k and k' expanded as in (5.2.1),

T=ii,.. .5 T2 % (0 Quy, ... ®uyy) . rankk, T e V* (5.6.1)
ZITIUI

S= 5195, . g SI1I2 T (U5, ®uy, . ®us,,)  rankk!, SeVE . (5.6.2)
ZJSJuJ
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Multiplying these together with ® one gets, using the rules (5.3.1),

T®S = [Zijiy... .5, T 142 k(U @ Usy . @ U )I®[Z51 95 . . 3y, S92 I 0y, ® 3, ... By, )]

[ 21T ug] ® [£557ug]

(a) :Ziliz_.__iijljz____jk.Tiliz""ik Sjljz""jk'(uil@)uiz ..... ®uik)®(ujl®uj2 ..... ®ujk')

T1,5T8%(ur) ® (ug)

=3, . C e A £ RIRRRE S b b s R | S . . . . .
(b) =Zijis. .. .igjiiz.... 901 S (Ui;® U3, ... Q0 U3, ®uy;® Uy, ....Q U3, )

Y1, oTHS%(ur ® uy)

=3. . s . . i1i2... .1k Qik+1ik+2- .- -ik+k' (. . .
(©) =Xijip....igigsriksz----ikskr | S (U@ Uiy oo @ Uiy ) -

o TS (ur ®ugy)

=Y. . .. . . iqig....ix ik41ik42-..-1 ' . . ]
(d) =Zigip. .. igigerigez. .. g [TOSTHIZ e dertie2 k! (1 @ gy o ® gy ) -

1,1 (TS (ur ®uz:)

(W) =igin. . ige [TOS]HI2 - iktk' (0 @ us, @ Ugpyy ) - (5.6.3)
T (T®S)! uy . // italic I's

Comparing lines one sees that

1= il, 121k I'= ik+1, ik+2, ....ik+kv 1= I, I' = i1,i2...ik+kv
ur = (Ui, ® Uiy ..®@usy)  Ur = (U1 ®.. Uy, 0 0) up =(Ui;®ui, . ®uyp ). (5.6.4)

Notice that the (2.8.21) associativity of ® is used going from (a) to (b). In step (c) we renamed the
dummy j, summation indices so that j; = ix+1 , j2 = ik+2 and so on. Step (d) uses the outer product form
(3.1.14) to replace T S*' = (T®S)*'*' = (T®S)! .
The conclusion is that

T®S = X (T®S)I uj I=1T =igiz.iksxr, U1 =Ui;® Uiy .. @ Uiy ). (5.6.5)
Since the uy are basis vectors in yktk! , we have shown that:

TeVkandS e V¥ = T®Se V' < T(V). (5.6.6)
Thus we have strengthened the claim made in (5.4.5) that T(V) is closed under the operation ®.

We shall now undertake the tensor product of three tensors T,S,R of ranks k,k',k" by mimicking the above
set of steps, but leaning more heavily now on multiindex notation (no training wheels here),
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TRS®R = [Z:T uz]®[Z5S%us]®[ZxS uk]

(a) =%1,5,x T'SR® (u1) ® (u9) ® (ux)
(b) =21,5,K TISIRX (ur ® us ® ug) // associative of ® used here
(d) =21,1',1" TIST'RY” (ur ®ur uzn) // rename multiindices J—I' K—I"
[=1i1,12..0x I' = ik41, k42, -oodkske I"= Ikak ' +1, Iktk ' +2, oo odkak T +k"
ur =(ui;®...Quj,) ur = (Ui ®.. @ Uiy 1y ) Uz = (Uigyper 1@ @ Ui i)
(e) = % (T®S®R)' vy  uy = (01,®...® Uiy per4xem) I = LI =1g,i...1k+k " +k" (5.6.7)

Now the outer product form is T*ST'R*" = (T®S®R)*'*''I" = (T®S®R)' .
The conclusion is this:
TOS®R = 2j (TOS®R)'uy 1 = LI,1" =ig,iz.disrcr s U1 = (U580 @ Uiy ypypn) - (5.6.8)

kK +k", we have shown that:

Since the uy are basis vectors in
TeVkandSe V¥ and Re V¥' =  T®S®R e VF*:'* " — T(V). (5.6.9)

To develop a more systematic approach, consider the first three tensors in a product of tensors,

T4 = tensor of rank kq I = {i1, i2.....1%¢ |
To = tensor of rank ko I2 = {ixg+1, Ikg+2--dkq4kp
T3 = tensor of rank k3 I3 = {ikq+kp+1s Ikg+ko+2.--Ikg+kptks) - (5.6.10)

Define the following "cumulative ranks",
K1 = kl
K2 = kit ko
k3 = kit ko + ks

kw=ki Tko+..+ky =Z-1" ki . (5.6.11)

Then rewrite and extend (5.6.10),
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T4 = tensor of rank ky I1 = {i1, 12.....0xq }

T = tensor of rank k> I2 = {ixg+1, Ixg+2---dxy |

T3 = tensor of rank k3 I3 = {ixp+1, Ixp+2.-.--Ixg}

Ts = tensor of rank kg Is = {ixg_1+1, lxg_q+2---Ixg)

Ty = tensor of rank ky In = {igygoq +1olxg g +2----dxy ) - (5.6.12)

In this notation, and generalizing the above development for the tensor product of three tensors, we find
the following expansion for the tensor product of N tensors of T(V),

T1®T2®..8Ty =Xy (T1®T>...0Ty)" uy

(5.6.13)
where up = uil® Ui .ooe ® Ui +kot. . .

and (T1®T,...QTy)! =T1T1T,T2 .. TN .

The rank of this product tensor is then k = ¥;=1" k; and the tensor is an element of V¥ — T(V). In Dirac
notation, one rewrites (5.6.13) as

| T1,T2...Ty> =|T1®T2....0Ty> = |[T1>Q|T2>..Q|Ty> =% (T1®Ts>...®Ty)" [up>. (5.6.13)p
Example 1: The tensor product of two rank-1 tensors.

TS =%;,1,[T™ 8*2] (u3;®usi,) =5 TS (W1 ®uy) =T;5 (TOS) (s ®uy)

(T®S)*® = %5 T*ST (u;®u3)* = ;5 T*S7 §;23;° = T*SP (5.6.14)
Example 2: The tensor product of two rank-2 tensors.

T®S =i 15151, T 17283 (3, ®us, ®us®us, )

(T®S )2Ped = Tabged (5.6.15)
In both examples the evaluation of components produces the expected outer product forms.

Special cases of the tensor product T®S.

Assume T and S have rank k and k'.

If S=«' € K =a scalar, then rank(S) = k' = 0 and (5.6.3) (c) reads,
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=3, . oL . iiz....ix ¢J1d2----Jk'(yy. . . . .
TOS =ZXiqiy. .. igj1dn. .. .9k L S (ui;®uj, ....®ui, O uy;®uy,

— Ziji,... _ikTiliZ‘ 3k (k) (Ui;® Uiy ....®usy) =T

and

=Y. . s . QJiida....dxrpiiiz. .. ik, . . . .
S®T 23132""Jk'1112""1ks T (un@ uJZ ..... ® qu'® u11® u12

— 25_15,_2 R (k) Tii2--- -1k (ui1® Uip oo ® uik) = «'T

so we find that T®S = S®T = «'T.

If T=xand S = «', the result above would be T®S = k' and S®T = 'k and so T®S = S®T = k«'. Thus,

T®S =x®S =S®T =S®«k =«S ifT=x e V°
T®S =T®«k' =SOT =«'®T =«'T ifS=«x" eV°
T®S =k®k' =S®T = K®x = k' if T,S=kx' € VO .

All equations above can be written in Dirac notation, for example,
T>®|S> = [Z:T ur>] ® [Z1:S™ Jur>] =g, 0 TS ur>®ur > =2 (T®S)! fup>
IT>e V¥and |S> e VE' = ITR®S>= [T>®|S> e VE*™*' <« T(V) .

Operators on the tensor product space

Recall from above the following tensor product space vector,

| T1,T2... Ty = | T1®T5...0Ty> = |T1> ® ‘T2>...® ‘TN>

(5.6.16)

(5.6.5)p

(5.6.6)p

(5.6.13)p

which is an element of the tensor product space V¥ ® V*¥2 ®..® V*N. The action of a linear operator &

on such a tensor product vector is defined in terms of its action in the spaces from which the tensor

product is composed,

P T>® [T>..® Ty>] = P |T1>® P [T>..0 P Ty>.

(5.6.17)
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6. The Tensor Product of k dual vectors : the vector spaces V** and T(V¥)

Every equation in Chapter 5 can be converted to an appropriate equation of Chapter 6 using this simple
set of translation rules:

1. |X>— <X]| and <Y|—|Y>. Thatis, reverse all Dirac bras and kets.

2. Swap lower and upper indices, indices. eg. uz — u*, T3 — Tij (really: reverse all tilts).

3. [vi> — <oy // use Greek/script names for functionals; vi — oz
4, VE vk /I space goes to dual space
5. <T|vy,va....vg > = J(V1,V2.....vk) = a tensor function (a new item) (6.1)

In general, translation of a Chapter 5 equation to Chapter 6 is most easily done if the Chapter 5 equation
is first stated in Dirac notation.

We could end Chapter 6 right here, allowing the reader to apply the above rules, but that seems
unsportsmanlike, so we proceed with a partial mimicry of Chapter 5.

6.1 Pure elements, basis elements, and dimension of vk

A generic pure ("decomposable") element of V** is this tensor product of k functionals,
01 oo ®....Q 0 . allo; € V* (6.1.1)
= <o1| ® <dg|...® <ayx| =<ai,02, ... Ox| . // Dirac notation

Since ® is associative by (2.8.21), one can install parentheses anywhere in (6.1.1) without altering the
meaning of the object, for example, a1 ® (02 ®03)® ...Q ax = 01 ®apy ®az3® ...Q ok .

The basis elements of V** are (these u* are those of Section 2.4),

Aleat2 L @Ak = <@ <u? . @<uik =<ullut2 .tk . (6.1.2)
The subscripts in (6.1.1) and the superscripts in (6.1.2) are labels, not components.
Equations corresponding to (5.1.3) and (5.1.4) are these

AWI1® W32 @ AI*)(vy,va....vie) = ML(ve) AI2(va) ... ATk(vi) = (v1)It (v2)I2 ... (vi)¥k  (6.1.3)

(AI1® 232 ... ® M*)(us,,u5,..05,) = ML(ug,) M2(us,) . ATR(ug,) = 8315, 925, ... 8%, . (6.1.4)
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If n = dim(V), the total number of such basis elements is n*, so

dim(V#*) = n*,

(6.1.5)

In the full set of dual tensor-product basis elements shown in (6.1.2), two or more of the A** might be the

same. This will always be the case if k > n where n = dim(V*). For example, for k =3 and n = 2 one such

element would be A1 ® A1 ® Ao # 0.

In Dirac notation, we can write (6.1.3) and (6.1.4) as

<3, AI2 03K | vy, vp v > = <MLy A2y <Ay > = (vh)3T (vo) 32, (vi) Tk

<7u31, A2 Ik | Uiq, Uiy oosliy == <7»31|uil> <X32\uiz>...<k3k|uik> = 63111 53212...531‘1

6.2 Tensor Expansion for a tensor in V*¥ ; the ordinary multiindex

We apply our translation rules to get this dense translation of Section 5.2 :

<T|= Ziqip....ix Tigip....1 <UL u*2. . u'k. tensor functional
I . . .
<T|=Z1 T1 <u’] <u’| = <u'lu2..,u'k| <T|ur>=Tx
_ i i i
g= Ziliz....ik Tiliz....ik(x @tz ®}\‘k)

G= 3T A" A=Atttz @ik

Te (uil®u12®... ®uik) = <T| Uiq, Uip eeeee Ui™ = Tiliz- g T 5(11,‘_1, Ui,

Teur=<Tlur>=Tr= J(ur)

Te (vi®v2®... ®vy) =<T| vy, v, .ouvi™> = J(Vq, V, ...,V )  tensor function

Tevy=<T|vz>=39(v,) Z=1,2.k

6.3 Rules for product of k vectors

(6.1.3)p

. (6.1.4)

(6.2.1)

(6.2.2)

(6.2.3)

(6.2.4)

(6.2.5)

(6.2.6)

(6.2.7)

(6.2.8)

The tensor product of k vectors is "k-multilinear" meaning it is linear in each of its k factors. This was

discussed in (1.1.16) and later in (3.1.4). For example,
01®(02 + 0'2)®03R....00x = 01R0,Q03& ..... ®ox+ 01¥0'2@03R .....

018(502)R03R ....Q0 ax = s(01P02®03X .....R0) s = scalar .

®0~k

6.3.1)
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2nd

Here we show linearity in the factor. All the other factors have similar equations. We impose this k-

multilinearity by fiat with the result that:
Fact: The space V** is a vector space. (6.3.2)
Proof: Repeat the discussion of Section 5.3 with all vi— a3, meaning |vi> — <o .
6.4 The Tensor Algebra T(V*)
T(V¥) =V e vreveavao... = %7 vEe (6.4.1)

Here V*° = the space of scalars, V¥* = V the space of dual vectors, V¥2 = V*®*V = the space of rank-2
dual tensors, and so on (tensor = functional). The most general element t of the space T(V*) has the form

T=5s @ LiTi AY @ Zi3 Tig MOA @ Zigp Tige MOIONS + ... seK (6.4.2)
with all coefficients in a field K.
Fact: This large space T(V*) is in fact itself a vector space. (6.4.3)
The proof is the same as that shown in Section 5.4 with a,b,c,d,e,f replaced by Greek letters. For example

ki @ a @ B®Kk @ p®c®n = sum of 4 elements of T(V*) = an element of T(V*)

s(ks @ <a| ® <B,x| @ <p,0,m| ) = (sk1) @ (s<a| ) ® (s<B,x| ) D (s<p,o,n| ) = an element of T(V*)

(6.4.4)
For later comparison with the corresponding dual wedge picture, here we have:
Object lin comb is Rank(grade)  Space
s scalar € K 0 V0
o dual vector 1 VAl
a®p dual rank-2 tensor 2 V2
o®P&Y dual rank-3 tensor 3 V3
a®PRYRS dual rank-4 tensor 4 VAl
a®PRYRI.... dual rank-k tensor k vk
arbitrary element of T(V*) dual multivector mixed T(V*) (6.4.6)

All objects listed in the left column are tensor functionals, but we just call them tensors above and below.

Any linear combination of a set of tensor products of k dual vectors is a dual rank-k tensor. More
generally, a dual rank-k tensor has the form shown in (6.2.3). A dual multivector is any linear
combination of dual rank-k tensors for any mixed values of k .
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The dimensionality of the space T(V*) is as follows, where n = dim(V*),
dim[T(V¥)]= l+n+n?+n®+.. = o (6.4.7)
6.5 Comments about Tensor Functions

For every rank-k tensor functional <T| = g in V** there exists a corresponding tensor function:
TV, Vg eeenVy) = <T| vy, va..vi> /1 3(vg) =<T|vg>
TUiq, Uip woesliy) = <T| Ui, Ui Ui, > = Tigin. iy /1 (6.2.5) (6.5.1)

There is a simple one-to-one relationship between the rank-k tensors [T> of V* and the rank-k tensor
functionals <T| of V** and the rank-k tensor functions J(vz) of V**. These functions are manifestly k-
multilinear since | v1,v2...vi> = | vi>®| vo>...8| vi> is k-multilinear. That is to say, each V space in the
tensor product VX = V®V ...®V is a linear (vector) space.

Fact: The vector space V** is equivalent to the vector space V**¢ of k-multilinear fimctions on V¥.

(6.5.2)
This is the generalization of Fact (4.2.15) fromk =2 to k=k.

The point made in Section 5.5 about tensors remaining tensors if their indices are shuffled around is
reflected in the space of tensor functions: if J(v,,v, .....,v;) is a rank-k tensor function, then so is the

.~ .
function 9(vi,, Vi, .....,Vi,) Where the arguments are any permutation of v ,v, .....,v, .

6.6 The Tensor Product of two or more tensors in T(V¥)
Were we to write out the full detailed development of Section 5.6, it would begin as follows :

Consider two tensor functionals of rank k and k' expanded as in (6.2.3),

= Yijip. .. .ig Tigip....ip M1 ®A2 @A rank k, J € V**

= Ti190. . g Sitda. .. 5 MIOAI2Z @Ak rank k', § e V¥<' (6.6.1)

“» Q

In multiindex and then Dirac notation these equations say

=3 T Al or <T| =21 T; <u®|
§=3%;S: Al or <S| =25 Sg<u’| (6.6.2)

and the tensor product of interest is

FRS = <T| ® <S]. (6.6.3)
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The entire development proceeds as shown in Section 5.6 but with the translation rules outlined at the
start of Chapter 6, in particular, that all bra-kets are reversed. One then finds for the tensor product of a
rank-k tensor functional with a rank-k' one,

GRS = L1 5T:Ss ML =3 (T®S); A (T®S); = T1S1- (6.6.4)
I={i, ip, .. iksx' } A= Atz | @ atktk
I={ig, iz, .. ik} I'= {ix+1, ik+2, - Ik+k' )

which compare to the non-dual (5.6.5) ( recall that uy = <uy| and Al = <u'| )
T®S = 31 (T®S)! uy . (5.6.5)

A triple tensor product is then

TOSRR =31 5 x TrSsRx ANTOLRNF =3 (TOS®R); A'  (T®S®R)j = T1S1 Ry (6.6.5)
1= {i, i2, .. ix+k 4"} A=Atz | @ Atk ke
[={i1, 12, .. ik} I'= {ix+1, Ik+2, . Iktk' | [" = {ik4k o +1, Tkt 425 - Ttk +k" ) -

For an arbitrary set of tensor functionals J; of rank k; the tensor product is

F1®F2®..®Fx = 21 [(T1)14(T2)1, - (TW)rg) A =21 (T1®T2... ®Ty)y A

6.6.6
J i = tensor functional of rank k; , [; = multiindex range of i, values for tensor J; ( )
I1 = {i1, iz dieg §, 12 = {ikq 41, Ikq 4200 Dkq 4k, » €LC.
I=11VUlz ... Uly = {i1, i2.0cdkg +kpt oy
A= Ati@ a2 | @ \ikitkot. . tky (6.6.7)

where the resulting tensor has a rank equal to the sum of the ranks of the combined tensors.

In Dirac notation, equation (6.6.6) is written,
< Tl,Tz....Tn‘ =<T1®T5...Q0Tx | = <T1‘ ®<T2|® ...®<Tn‘ =21 (T1®T,....8Ty)| <u'\ (668)
which is just the Dirac transpose (plus tilt reversal) of the equation (5.6.13)p of Chapter 5.

It is understood here that each bra space fits the rank of its tensor, and one could write <T;| = x;<Tj| to

make this fact more explicit. Then (6.6.8) would read
1y <T1| ® 1,<T2 [® ..® 1,<T| =Z1 (T1®T2...0Tx)1 sy<u’ Ky = katko+...+ky . (6.6.9)

Consider now the following generic tensor product ket,
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[V1,V2..Vk; ™k @ V41,V 42--Vi 4k 7k @ o

=[Vi ok ® Vik, @ o @ [VigTry

= |VI> &y

=|V1,V2,V3,V4 cereerreennnnn Ve - (6.6.10)

If we close the bra (6.6.9) with this ket, we obtain the simple rule for the tensor product of the
corresponding tensor functions,

<T1®T5...0Tx | V1,V2 ...Vxy~

=[k<T1| @ 1,<T2 [®..Q 1 y<Tn| | [[VI;7k1 ® [VI,7kp @ .. @ |[VIgTky ]

= 10TV >k * 1o<T2lVi >k, o F k< INVIgTky
=J1(viy) T2(V1p) ... In(VIy) (6.6.11)
or
(51@52....®5N)(V1,V2 .............. VKN) = (51@52....®5n)(V11,V12 ...VIN)
=J1(v1y) T2(Viy) oo In(viy) - (6.6.12)

Example: For N =2 and ky=k and k, =k': (this appears on Spivak p 75)

(I®8)(V1,V2....Vk, Vk+1....Vikak') = T(V1,V2...Vk) S(Vk+1, Vk+2....Viak ') - (6.6.13)
Example: For N =3 and k;=k and ko =k'and k3 =k" :

(TOSOR)(V1, V2, ... Vic+k ' +k")

5(V1,V2....Vk) S(Vk+1 , Vk+2....Vk+k' )“R(Vk.}.k "+1,Vk+k'+2...-Vk+k' +k") . (66 14)

Here is an alternate proof of (6.6.12), independent of Chapter 5, where we make use of the dense
multiindex notation :
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Let

J; =tensor of rank k; I3 = multiindex range of i, values for tensor J;

Iy = {i1, i2eiig }» T2 = {ikg+1s lkqh2eeee ikg kg ) €LC.
Then we have
F1®92®..8Fy = Z111,. . .19 (T1)11(T2)1, - (Tw)zy AT IOLT2Q.. QLN
(918528..89N)(V1y, V1, - Viy)
= Z1;1,. . .19 (TD11(T2)1, (T zy A IOAT2®.. QAN (V1y, VI, - VIy)

= 211, . .1y (T (T2)1, (T (Vi) (Vi)' .. (viy)™

[213(T1)13(vry) ] [Z1,(T2)15(V1p) ™ .. Eryg(T2)1y(Vig) ™
= 51(V11) 52(V12) 5N(VIN) .

Operators on the tensor product space

Recall from (6.6.8) the following tensor product space vector,

< Tl,Tz....Tn‘ =<T1®T5...Q0Tx | = <T1‘ ®<T2|® ...®<Tn‘

(6.6.15)

(6.6.16)

(6.6.17)

(6.6.8)

which is an element of the tensor product space V¥*1 ® V**2 ® _.® V**N_ The action of a linear operator

@ on such a tensor product vector is defined in terms of its action in the spaces from which the tensor

product is composed,
[ <T1| ®<T2|® ..®<Ty| | @ = <T1| € ®<T2| € ® ..® <Ty| &

This equation is the transpose of (5.6.17) if we set @ = 9.

(6.6.18)
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7. The Wedge Product of k vectors : the vector spaces L* and L(V)

Wedge products and the spaces L* and L(V) to be defined below were developed by Hermann Grassmann
(1809-1877) in the 1840's. The algebra of these spaces is now called the exterior algebra and the wedge
products are alternately called exterior products. Grassmann more or less invented the notions of linear
algebra and vector spaces -- the so-called "modern algebra" did not exist. Other people were involved, but
he was a very major pioneer. His work, naturally, was unappreciated at that time.

7.1 Definition of the wedge product of k vectors
We wish to define the wedge product of k vectors vi € V,
vit v v o /] vi> N v N L v
Wedge products of this form (and their linear combinations) inhabit a vector space we call L*.

We now impose the requirement that this wedge product must change sign when any two vectors are
swapped. This property is injected into the wedge product theory, it does not fall out from it.

One motivation for the requirement relates to geometry. We showed in (4.3.14) that a ~ b = det(a,b)
u;”uz where det(a,b) is the signed area of the 2-piped (parallelogram) spanned by a and b. Thenb ~a =

[ -det(a,b)] ui”uy has the same area but of opposite sign. One associates this sign with the "orientation"
of the area in exactly the same sense that a x b and b x a represent areas of opposite sign.
So b ~a=-a" b reflects the change in orientation, as suggested by these drawings from Suter p 7,

12

(7.1.1)

For R3, as shown in (4.3.15), one associates a’b”c with a 3-piped whose "orientation" is determined by

the sign of the volume det(a,b,c), which one can associate with the "handedness" of the 3-piped. For a k-
piped it is hard to imagine "handedness", but it is easy to talk about orientation as the sign of det(a,b,c....)
where swapping any two vectors changes the sign of the "volume".

This sign-change requirement leads to the following candidate definition for the wedge product of k
vectors in V (the j, are vector labels),
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= Alt(le ® Vi, ® ... @ Viy) - (7.1.2)

An explanation of the Zp (-1)° ® notation is presented in Section A.1: the sum is over all permutations P
of [1,2..k], S(P) is the number of index swaps required to get from [1,2..k] to P[1,2..k], and (-1)S ®) is the
parity of permutation P.

The important Alt operator is described generically in Section A.2 and is then applied to tensors in
Section A.5. The definition of the Alt operator on the last line in (7.1.2) is the expression on the right side
of the first line. The Alt operator definition for all authors includes a (1/k!) factor so that Alt(f) = f if the
object f'is already totally antisymmetric, (A.2.16). However, the (1/k!) factor appearing on the first line of
(7.1.2) in the definition of the wedge product varies from author to author.

From our viewpoint, this (1/k!) normalization factor is just a convention that many authors use.
However, Benn & Tucker (p 11 bottom and p 5 footnote) and Conrad (p 13 top) argue that the (1/k!) is in
fact the "correct" normalization to be consistent with more elegant methods of defining the wedge
product, as briefly reviewed in our Chapter 9. For other authors like Spivak, the (1/k!) on the first line of
(7.1.2) is replaced by 1, resulting in

Vi Vit e Vi = Zp (—I)S(P) (Vjp(l) ® Vip(2) ® ... ® Vjp(k))
= (v§; ®vj, ® ...®v5,) + allsigned permutations
=kl Alt(vy; ® vy, ® ..Qvy,) . (7.1.2)spivak
The implications of this Spivak normalization are described in Section 7.9(g) below. Notice that when the
(1/k!) is present, (7.1.2) gives vi " vo = (1/2)( vi®vy - vo®v1) which is the form already assumed in

(4.3.1) and (4.4.1). But Spivak would say vi" v =v1®vjz - vo®vy.
Almost everything one does with the wedge product is unaffected by the normalization choice.

For the purposes of this section, we simplify (7.1.2) by taking j» — r to get,

= (l/k') EiliZ- g 8iqig. . ik (Vil ® Vigp ® ... ® Vik) ir=1tok . (7.1.3)

We have added a fourth line using the permutation tensor €;,3,. .., . This tensor is described in Section

A.6 and the equivalence of the first and fourth forms above is shown in (A.6.8).
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Our approach here is that v1" vo™ ... N vy 1S defined in terms of vi®va® ... ®vy . In Section 9.1 it is
shown how v1” vo” ...~ vk can be defined perhaps more elegantly in the language of modern algebra.

Examples
Vi vz =(1/21) Za b =1° €abVa ® Vp // 2! =2 terms
= (Vi®vy - v ®vy)/2 // agrees with (4.3.1) (7.1.4)
vi*vatvs = (1/3) 2Za,b,c =13 €abe Va ® vp ® ve // 3! = 6 terms
= (V1®Va®v3 - Vvi®V3®V, + va®Vi®Vs - v3®va®vy + vo®v3®vy - vo®vi®vs)/6 . (7.1.5)

7.2 Properties of the wedge product of k vectors

1. The sums in (7.1.2) and (7.1.3) have k! terms. (7.2.1)

Since there are k! permutations P of {1,2..k} (including the identity permutation) there are k! terms in the
Zp sums in (7.1.2) and (7.1.3). Because €;,i,. . .1, vanishes whenever two or more indices are the same,

the ¢ tensor has k! non-zero components (k for the first index, (k-1) for the second index, and so on).
Thus, the second sum in (7.1.3) has k! terms (not k*), just like the first sum.

2. The wedge product is k-multilinear. (7.2.2)

It is by-fiat axiom that the wedge product of k vectors is k-multilinear and therefore satisfies these rules,

v1™(va +V'2)AV3/\ ..... Vi = vitvatvat L v+ vV AN L Vi
viN(sva) Vit LA Ve = s(ViAVRVaN LLLAYE) s,r = scalar € K
or
viMrve +sv'2) et AV = 1(vitvetvat . /\Vk) + s(v1*Vv'2Mvah . Vi) . (7.2.3)

Here we show the rules just for the 2 position, but k-multilinear means these rules must apply to all the
vector positions. These rules cannot be derived from the similar tensor product rules (5.3.1) except in the
case k =2 as was shown in (4.3.4).

Our candidate expansions (7.1.2) and (7.1.3) satisfy (7.2.3) because they are k-multilinear:
Vl/\ (1‘V2 + SV'2) A A Vk = (l/k') Zp (—I)S(P) ( Vp(1)® [I”Vp(z)+ SV'p(z)] ® ... ® Vp(k))
= (1K) Zp -D3® { (Ve 1)® Ve (2)® ... Vpr)) + (Ve (1)® Vo (2)® ...® V() } //(5.3.1)

= (1K) Ze (DE® (v (1)@ Ve (2)® e ® Vo (1)) T S(IKD Zp (1D (Ve (1) ® V() ® ... ® Ve (1))
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or equivalently
Alt(vi®(rvy + sv'2)®v3” ..... ®vk) =1 Alt(v1®vo®v3” ..... Qv )t sAlt(vi®V' Qv ... ®vy) .
Above we have used the fact that the ® product is k-multilinear (also by fiat) as declared in (5.3.1).

3. The wedge product changes sign if any vector pair is swapped. (7.2.4)

Consider the last line of (7.1.2) which in effect says,

Ts192...9% = [Alt(F)]31395. . . 3¢ or T = Ali(F)

where
.. . = v A . .
T5192.. .5k = Vi1 "~ Vig © oo Vik

Fjljz---jkEle ®Vj2 ® .. ®ij.

But we know from (A.5.9) that Ty;5,... 5, = [Alt(F)]315,. . .5 18 totally antisymmetric in the indices.
Therefore vy;" vy, ... " v, 1s totally antisymmetric in the labels, and so changes sign if any pair of

labels is swapped.

Comment: From (7.2.2) the pure vector wedge product vi” vo" ..... " vk 1s k-multilinear in the v;, and so
is the underlying tensor product vi®v,® ....Qvy

4. Wedge product of vectors vanishes if any two vectors are the same.

Given a sign change (7.2.4) for any pair swap of vectors in the wedge product, we know that

vitva" L vk =0 if any two (or more) vectors are the same. (7.2.5)
Proof: For example,

a= vy vih ... AV =-vit v . N Vi =-a; ifl=2thena=-asoa=0.

5. Wedge product vanishes if vectors are linearly dependent. (7.2.6)

It was just shown that the wedge product vanishes if any two vectors are the same. It is also true that the
wedge product vi” vo© ... " vx vanishes if the vectors v; are linearly dependent. Linear dependence
means one can write at least one vector in the set as a linear combination of the others, so perhaps

va2 =(XZigz aivi). Then
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=2igpa; (Vitvi” ... Vi) . // since " is k-multilinear, see (7.2.3)

The sum X; 4, requires that index i be some other index appearing in (vi” vi * ...~ k), but then one has
two indices the same and by (7.2.5) it follows that (v1" vi * ....." vi) = 0 for each term in the sum. QED

[ Grassmann also invented the notion of linear independence. ]

6. Wedge product vanishes if k >n . (7.2.7)

If dim(V) = n, there can be at most n linearly independent vectors in V. If k > n, any set of k vectors v;
must be linearly dependent. Thus, by (7.2.6) the wedge product of any set of k vectors must vanish if k >

n. Therefore for a given vector space V of dimension n, the only wedge products of interest are those for k
=1,2,3....n. For example, forn=2 and k =3 one hase; " e1 “e2 =0.

7. Components. From (7.1.2) we find

iqip. .. ix _ S(P
(V31" V3" A vt 12 Te= (KD Zp (1P (Vi gy ® Vipay @ n® Vsp ) 2

= (KD Zp (D3 ® (Vi 1)) 2 V3p2)) 2 - (Vip ey ™ // outer product form
= (1/k!) Zp (-1)°®) (v35,) B D) (v4,) B @) (v5,) B0 // (A.1.19) with Ma® = (v5,)*®
= (1/k!) det[ (v5,)**]. /1 (A.1.19) (7.2.8)

As noted earlier, in the Spivak normalization the factor (1/k!) is replaced by 1.

Fact: (le’\vjzA...Avjk)iliz' -+1k s totally antisymmetric in both the labels jr and the indices ir. (7.2.9)

Proof: We already know from (7.2.4) that (v5," v3," ... ij)iliz' --*k s totally antisymmetric in the

labels jr. For antisymmetry on the i, we give two arguments. We can take components of (7.1.2) to get
(Vi7" V" A Vi) 123k = [Alt(vy; ® vy, ® @ vy, )] 12 ik

which we think of as saying T*1*2- - -k = [Al¢(F)]*1*2" - -k According to (A.5.9) T*1*2- - -k jg totally
antisymmetric in the i* indices. Alternatively, (v4;" V3, ... A ij)iliz' ik = (1/K!) det[ (v4)**] is

totally antisymmetric on the i, because the det changes sign when any two rows or columns are swapped.

8. Associative Property of the wedge product.

This topic is addressed below in (7.9.2) where the need first arises. The conclusion there is that the wedge
product is fully associative. For example, (v1”" v2)* v3 =v1™ (V2" v3) = v1" v vs .
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7.3 The vector space L* and its basis
L¥ is the space whose elements are all linear combinations of wedge products of k vectors of V.  (7.3.1)
A more precise name for this space is L¥(V) but we call it L*.

L* is a vector space (7.3.2)

Fact (5.3.2) showed that V¥ is a vector space where the 0 element could be any V¥ element such as
v1®0® ....®vy. L* is a vector space by a similar argument. It is closed under addition, scalars work
correctly according to the rules (7.2.3), and the 0 element can be any element such as v1”0”" ..... vx as the
reader can verify looking for example at (7.1.5).

A key point is that it is the imposition of the k-multilinear wedge product rules (7.2.3) that makes L*
be a vector space. We had a similar situation in Chapter 5 where the imposition of the k-multilinear tensor
product rules (5.3.1) made V* be a vector space.

Basis elements for L*

Consider the following objects in L* obtained by wedging together k basis elements of V, where each uj,

is selected from the set of n available for V (which has dimension n),
(uy; “ugp MM ugy) . (7.3.3)

Of these putative n* objects, only n*(n-1)*...*(n-k+1) = n!/(n-k)! are non-zero by (7.2.5) because all the
others have at least two vectors the same. Thus we can assume that all the labels j, are different.

Now there exists a unique permutation P of the all-different labels j, such that

[j1,J2---Jk] = P[ i1, i2....1x] where i1 <iz <....< ig. (7.3.4)
If this permutation involves S(P) pairwise swaps of indices, then

(U3, A Ugp " e Augy) = D3P (ugg, Aug, A Augy) where iy <iz <....< ix (7.3.5)
because from (7.2.4) each pairwise swap of vectors in a wedge product creates a minus sign. Since there

are k! possible permutations P, there are k! equations like (7.3.5) which relate different objects to the
same object (ui; " ui, " .... uy, ) which has i3 <iz <..... < ix .Thus, if we want to count the number of

independent basis elements of L¥, we have to divide our earlier count of n!/(n-k)! non-vanishing objects

by k!. The conclusion is that there are (E) independent basis elements for L* and they can be taken to

have this form,

(ui; Mui, Mo M ugy) where i3 <ix<..... < ix (E) basis elements (7.3.6)
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Examples: (7.3.7)

e For k=3 and n > 5, the following k! = 3! basis elements involving u;, uz and us are all equal to the one

ordered element u;"us”™us with a + or - sign :

u;uszug = (-1)0 u;’usz™us = +tui”us’us 135

ulAU5AU3 = (—1)1 u1’\u3Au5 =- 111/\113/\115 153—135

uz™u;Mus = (-1)1 u;™usz™us = -ui;’us’us 315 —135

U3AU5A111 = (-1)2 ulAu3’\u5 = +111AII3/\115 351—-315—135
us™u;Muz = (-1)2 u;usz™us = +tui”us’us 513—153—135
U5AU3A111 = (-1)3 ulAu3’\u5 =- 111/\113/\115 531—-513—153—135

. 3
e For k =2 and n = 3, the 3 basis elements are u;”uz, u;™us, u2”us and (2) =3.
Fact: (uj; “uj, " ... Yuyy) = Alt(uy; @ uy, ® ... @ uy,) U~y = Alt(uy) (7.3.8)
This is a special case of (7.1.2) with v—u. The right shows equivalent multiindex notation.

Components of the basis elements for L*

Now reconsider the basis vectors of the vector space L*,

Uy M ugy, N Mgy (7.3.3)
The components are given from (7.2.8) with v =u as [ recall (us)? =871,
(U3, uz" .. Ay, )itz ik
= (KD Zp (D™ 8551, 1855 2) 72 - B3p ey
= (I/k!) Zp (-1)5 ) 85, B (55, *B(2)  §y 2R (K) / (A.1.19) with M° = 85, *P
= (1/k!) det[ 55,**]. (u~g)t = (1/k!) det(55%) (7.3.9)

Once again, in Spivak normalization (1/k!) — 1.
Then (7.2.9) applied to v =u shows that,

Fact: (uj;"uj 2A...Aujk)i1i2' -1k s totally antisymmetric in both the labels jr and the indices ir. (7.3.10)

We saw an example of both antisymmetries for k = 2 back in equation (4.3.21),
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(Uit uy)™® =- Wi uy)** = - (3 uy)* . // two forms of antisymmetry (4.3.21)

Either form in (7.3.9) can be expressed in our usual informal notation,

Uiy Mg, A Augy )2tk = ! 185,72 85 %+ signed permutations] . 3.
(33 Mgy N Nugy) 2K (1/k!) [ 85,71 85,72..05, 7% d 1. (7311
Example:
Slel 63';2 63';3 83';1 szfl 83'3:.-1
3!(uj1Auj2Auj3)i1i2i3 = det 6jzf1 6J'2_12 6J'2_l3 = det 6j11_2 8J'2T2 8J'3l_2
O35% f3572 f5573 03172 83,7 83573
= det (3313,55 2%3)
= det(857) . // in multiindex notation (7.3.12)
7.4 Tensor Expansions for a tensor in L*
Recall now the tensor expansion for a most-general tensor T in V¥,
T=Siji,.. .5 T2 0 Qui,®...0uy,).  Te VS (5.2.1) (7.4.1)

It has been shown in (7.3.10) that (us;" uz,* ...." uik)jljz' -+3k is totally symmetric in both the iz and jr
indices. This object then meets the conditions of Fact (A.8.27) which states that Alt; = Alty when applied
to such an object. Consider then this most-general object in L* which has a similar look to (7.4.1) and for
which we explicitly display the tensor components,

. i1ig. . vik (. AL A Aq. VI1d2---3k
h) i T (Ui, M ug,™ Uiy )

iqig....

= iy ... T2 3R Al (05, ® 03,® ....®@uy, )12 Tk //(7.3.8)

= Tijip.. . i TH120 Mk Al 55,918,928 % ] /(5.1.4)

= Tiji,.. . iy THP20 ok ALG[S; .91 55,92 L 55, %] // (A.8.30)

= Altg[ Ziy1,. .5, T2 3k 5 915, 32 5, // (A.5.10) Alt is linear
= Alty(TI132- - -3k) = Aly(TI1I2- - - Ik) // no ambiguity

= (1/k!) Zp (-1)3B) TIR(M)IR(2) - - - IR (K) // def of Alt (A.5.3b)
= [Al{(T)]P232- - -3 // (A.5.3¢)

= [T~]?132-- -3k (7.4.2)
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where we define this notation,

T~ = AIY(T). (7.4.3)
From (7.4.2) we then have the following fully general element of L¥,

Ta=X

iqig....ix Tiliz otk (uil/\ uiz/\ ----- A uik) . Ta e Lk (744)

We refer to this type of expansion as a symmetric expansion, and we know it is redundant since the
symmetric sum includes each true basis vector k! times.

According to (A.5.9), we know from (7.4.3) that

Fact: TA*1%2----%k j5 3 totally antisymmetric tensor. (7.4.5)

Therefore,

Fact: The space L* is the space of all totally antisymmetric rank-k tensors Ta. To say that Ta is totally
antisymmetric means that Ta*1*2- - - -k js totally antisymmetric. (7.4.6)

In contrast, the space V¥ is the space of a/l rank-k tensors T, so L* = V.

Since the set (ui; " uip, N ..o Mugy) with 1 <1y <ip < ... < ix < n forms a complete basis for Lk, as

discussed below (7.3.3), it must be possible to express T+ in the following manner

Ta= Zicij<ip<. .. .<igen A2 Uy Mugy AN Mgy (7.4.7)
Example: If n=3 and k =2, then

Ta=Z1cig<ipes A2 (ug M ugy) = A (Wtu) + A (uus) + AP (utus) (7.4.8)
What then is the connection between the A*1%2- - -*k of (7.4.7) and the T*1*2- - -*k of (7.4.4)?
Start with the symmetric form (7.4.4),

Ta=%i11,. . .4 T2 3k (uy, Mg, Mo Mugy) ir=12.n

= Figigr. g T2 R (g Aug, Ml Mgy /(T.2.5) (7.4.9)

Partition the summation space as follows (1 <iy <n),

Zijtig#. . Fig = [ Zig<ipg<...<ix T Zip<ip<...<iy T Mmany similar reorderings ] . (7.4.10)

122



Chapter 7: Wedge Products

The total sum can be written in this manner, using the permutation sum notation,

Lij#ig#. . Ay = ZP Zip(1)<ip(2)<-.-<ip (k) (7.4.11)
where P are the k! permutations of the k integers [1,2,...k].
Using the form (7.4.11), the sum (7.4.9) may be rewritten as,

Ta= Zp Zip(y)<ip2)<...<ipgq T 127 7K (uig Musp ™o Mugy) (7.4.12)
In (A.9.1) it is shown that,

Zp [Zip(1y<ip(z)<...<ipyl figip...ix = Zig<ip<...<iyp [Ze fipqy)ip(ay...ipayl - (490

That is to say, in the £p permutation sum, the permutation operators P can be moved from the summation
index subscripts to the summand index subscripts. One then has from (7.4.12),

Tr= Zijcipe.. <y Zp [ TE@IP@ 2200 (U0 Mugy o) Mo Miip ) 1 (7.4.13)
But we know from (7.3.5) that
(Uip (1) "Uip(gy " oo Mip(yy) = (-1)5® (uig Muiy M Mugy) (7.4.14)
where S(P) is the number of swaps associated with permutation P. Thus,
Ta= Zijcip<...<ig [Zo (- TR@WIP@) 220 (5, Mg, Mo M uyy) (7.4.15)
which we can compare with the ordered sum (7.4.7),
Ta= Tij<ip<. .. .<ip A2 (uy Aug, A Mugy). (7.4.7)
Thus, since the basis is complete, the relation between the A and T coefficients is given by
Altizecik— 3o ()3 Tip()ie2)---ip(k) i1 <ip< .o < ix
= [T*2*2---*k 4 gl signed permutations ]  // k! terms
= k! [Alt(T)]*2*2- - -k // (A.5.3) def of Alt

or
A =KkIAI(T) =k! Tn. //(7.4.3) (7.4.16)
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The A*1*2---*k appear in the expansion (7.4.7) only for index values 1 < i3 <ip <....< ix <n, but we
can interpret (7.4.16) as defining A*1*2- - -*k for all index values. Since A = k! T+ , (7.4.5) shows that

Fact: A*1%*2---%k gnd TA'132- - -1k gre both totally antisymmetric tensors.
Comment: T*1*2---*k and A*1*2- - -k gre both rank-k tensors, see (5.5.3).
Examples: (relating the A and T coefficients)
A3 =T3P _TbP2 // as in (4.3.10) k=2
A8be _ rabe _acb | pcab _cba 4 bea _ pbac k=3
Vector Case. For k = 1, we find that

T = %35, T* uy, //(5.2.1)
Ta =33, T us, 1/ (7.4.4) =  T~=T

so for a vector there is no distinction between T~ and T (and in fact V* = L1).
7.5 Various expansions for the wedge product of k vectors

The symmetric expansion for the wedge product of k vectors is very straightforward. Let
T2 3k = (v) 1 (vy)*2 L (vi)R = (v ® Ve ® ... ® vi)tli2 ik
or
T=(v1 ®v2®....8 vx) .
Then the symmetric expansion (7.4.4) gives,
Ta =Zig1,. .5 T2k 0y, Mg, M Mugy)
=Tigip. i (VDT (v2)'2 L (vi0*k (Ui Mug, N Mugy)  /(7.5.1)
= [Z1; (VD) us, ] A [Zi,(v2) 2 ug,] Ao A [Z, (Vi)TE U] // ™ is multilinear
=vi v N NV .

This pure tensor T~ = vy ~ va ... " vk is an element of L¥.

(7.4.17)

(7.4.18)

(7.4.19)

(7.5.1)

(7.4.4)

(7.5.2)

(7.5.3)

Expressing vi * vz © ... * vk in terms of the ordered expansion is more complicated. One must first

compute the tensor A as in (7.4.16),
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(1/k) A = AI(T) = Alt(Vi®V2®....0vi) = Ta = (V1 * V2~ .. * Vi) . (7.5.4)

Then the ordered expansion (7.4.7) can be written in a battery of ways,

Vi Ava N NV = [/viNva .. vk € LK
(a) = ij<ip<. .. .<ig At1iz: ik (Ui "usp M Mugy) /1(7.4.7)
(b) = Tijcip<....<ig K! [A(VI®V2®...®vi)]* 142 2k (uy, Mg, M Mugy) 1 (7.5.4)
(€)= Zijcip<....<igk![ViAva o Avg]Pi2e ik (ug A, A Mugy) /1(7.1.3)
(d) = Tij<ip<....<ip det] (vo)**] (Ui Muiy M Mugy) //(7.2.8) with jz — r

(v1)*t (v1)*2 ... (vy)ik

(v2)'1 (v2)'2 .. (v2)'®
(e) = Zij<ig<....<ip det (uig Mugy Mo Mugy)

(Vi)' (vi)*2 ... (vi)'E
and with a transposes matrix
(Vi)™ (v2)*! .. (i)™t

(v1)*2 (v2)*2 ... (vi)*2
(f) = 2i:]_<i2<. LLW<ip det (Uil n Ui, NN uik)

(VO™ (V2% .. (vio)*E

(g) =Zigip. i (VO (v2)'2 o (0™ (Uag Muap M Mugy)  //(75.2) (7.5.5)

where we throw in the symmetric sum at the end. Remember that, since generally dim(V) = n > k, the
determinant in (f) is a full-width minor of matrix M = [vy, v2.....vx]. If k = n, the minor is the full matrix.

Example : Suppose k =n = 3. Then the following sum (form (f)) has only one term in which i1= 1, io=2
and 13= 3,
(V1) (v2)'L (v3)
V1" V2" v3 = Zi<ij<ip<ig<3 det (Vl)f2 (VZ)T2 (V3)1'2 (ui; “ui, " usg)
(v1)™3 (v2)*3 (v3a)*?

= det[vy, v2, v3] (u1 " uz " u3) (7.5.6)

as quoted in (4.3.15).
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Example : Here are the above expressions for k =2 and general n >k :

(@)  vi®va =Zi;ar, AT (ug, Mug,)

(b) = Tij<ip 2! [AI(VI®V2)]*1'2 (uy; Musy)

() = Tij<ip 2! (V1A v2) 2 (ug, Musy)

(d) = Zij<i, det] (vo)*] (ui; M usy)

(e) = i<, det(g:;: g:;:j (uiy " usp)

) = Zij<, det(gi;: E:;i:) (Usg MUsp) = Zig<ap [(VD)™H(V2)™2 - (v2) 2 (v2)'2] (ug; " usyp)
(8) = Tigs, (V)M (v2)'2 (Wi " usp) = [Tay(ve) lusy]  [Ta,(v2) 2 us,] =it v 7.5.7)

Result (f) matches that shown in (4.3.12),
a"b= Zij aibj (ui A Uj) = Zi<j (aibj- ajbi) (ui A Uj) = Ei<j Aij (ui A Uj)

igd

a .. C o s at bt
= Xj<j det al b (ui”uy) A*J =(a’b’-alb") =det ad b3 ) - (4.3.12)
7.6 Number of elements in L* compared with VE,

We know from (5.1.5) and (7.3.6) that,

dim(V¥) = n* // number of basis elements of V* (5.1.5)

dim(L*) = (E) // number of basis elements of L* (7.3.6)

If the number of elements of field K is N ( N — oo for K= reals), then the generalization of (4.3.11) is,

n n
# elements of L* (k)N (k) (n)/ k
= n* .

ratio = # elements of VX~ k

=N T of (7.6.1)

For a given n, this is a strongly decreasing function of k. For example, for n = 10 we can plot the log of
the ratio for k=0 to 10,
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ratio = binomial(n,k)}/(n"k)
n = 10
plot (logl0(ratio) k = 0..10),

(7.6.2)

10 -
For example, when k =n = 10, ratio = ( 10) /10*° =107*? and L° has only one non-zero element.

7.7 Multiindex notation
In this section, multiindex versions of equations are shown in red.

Multiindexing is done in two different ways. First, for the symmetric expansion (7.4.4) :

Tr= Ziliz- g Tiliz' ik (uil n Ui, AN uik) (744)
Ta=31 T uag where usar =us; “us, Mo MUy, T = Ti1i2-- -1k
and I= {ij, ip,.... ix} With 1 <ip <n = ordinary multiindex, n=dim(V). (7.7.1)

The more significant notation involves the ordered expansion (7.4.7) which has only one term for each
linearly independent basis element. Note our use of X't (prime) to indicate an ordered multiindex
summation :

Ta= Tij<ip<... . <ig AMTR20 3k (uy Ay A Aug,) (7.4.7)
Ta= 21 Al ung where uat = Uiy M Uiy N MUy AT = Afii2.. ik
and 1= {i, ig,.... ix} With 1 <1;<i2<...<ix <n = ordered multiindex, n =dim(V). (7.7.2)

Here are some unofficial multiindex notations for other equations developed above:
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Ta=vi v Mk Ta=("vg) (7.5.3)

THE2: 3 = (v)H (vp) P2 L (v)'R = (vo)' T =(vz)" (7.5.1)
with the idea that Z = 1,2...k . Continuing on,

Ta=Zi11,. .1 (V' (v2)'2 .. (vi)** (Ug; Uiy e M ugy) Ta=31 (vg)F usg (7.5.2)

A =k! Alt(v1®v,®...®vy) A =k! Alt(®vy) (7.5.4)

Vi AV A A= Ziocipe. . <ip KIAI(VI®OVL®.. . ®vi) P12k (ug Aug, A Auyy) (7.5.5b)

o _ ("vz) = X1 k! Al(®@vz)T ung
(v1)™ (v2)™! ... (vp)*?

(v1)*2 (v2)'2 ... (vi)*2

Al1iz- ik — et A = det(vz)) (7.5.5a+f)

(V' (V2K .. (o)
v (v2)'T . (vl

(v1)*2 (v2)*2 .. (vi)™2
Vit vah oL MV = Zig<ip<. .. .<iy det (Ui Muip e Musy). (7.5.50)

(VI ()% . ()i
("vz) = Z'1 det(vz") unz
7.8 The Exterior Algebra L(V)
We now construct the graded algebra L(V) in analogy with that of T(V) in (5.4.1).
Define a large vector space of the form ( this is "the exterior algebra on V")

LV) =L oL@ L2 L3 +.. JILV) =28 0” L* (7.8.1)

Here L° = the space of scalars, L* = V the space of vectors, L=V~ VcV? the space of antisymmetric
rank-2 tensors (7.4.6), and so on. The most general element of the space L(V) would have the form

X=s @ EiTi u; @ Eij T3 uiAuj @ Eijk T3k uiAujAuk + .. // symmetric
or

X=s ® EiTi uy @ Zi<j Aij uiAuj @ Zi<j<k Aijk uiAujAuk + ... // ordered (7.8.2)

The direct sum @ is described in Appendix B.
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Associativity of the Wedge Product

We have carefully managed to avoid this topic in all that has transpired above. Nothing so far has been
assumed concerning associativity of the ” operator. In (2.8.21) it was stated that the ® operator is
associative, and this was "proved" in our outer product approach to ®, but for the formal approaches of
Chapter 1 it is an axiom that ® is associative.

Once we define the space L(V) above, we must face the issue of wedge products of the form
(ui”u3)*ux and more generally (v1*v2)*vs. These products arise when we multiply an element of L? by
an element of L. Notice that our grandiose expansion (7.1.3) says nothing about (v1"v2)"vs. All it says is
this:

V1t Vot v = (Vi®Va®v3 - vi®V3®vy + v3®vi®vs - v3®va®vy + va®va®vy - vo®vi®v3)/6
V1/\ V2 = (V1®V2 - V2®V1)/2 . (7.8.3)

The product (v1"v2)*vs = (1/2)(vi®va - v2®vi) » vs3 is the wedge product of an antisymmetric rank-2
tensor and a vector and up to this point we have no idea how to evaluate such an creature.

Now is the time, then, to add a new axiom to the wedge product theory. We declare that,
Fact: The wedge product of k vectors vi™ vo™ ... vk can be "associated" in any manner without altering
the meaning of the product. By this we mean that parentheses can be added in any manner without

altering the object. (7.8.4)

What this in effect does is define an array of new objects to be the same as v1” vo” ...~ vg . For example,

(V1" v2)" v3* Vot vs" ve =v1" v2" v3" v Vs ve

V1" (V2" v3) N Vg vs" ve =v1" V2" v3h Vg vt vg

V1" (V2" v3 " vg) " V5" v =v1" v2" v3" v Vs ve

V1™ (V2" v3 N vg) N (Vs V) =v1" v vt vaN Vs Ve // multiple ()

(V1" v2" v3) (V4" V" V) =v1" V2" v3h Vg vt vg

(V1" v2) " (v3" va) " (v5" ve) =v1" V2" V3" v Vst Ve . (7.8.5)

Given these definitions, it follows that nested parenthesis are also allowed. For example,
V1/\ (Vz/\ (V3A V4)A V5)A Ve = V1A (VzA V3A V4A V5)/\ Ve = Vl/\ V2A V3A V4A V5A Ve . (786)

Since tensors like T can be expanded on (ej; " €5, ” ....  €5,), and since one may associate this wedge

product arbitrarily as claimed in (7.8.4), one easily shows that :
Fact: The wedge product of N general fensors A~"Ba"Ca.... can be "associated" in any manner without

altering the meaning of the product. By this we mean that parentheses can be added in any manner
without altering the object. (7.8.7)
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This fact then extends the claim (7.8.4) made for N vectors, and is exactly analogous to the similar
axiomatic statement for ® associativity made in (2.8.21).

Example: In (7.7.1) multiindex notation, consider three L(V) tensors T, S~, R of rank k,k' k" :

(T~ 2 Sa) ARa = ( (ErT urp) * (£587ung) ) " (ExRusk)

=3:TI5587 { (unz A ung) » (ExR¥usg) } // rules (7.2.3)

=31 TIE5S75kRY (a1 » uag)  (Usg) // rules (7.2.3) again
= Y1k TTSRK (urz M uag N UAg) // detail shown below
= (1T ur1) » (25S7urg) A (ZxR¥ung) // rules (7.2.3) again
=Ta " Sa”Ra .

Our example shows that for arbitrary L(V) tensors, (T~ * Sa) " Ra= Ta ~ Sa ~ Ra.
Here we illuminate the key detail above:

(ur “ug) Muk = (Ui uig MM usg) N (U ug NN g ) ) N (U Uk N Uk )
= (uiMug MM ugy M ug M ug N M g ) 2 (U ukg N U )
= Usig Ui MM 0y Mg g A Uy M gy Uy N U
= (uil/\ uilA...A uik) A (ule ule...’\ ujk-) A (ukl/\ ukl/\.../\ ukk--)

= (111 n Ug " uK) .
In each step above the rule (7.8.4) for vectors (applied to basis vectors) is used.
Having faced up to the issue of associativity, we now resume the discussion of L(V).

Fact: This large space L(V) is in fact itself a vector space. (7.8.8)

We know this is true since L(V) = 3% 0™ L* and we showed in (7.3.2) that each L* is a vector space. For
example, the "0" element in L(V) is the direct sum of the "0" elements of all the L*. See Appendix B for
more detail.

To show that L(V) is an algebra, we must show that it is closed under both addition and multiplication. It
should be clear to the reader that L(V) is closed under addition and has the right scalar rule. For example,
if k; and s are scalars,

ki @ a® b c @ f*g*h =sum of 4 elements of L(V) = an element of L(V)

s(k1 @ a @ b c @ *g"h) = (sk1) @ (sb) "¢ @ f(sg)*h = element of L(V) (7.8.9)
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This additive closure is of course necessary for L(V) be a vector space.
The space is also closed under the multiplication operation *. For example
(BN (fPgrh) =brerMrgrh =e L3=e L(V). //(b*c)el? (f*gth) e L® (7.8.10)

Here we have used the associative property (7.8.4). This closure claim is stated more generally below
(7.9.2.6).

One then makes the following definitions with regard to the space L(V), where n = dim(V) :

Object Name any blade lincomb: Grade(rank):  Space

S 0-blade scalar e K 0 L°

a 1-blade vector 1 Lt

a”b 2-blade bivector 2 L2

a"b”c 3-blade trivector 3 L3

a’b”cd 4-blade quadvector 4 L

a’b/cAdN.... k-blade k-vector k Lk

a’brehdA.... n-blade n-vector n L®

arbitrary element of L(V) multivector mixed L(V) (7.8.11)

Since L(V) is closed under the operations @ and *, it is "an algebra" (the space L* alone is not an algebra
because it is not closed under *). The L(V) algebra is different from that of the reals due to its definition
as a sum of vector spaces. The elements of L(V) have different "grades" as shown above, so L(V) is a
"graded algebra". Sometimes L(V) is called "the exterior tensor algebra" over V.

A k-blade is a pure wedge product of k vectors, whereas a k-vector is any /inear combination of k-
blades. A multivector is any linear combination of k-vectors for any mixed values of k.

Note that

s1(a”"b) @ sa(c™d) =(s1a)"b @ (s2¢)*d =(a"'b) @ (c'd) // 2-blades
s1(a”b) @ sp(chd™e) =(s12)"b @ (s2c)Mde =(a”*b) @ (c""d"e) // multivector

so it is also correct to say that a k-vector is any sum of k-blades, and a multivector is any sum of k-
vectors. That is, any linear combination can be written as a sum as shown in the above examples.

Unlike in Tensor World, in Wedge World the above list (7.8.11) is finite for a given n = dim(V). For
k = n there is exactly one linearly independent basis vector which is the ordered wedge product of all the
basis vectors of V. For k > n, all wedge products vanish since the vectors in the wedge product are
linearly dependent, see (7.2.6). The dimensionality of the space L(V) is as follows, based on (7.8.1) and
(B.10),

dim[L(V)]=dim[L° ® L’® L2 ® L® +....] =dim(L%) + dim(L?) + dim(L?) + dim(L3) + ...
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but for dim(V) = n this series truncates with L™ and we find from (7.3.6),

dim[L(V)] = 1+n+ (g) + (131) +o (E) — Teo® (E) —2° =g finite number  (7.8.12)
7.9 The Wedge Product of two or more tensors in L(V)

(a) Wedge Product of two tensors T~ and Sa

Here we shall mimic the developmental approach used in Section 5.6 for the tensor product. As before,
we quietly "break in" the multiindex notation.

The symmetric expansions (7.4.4) of T~ and S+ are given by,

TA= 25_15_2 ol Tiliz' ik (uilA Uig woe n uik) rank k, Tr € Lk (7931)
EITIUAI

Sa= Z319p. . 5 SII2 IR (ug Aug, M ugy ) rank k', S~ e L*' . (7.9.a.2)
ZJSJuAJ

TarSa= [21112~ . 'ilellz' stk (uil/\ Uip weeee A uik)]A[ ZjljZ- Ik §I1d2--- ‘Jk'(ujl/\ DEPY n ujk')]

[ 21T u~1] A [ZaT ung]
(a) :Zilizuuik Zjljznnjk.Tlllz""lk 53132""3]"(115_1/\ Uip oo A uik)A(ule Ujg weee n lljk.)
Y1, aTFS(uar) # (ung)
(b) =Xiig. .. igi1ig. .. g L 2Tk SITIZe Ik (Mg, LM UM Uy Uy e Ujp)

T1,5TS7(uar 7 ung)

[Ti1i2 [ .ik Sik+1ik+2 . e 'ik+k'] (uil/\ u

ZI,I'TISIV(UAI AUAIV)

(c) Tigip. .. .igiks1ike2. - - -dkek i oo Uiy )

(d) = Z::i.].iz e igik41ik42- - -iktk! [T®S]1112 etk lk+1lk+2----lk+k' (uil/\ ui2 ------ A uik+k')
21,10 [T®S] (usr Musrr)

(€)  =Ziqip... i [T®SIFR2 Motk (uy Augo M ugy ) (7.9.a.3)

21 (T®S)! uny

Comparing lines one sees that
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1= i1, i2...ik I'= ik+1, ik+2, ....ik+kv 1= I, I' = il,iz...ik+kv
Uar = (Ui M Uip oM Ugp)  Uszr = (Uipgq Mg yger) Usp = (Ui M Uigp MU ) (7.9.24)

Notice that the (7.8.4) vector associativity of ” is used going from (a) to (b).
The conclusion is that
TArSa= Ty (T®S) uni 1= LT =ig,izeiiscr, Untl = (Uay" Uiy oo Uiy ) - (7.9.a.5)

Lk’ , we have shown that:

Since the u~j are basis vectors in
T~eL¥and S e L¥' = TaSs e L = L(V) . (7.9.a.6)

Thus we have strengthened the claim made in (7.8.10) that L(V) is closed under the operation .

Recall now from (7.3.8) the relationship between u~j and uy,

(ui; Muiy M Mugy) = Alt(ug; ®us, @ L @ ugy)

usr = Alt(ug) (7.3.8)
and (5.6.5) for the expansion of the tensor product T®S,
T®S = 2; (T®S)! uy 1= LT =igipe ks, Ul = U,® Uiy o ®@ Uiy, ) - (5.6.5)
Applying Alt to this last equation (with component indices J ),
[AI(T®S)]? = Alty [(T®S)’] // (A.5.3¢)
= Alty [ Z) (T®S) (u1)? ] // component J of (5.6.5) quoted just above
=3, (T®S)' Alty [(ur)’] // (A.5.10) that Alt is linear
=3, (T®S)' Alty [(ur)’] // (A.8.31), (ur)” has factored form (us,)32(uz,)32 ...
=3 (T®S)I (uA|)J /1 (7.3.8) quoted just above
= [Z1 (T®S)" (uwn)]
= (T~" Sa)? /1(7.9.2.5)
so we end up with the following elegant and compact way to write the wedge product of two tensors,

Tan Sa = AlY(T®S) . // see Sec (g) below for this result in Spivak normalization (7.9.a.7)
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Concealing the Alt; and Alts details one can get the correct result with this sequence,
AI(T®S) = Alt( =y (T®S)' up ) =2 (T®S)'Alt(uy) = Ty (T®S)' (ur)) = TA Sa .
The components of (7.9.a.7) are,
A J _ J
[Ta” Sa]” =[AI(T®S)]

1

= ey 22D (T®S)° “ // (A.5.32)
1 :
=K Tp(-1)S B TROIGRWN) /l see e.g. (5.6.15) (7.9.a.8)

This last line is an explicit instruction for computing the components of the tensor T~ S+ . We have
added this new notation,

TPM = Tie@ir(2)---ir(k) for 1 =iy, iz...ix (7.9.2.9)
Example: Let S and T both be rank-2 tensors so k =k'=2 . Then
[Ta Sa]' = [Tar Sa*14213%4 = (1/41) 3p(-1)% (P TR (1) 2R (2) SR (3) 1R (4)
= (1/24) [ T*1*28*3%4 _7i2i1gista 4 Ti233g 104 7321361451 4 20 more terms ] . (7.9.a.10)
Here as elsewhere we show in red the indices to be swapped to make the next term. From (7.9.¢.6) below,
TarSa=(-1)2"2 SaA Ta = Sa Ta. (7.9.a.11)
(b) Special cases of the wedge product T+" Sa

Assume T~ and S~ have rank k and k'.
If S=«' € K =a scalar, then rank(S) = k' = 0 and (7.9.a.3) (b) reads,

AQa= Y. . L. . ijig....ix ¢J1d2. .- Ik . A A A A s A s
TAa™ Sa 21112'”'1k3132~'-:lk'T S (ull Uip woeee Ui " U377 Ugy oo ujk,)
L. i iqin....ix A, Ay, o
— Xiqip. .. .igl (") (Ui Uiy oo uiy ) =T (7.9.b.1)
and
MNMTa=Y. - .. . QJ1d2----dkr mi1ize - iikg L. Ay Ay, Al Aag. Ay
SAATa=Z5190. .. 9xrigin....ix S T QL TEAR! EP Uy Ui Uig e Uiy )

— Ty, .4y (K) TR0 o3k (g Aug, Mgy ) = KT (7.9.b.2)
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so we find that TAS=S"T = «'T.

If T=x and S = «', the result above would be T+"S+ = kk' and SAa"T = 'k and s0 Ta"Sa = S T = kK.
Thus,

TAASa =178+ =SaATa =Sk =KSa ifTa=x e V°
TAASa = TA ' = SAATa = K""Ta = K'Tn ifSa=%' e V°
Ta"Sa ="' =S+"Tr = "k =«kx' if Ta,Sa =1,k € V° (7.9.b.3)

These special case results are the same as those for T®S shown in (5.6.16). When T is rank-0 or rank-1
we can write T+ = T according to (7.4.19), but we continue to use Ta.

(¢) Commutivity Rule for the Wedge Product of two tensors T~ and Sa

Recall the expansion of T+" S+ from (7.9.a.3) item (b),

TaSa = Z:i:|_i2. R K b s - s | 8
Y1, 5 TES? (usr M ung) (7.9.c.1)

Swapping TS, kek'and i > j gives the following form for the wedge product Sa"Ta

AT, = . . L. . QJ1d2- -3k piriz- ik (gL A Ay, A, A, Ar.
SATA= Zjq90. .. driqin. ... .ixd T (u3;" ujy e Uy Ui Uiy oo Uiy )

=Y. . e . i1iz....ix ¢J1d2----Ik'(y. Ay Als. As A Us A
21112'“'1k3132~~~~3k'T S (ujl Ujy wenee Ujp " Uig" Uip oeeee ulk)

Y1, TISY (Urg M ung) . (7.9.c.2)

Equations (7.9.c.1) and (7.9.c.2) are identical except for the last factor involving the basis vectors.
Consider the basis vector factor appearing in (7.9.c.2),

(uAJ " u"I) = (lljl/\ Ujp -eeee A Ujk./\ uilA Uiy woee A uik) . (7903)

To make this match the basis factor in (7.9.c.1), we have to slide all the red basis vectors to the left
through all the black basis vectors. Each time a red passes through a black, we pick up a minus sign due
to the rule (7.2.4). Thus,

— k'
(u3;" ujy e Uy MU M U, Mgy ) = (DT ugg M (g ug, e Uy Uiy o/ Uy )
— k' k —
D" D7 uig Muiy, MUy ugy e Ujper oo ui,) = etc. =
_ k'1k
= [-D" " (ui;"uig . Uiy M Ug;" Ugy e U5 ) (7.9.c.4)
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Therefore,

(ung M uaz) = (-1 (uag M ung) (7.9.c.5)
Inserting this result into (7.9.c.2) gives

SaATa= (-1)'Ta% Sa ranks of the two tensors are k and k' . (7.9.¢.6)
Since the commutivity sign is a function of the ranks (grades) of the tensors, this statement is sometimes
referred to as "graded commutivity". The wedge product of two tensors commutes if kk' is even, and
anticommutes if kk' is odd.
Using (7.9.a.7) the above becomes.

Alt(S®T) = (-1)** " AIt(T®S) . (7.9.c.7)
Example: Ifk=k'=1, (-1)**" = -1 and we recover the simple rule for vectors,

SaATa = - Ta"Sa //'S and T are rank-1 tensors (vectors) (7.9.c.8)

as first stated in (4.3.2). One must keep in mind that the result Sa*T = - Ta"S4 is not valid for arbitrary
tensors S and Ta.

Examples:
Ifk=0s0T=x,rule (7.9.c.6) says S~"T~ = TA"Sa, consistent with (7.9.b.3) line 1.

Ifk=k'=0 so T =« and S = «, rule (7.9.c.6) again says S~"T = T4"S«, consistent with (7.9.b.3) line 3.

(7.9.c.9)
(d) Wedge Product of three or more tensors
Mimicking (5.6.7) we write
TarSaRa = [Z1T ur1]N[Z5 STurg] [Zx R¥usg]
(a) =X1,5,& T'SR® (Ur1) * (Ung) » (Urg)
(b) =21,5,K TISIRX (uar M uag N uag) // associative of » used here
(d) =X1,1',1" TIST'RY” (U Muazr N uagr) // rename multiindices J—I',K—I"
[=1y,12..0x I' = ig41, k42, -oolktke I"= Ikak ' +1, Iktk ' +2, oo dkak T +k"
usr = (uig™e N Ugy) UAL = (Uigeyq ™o Migyge ) UAL = (Uigepgerpr” o Wigeyger 43en)
(e) = %, (TOS®R)! ury  unp = (Ui Ui g yien) I = L1II"=11,i2...ik+x'4+x»  (7.9.d.1)
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The outer product form is T*ST'R*" = (T®S®R)T'*''1" = (T®S®R)' .

The conclusion is then,

TArSARa = E4 (TOS®R) uny 1 = L, 1,1" = igiz.iaier i » Unt = (Ui Uiy y s o) (7.9.d.2)

Since the u~j are basis vectors in L¥**'**"_ we have shown that:

T~ € L¥and S~ € L*' and R~ € L¥" = TAASAARA € KR +K" —

We now mimic the sequence of steps above (7.9.a.7) :

[AI(T®S®R)]? = Alty [(T®S®R)’] // (A.5.3b)

L(V).  (7.9.d.3)

= Alty [ Zy (T®S®R)'(uy)? ] // component J of (5.6.8) T®S®R = X, (T®S®R)' u,

=%, (T®S®R)" Alty [(u1)’]  //(A.5.10) that Alt is linear

=3 (T®S®R)! Alty [(u1)’]  //(A.8.31)since (u;)’ has factored form

=31 (T®S®R)! (ury)’ //(7.3.8)
= [Z1 (T®S®R)' (u~p)]”

= (T" SA* R4)? //(7.9.d.2)
SO

T+ Sa% Ra = Al(T®S®R)
and then
[Ta” SaA Ra]' = [AI(T®S®R)]!

1
= Goeriyr Ze (D°® (TeseR)* // (A5.3)
1

:W—+k")! Sp (_I)S(P) TB(D) GRP(I) RP(I™)

which gives instructions for how to compute the components of Ta"Sa"Ra .

(7.9.d.4)

(7.9.d.5)
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Using the systematic notation outlined in (5.6.10) through (5.6.12), and generalizing the above
development for the wedge product of three tensors, we find the following expansion for the wedge
product of N tensors of L(V),

(T1)ANT2)A AT = Ty (T1HT2™2 L Ty™N) uay =3 (T1®T2...0Ty)" uny
where Uua) = uilA Uigp ..o N = uilA DETIRIS A Ui, K= Ei=1N ki

and (T1®T>...QTy)! =T1M1T,%2 . Ty . (7.9.d.6)

The rank of this product tensor is then k = £;1" k; and the tensor is an element of L* — L(V). Notice that
if k¥ > n, the tensor product (7.9.d.6) vanishes since there are then > n factors in us; so one or more are
then duplicated,

(T1)~(T2)A".A(Ty)~ = 0 ifk=%5-1" ki >ntl . (7.9.d.7)

For example, if all the tensors are the same tensor T+ of rank k, then
TN = TaATAA ATa =0 if Nk >nt1 or N>(nt+l)/k. (7.9.d.8)
If N > (n+1), then N > (n+1)/k for any k > 1. Thus

TN =0 for any N>n+1 assuming k # 0. (7.9.4.9)

Recall (5.6.13),

T1®T2®..0Ty = Iy (T1HT2%2 . Ty™M) uy =2 (T1®T2...0Tw) uy . (5.6.13)
Repeating the sequence above (7.9.d.4) for a longer product, we find that

(T)AN(T2)a" . A(Ty)» = Al(T1®T2®...QTy) . (7.9.d.10)
Components of this tensor are computed as follows:

[(T1)~N(T2)a. A(Ty)~]" = [AI(T1®T,®...0Ty)]"

1
] Z:P('l)s (") (T1®T2®...®TN)P(I) // (A.5.3), k= SV ks
1
= Ep(-l)s (P) T1P (I1) TZP (I2) ““TNP(IN) (7.9.d.11)
where T,FID) = 7@ ie(2) - -2 for Iy = i1, i2...1x;
T,R(12) = T,iP(x1+1) 1P (x142) - - - 1P (x2) for I2 ={ixy+1, Ixg+2.-.-1xp }

etc. // see (5.6.10 thru 12) for details
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In the Dirac notation of Section 2.11 one can write (7.9.d.10) as
| (T1)a> "] (T2)a>" A (Ta)a> = At (| T1>® | T>® ... | Ty>) . (7.9.d.12)

It is shown in (C.4.14) that "pre-antisymmetrization makes no difference", so the above may also be
written

[(T)w> " [ (T)a> A A [(T)a> = Alt (| (T)w> @ [ (T)a>® .. ® [ (Tw)w>) (7.9.4.13)

Both sides of this equation are elements of the wedge product space L¥1**2*- - ¥ byt they are also both
elements of the larger tensor product space V¥! ® V¥2 ®..® V*N _ The action of linear operator & on a

tensor product space vector is defined in the obvious manner, as in (5.6.17),
P[|(T)>®|(T2)>® ...®[(T)r>] =P [ (T1)> R P | (T)>® ..QFP|(T2)>. (7.9.d.14)

In other words, the action of & on the larger space is defined in terms of its action on the spaces which
make up the tensor product. This result holds as well for the wedge product of N tensors,

P [[(T)~>"[(T2)»>" .M [(T)r>] =P [(T1)~> " T [(T2)~>" .. P | (T2)~> (7.9.d.15)
Proof: P [[(T1)~>"[(T2)a>" .. " [(T2)a>] = P Al ([(T1)~> @ [(T2)»>® ... ®|(T2)~>) ]
= Al [P (| (T)~> ® | (T2)> ® ... ® | (To)~>) ]
=AL[(P[(T)>@F[(T2)>® ..QFP|(T2)~>) ]
=P[(T)r> " P [(T)r>" .. P | (T2)a> .
(e) Commutativity Rule for product of N tensors
Consider an example where we have a wedge product of 9 tensors. The u~z basis function groups are
Uagy N Uar, 7 Uszg N oUsr, N Uazg " Uazg M Uaz; M Uarg” Uarg (7.9.e.1)
which goes with
(To)r » (T2)» » (Tz)r " (Tg)r » (Ts)a » (Te)r » (T7)a » (Tg)a " (To)~. (7.9.¢.2)

The sign caused by swapping (T3)~ <> (T7)~ will be the same as the sign swapping usg5 <> U, in the

basis function. We do it one step at a time, first sliding the group u~z to the left using (7.9.c.5),
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uAI]_ n uAIz n UAI3 n uAI4 n uA15A uAIsA uAI—’ n uAISA uAIg

— kgk
= u"Il/\ u"Iz A u"I3 A u’*I4 A u"I5 /\U"I7A u"IG A u"Ig/\ u"Ig (_1) 6X7

— (kg ks)k
= u"IlA Unz, A Unzy A Ung, AU.AI7A u"I5A Unzg A u"IgA Uszg (_1) 64X5) %7

- (kg kstkg) k
= u"Il/\ Unt, A Unrzg AU"I7 A Unt, A u"I5A Unzg A u"IgA Unzg (_1) 64 %57k4) %7

(-1) (kg kstkgtk3) k7

(7.9.¢.3)

UAII/\ Urz, AUAI7 n Uarzg " Urzy " uAIS/\ Urzg " uAIs/\ Urzg
Now with this as a starting point, we slide usr, to the right, one group at a time,
uAIl N UAI2 /\UAI7 N uAI3 A UAI4 A UAIS/\ uAIG A UAIB/\ UAIQ
- A A A A A A A A 1 k3kyg
= Urzq Urz, Uazq Urz, Urzg Urzg Urtg Urzg™ Urzg (- )
k3 (kg+k
= Usry " Uy MUsr; 7 Usry M oUarg M Usrz M oUsrg N Usrg® usrg (1) 3 (katks)

_ k3 (kgt+ks+kg)
= u"IlA Uz, /\UAI7 A Unt, A u"IsA Unzg A uAI3/\ u"Ig/\ Unzg (_1) 3(X4TXK5TXe

(7.9.¢.4)

and now we have successfully swapped us1; <> usz, so also (T3)» <> (T7)~. The total sign is
sign=(-1)" where m = (kg+ ks+ kgt k3)k7 + (kat+ks+tkg)ks
= (katkstke)(kstks)+ ksks . (7.9.e.5)
Based on this result, we claim that :

Fact: In a product of tensors (T1)~"(T2)~"(T3)~.... of rank ki, ko, k3 ..., if two tensors are swapped
(Ty)~ <> (Ts)~ (with r <), the resulting tensor incurs the following sign relative to the starting tensor,

sign=(-1)" where m = (Kep1tkes2 ... Fks-1)(ketks) + keks . (7.9.¢.6)
Corollary: If the sum of the ranks of the two swapped tensor is even, in effect m = k ks . (7.9..7)
Example 1:

(T~ * (T2)r » (Ta)s = P (T2)n » (T)r * (Ta)s r=1 s=2

m = (0)(kz+kz2) + kika = kikz (-1)" = (-1)k1k2 (7.9.¢.8)

which is consistent with (7.9.c.6) saying Ty » Tp = (-1)¥1%2 T, ~ Ty .
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Example 2:
(To)n » (T2)» » (Ta)r = (-D)®(T3)a » (T2)n » (To) r=1 s=3
m = (kz)(ki+ks) + kiks = kika + kiks + koks (-1)™ = (-1)k1katkikatkaks (7.9.¢.9)

This result can be obtained as well by direct pairwise swapping using (7.9.¢.6) and the associativity of »,
(TOa ™ (Ta ™ (Ta)s = (12 (T2)a " (To)a " (Ta)n = (D)2 ()T (T)a A (T3)a » (To)n
= (-2 (1)1 (123 (Ta)a » (T2)» * (To) (7.9.2.10)

Example 3: Suppose all the tensors are vectors with rank = 1. Then the sum of the ranks of any two
tensors is 2, which is even, so the Corollary above says m = k, ks = 1*1 = 1, so swapping any two of these
tensors produces a minus sign,

phase = (-1)" =-1 where m=kykg=1*%1=1
in agreement with the basic vector swap rule (7.2.4). (7.9.e.11)

(f) Theorems from Appendix C : pre-antisymmetrization makes no difference

We showed above that one can form wedge products of elements of L(V) in this manner (in Spivak
normalization, the right sides of these equations incur factorials as shown in Section (g) below),

TaA S+ = Al(T®S) . (7.9.a.7)
TA"SA*R~ = Al(T®S®R) (7.9.d.4)
(T1)"N(T2)A . A(Ty)~ = Al(T1®T,®...®Ty) (7.9.d.7)

where the operator Alt acts on the tensor indices which are not displayed in the above compact notation.
For example

Ta" Sa = AIY(T®S)
means, in multiindex notation,

1
(k+K')!

(T Sa)' = Alty (T®S)'] = Alty [ TST'] = Tp(-1)S ) TREIGRED)

A very simple case is the following (recall for vectors that a = a~ )
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(a”~b)1*2 = Alt[(a®b)*1*2] = Alt [a*1b*2] = WEP(_I)S(P) atP(1) ptP(2)

=(1/2) [ a*1b*2 - a*2b*1] = (1/2) [(a®b)*1*2 - (b®a)*12 ]
= {(1/2) [(a®b) - (b®a) ]}*1*2
which replicates our Chapter 4 statement that
a’b=[a®b- b®a]/2 . (4.3.1)

Appendix C uses the rearrangement theorem in three separate Theorems to show that

Tar Sa = AI(T®S) = Alt(T~®S) = Alt(T®S+) = Alt(T~®SA) . (7.9.£.1)
Theorem One Theorem Two Theorem Three
Recall that
T~ = AIY(T) (7.4.3)

so that T~ is a totally antisymmetric tensor. What (7.9.f.1) says is that Alt(T®S) provides total
antisymmetrization on all tensor indices, so pre-antisymmetrizing either or both tensors makes no
difference. A similar statement applies to working with totally symmetric tensors. So we have,

AI[T®S] = AI[T®S] = AI[T®S] = AI[T®SA]
where Ta=Al(T) S~ = Alt(S) (C4.1)

Sym[T®S] = Sym[Ts®S] = Sym[T®Ss] = Sym|[Ts®Ss]
where Ts=Sym(T) Sg=Sym(S). (C4.2)

These can of course be rewritten as
AIt[T®S] = AItJAI(T)®S] = AI[T®AIL(S)] = Alt[AI(T)®AIL(S)] (C4.3)
Sym[T®S] = Sym[Sym(T)®S] = Sym[T®Sym(S)] = Sym[Sym(T)®Sym(S)] . (C.4.4)
Similarly Appendix C shows that

TAAS~"Ra = AIT®S®R) = Al(T-®S®R) = Al(T®S®R) = Alt(TRS®R~)
= AI(TA®SA®R)= Alt(T~®S®R~)= Alt(T®S~®R~)
= Al(TA®S~®Rx) . (7.9.£2)

Adding " subscripts inside an Alt expression changes nothing. Here is another example:

TAAS~"Ra = AI(T®S®R) = Alt((T®S)®R) = Alt(T®S)~®R) = Alt(Al(T®S)®R) . (7.9.£3)
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(g) Spivak Normalization
Spivak's definition of the Alt operator is the same as ours and the same as Benn & Tucker's, but the latter
authors write the Alt operator in an elaborate script font as ©%/Zc7" . Our wedge product normalization is

the same as Benn & Tucker's but differs from that of Spivak, a difference which we now explore.

Suppose we were to omit the (1/k!) normalization factor in the definition of the wedge product of k
vectors, so that (7.1.2) would become

- S(P)
le/\ ij/\ ..... A Vi = 1 Zp (-1) (Vjp(l) ®Vjp(2) ® ... ® Vjp(k))

I [(vy; ® vy, ® ... ®vj,) + all signed permutations ]

Kl Alt(vs; ® vy, ® ..® Vi) . (7.1.2)s

A convenient way to understand this change is that everything stays the same but Spivak's wedge
products are "bigger than" ours.

In particular,
a”"b=1[ a®b - b®a] . // no factor of 1/2 (4.3.1)s
We show all factors that are different from our normalization in red. Earlier equations converted to Spivak

normalization are shown below with a subscript S added to the earlier equation number. For example,
equation (7.2.8) becomes

(Vi7" V" e V) 18203k = ] det] (v4,)**] (7.2.8)s
and correspondingly

(U3, Ug," e us, ) 120t = 1 det] 85,11 = 1 det(35Y) . (7.3.9)s
Our L* basis vectors of (7.3.8) become
or

u~r = k!Alt(ug) . (7.3.8)s

where recall that the Alt operator (A.5.3) always contains an internal factor (1/k!) which is required so
AItT =T if the tensor T is already totally antisymmetric.
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The tensor expansion for T~ € L¥ is still given by (7.4.4),

Ta= Xigip.. . i T2 Tk (Ui ugp" Mgy (7.4.4)s
and of course the corresponding tensor expansion of T e V¥ is also unaltered,
T=Siji,... .5 T2 % Qus, ....®us,) . (7.4.1)
The reader is thus reminded of the difference between tensors T~ and T in our notation.
Then the new (7.4.2) is,
Sigig.. . i T2k (g Aug,N Mg )ITI2e o3k
= Tiji,. .. i T2 Mk Altr[(us,® u3,® ... ®uy, )92 3]/ (7.3.8)
= iy .. .ap T2tk Altg] 85,71 85,92 ... 85, 9% /1 (5.1.4)
= k! Zia,. .1 THR20 3R ALG[55, 91 55,92 . §;, 9% // (A.8.30)
= k! Altg[ Ziqi,. .. .5, T2 §; J15, 32 5, 3% // (A.5.10) Alt is linear
= k! Altg(T3132- - -Ik) = Aly(TI2I2- - -Ik) // no ambiguity
= 1Zp (-1)3® TIP(M)IR(2) - TR (K) // def of Alt (A.5.3b)
= k! [Al(T)P132- - 3% / (A.5.3¢)
= [T~]P132- -3k (7.4.2)s
with the result (rank T =k, rank S = k")
T~ = k!AIY(T) and  Sa = K'TAIK(S). (7.4.3)s

The wedge product development of Section 7.9 (a) goes through with no change to give the result

TaNSa= 20 (T@S)I Uusj 1= I, I' = il,iz...ik.,.kv, U = (uil/\ Ui, A uik+k.) .

But then we find

(7.9.2.5)s
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AI(T®S)? = Alty(T®S)? = =, (T®S)' Alty(uy)’ // (5.6.5) and (A.5.10) that Alt is linear

T (T®S)'Alty(ur)?  // use (A.8.27) since (uy)” is totally antisymmetric in 7 and J

1 , ,
= 3 (T®S)" o] (ury)? //(7.3.8)s above with k — k+k
1
= (kJr—k.), (TN Sa)J /1 (7.9.a.5)s above
SO
TAA Sa = (k+k')! Al(T®S) . (7.9.a.7)s

The fact that "pre-antisymmetrizing makes no difference" is unaltered, so we still have

AlY(T®S) = Alt(AI(T)®AIL(S)) . (C4.3)
Then using T~ = k!Alt(T) and S+ = k'lAlt(T) we end up with

Ta? Sa = (ktk)! AI(T®S) = (k+k')! Alt(Alt(T)®AIL(S))

~ (k+K)!

="k Al(T-®S») T~e L* and S~e L*'. (7.9.g.1)

By the same analysis, we would find for a triple product in the Spivak normalization,
TaN SarRa = (ktk'+k")! AI(T®S®R)

_ (ktk+k")!

= e Al(T-®SA®Rs)  Tre L*,Sae L, Rae L. (7.9.2.2)

Spivak uses lower-case Greek letters for elements of L¥, so the above two equations appear as

k !
A g = ( Ij’—f) Alt(ew ® 7).
i Spivak page 79

(lwAg) AB=wA g AB
kit m)!

F i m Alllw @ 7 ® 6).

Spivak page 80

Actually, Spivak never talks about rank-k tensors and L¥, only rank-k tensor functions which he calls "k-
tensors" and which we will associate with the dual space A* in Chapter 8, and that is what the Greek
objects are in the above. But if he did talk about rank-k tensors and L¥, the above in red would be his
normalization. We shall of course reprise this topic in Chapter 8.
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One advantage of the Spivak normalization is that vector wedge products don't have the annoying 1/k! so
that, for example, there is no overall 1/3! in the following,

V1A va N vy = Vi®Va®vs - Vi®VI®Vs + V3®Vi®vs - V3®Va®vi T va®vi®vy - vo®vi®vs
(7.1.5)s

The disadvantage, which seems a large one to us, is all the extra factorials in the wedge products of
multiple tensors, and the fact that T~ = k!Alt(T) instead of the simpler T~ = Alt(T).
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8. The Wedge Product of k dual vectors : the vector spaces A¥ and A(V)

Comment: This Chapter 8 is a partial copy, paste and edit version of Chapter 7 -- a translation from non-
dual to dual. See our similar comment at the start of Chapter 6. Since Chapter 7 is so long, here in Chapter
8 we shall delete all material that is basically unchanged from the non-dual Chapter 7. We also delete
most "comments" and examples. Just as in going from Chapter 5 to Chapter 6, the notion of tensor
components is replaced by the notion of tensor functions. The equation numbers for Chapter 8 match
those of Chapter 7, and deletions thus cause "holes" in the sequence for Chapter 8.
8.1 Definition of the wedge product of k dual vectors
We wish to define the wedge product of k dual vectors a; € V*,

VEEAK YA Nog . I <az| " <ag| ... ™ <okl

Wedge products of this form (and their linear combinations) inhabit a vector space we call A¥(V) or AX.

We now impose the requirement that this wedge product must change sign when any two vectors are
swapped. This property is injected into the wedge product theory, it does not fall out from it.

This sign-change requirement leads to the following candidate definition for the wedge product of k
vectors in V (the j, are vector labels),

= Alt(ay;, ® 05, ® ....® a3,) - (8.1.2)

a2 oo = (/KD Zp (D¥® (ap1)® dp(2)®@ ....® dp (x))

= (/KD [(01 ®oz ® ....Q0ax) + all signed permutations | .

= (l/k') ZiliZ- Coip 85_15_2, Loip ((111 ® ()Lj_2 ® ..... ® (lik) ir =1tok (813)

where (1/k!) is a normalization factor. In Spivak normalization, the (1/k!) factors above are all replaced
by 1, see discussion in Section 8.9 (g) below.
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8.2 Properties of the wedge product of k dual vectors
Where there is no comment on an item, see the the parallel item in Chapter 7.

1. The sums in (8.1.2) and (8.1.3) have k! terms. (8.2.1)

2. The wedge product is k-multilinear. (8.2.2)

It is by-fiat axiom that the wedge product of k vectors is k-multilinear and therefore satisfies these rules,

a1z +a'2)Mas o = artoMost . Mot oorNo'2Nas . oy
a1 (sa2)as” ... ok = s(ar”apas” ... M) s, 1= scalar € K
or
a1 Mroz +sa'2) as. Mok = (oo Mozt . Nok) t+os(ora'2”as” . k) . (8.2.3)

Here we show the rules just for the 2 position, but k-multilinear means these rules must apply to all the
vector positions. These rules cannot be derived from the similar tensor product rules (6.3.1).

3. The wedge product changes sign if any vector pair is swapped. (8.2.4)

4. Wedge product of vectors vanishes if any two vectors are the same.

Given a sign change (8.2.4) for any pair swap of vectors in the wedge product, we know that

o™ o ... Mok =0 if any two (or more) vectors are the same. (8.2.5)
5. Wedge product vanishes if vectors are linearly dependent. (8.2.6)
6. Wedge product vanishes if k> n . (8.2.7)

7. Components. For the dual space, we consider tensor functions in place of tensor components, so
(037" 05,7 e 053 )(Vig s Vigen Vi) arg (Vi)
= (KD Zp (-D¥® (035 1)@ A3 (2)® oo ® 0 50 )(VigVigoviy) 1/ (8.1.2)
= (KD Zp (-1 ® (35 1)) (Vag) (@5p2))(Vig) o (@55 ) )(Vay)  // (6.6.17) for vectors
= (I/k!) det [ o54(Via) ] - /I (A.1.17) (/k!)y det [ og(vr) ] (8.2.8a)
Evaluating at the basis vectors then gives,
(a3, 03, oo 0 ) (Ui g Uiy gy ) = (1K) det [ agx(uss) ] a~g (ur)

= (1/k!) det [ (a3%)ix] - // see (2.11.c.9) (1/k?) det [ (09)1 ] (8.2.8b)
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In the last equation, the oy are rank-1 functionals. We know that each such functional is associated with a
unique vector o, in V which appears in (2.11.a.4), ax(v) = <ay | v> = a, ® v. Thus, we can form a tensor
in V* called (03," @3, ...~ a3, ) . For this rank-k tensor we have

((ljl/\ (ljz/\ ..... A ajk)iliZ"ik = ((le/\ (X,jz/\ ..... A ()ij)(lli:l_,lli2 ..... llj_k) /! (651)
= (1/k!) det [ (ar5%)ix] . /1 (8.2.8b) (8.2.8¢)
In the Spivak normalization the factor (1/k!) in equations (8.2.8) is replaced by 1.

Fact: (03,"05,"..."03,)(Viy,Viy....Viy) is totally antisymmetric in both the labels jr and the labels i.
(8.2.9)

Proof: Antisymmetry on the j. follows from (8.2.4), while antisymmetry on i, follows from (8.2.8a)
(determinant changes sign if any two rows or columns are swapped).

8. Associative Property of the wedge product.

For example, (01" 02)" a3 = a1” (02" 03) = a1 02" as .

8.3 The vector space AF and its basis

AF is the space whose elements are all linear combinations of wedge products of k vectors of V*. (8.3.1)
A more precise name for this space is A¥(V) but we just call it AE.

It seems useful at this point to compare our vector space names with those of Spivak:

Names of spaces. [ TA = totally antisymmetric = alternating |

us Spivak
tensor product spaces
vk - space of rank-k tensors, T = [T>, T*1*2----k
vk -- dual space of k-multilinear tensor functionals on V, J = <T|
vk FEWV) space of k-multilinear tensor functions on V, J(v) = <T|v>
wedge product spaces
L* - space of TA rank-k tensors, Ta, Ta*1%2-- -k
A¥ -- dual space of TA k-multilinear tensor functionals on V, J
A¥e AXV) space of TA k-multilinear tensor functions on V, Fa(v) (8.3.1a)
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Sjamaar refers to the last space as A¥V (2006) and A¥(V) in his 2015 update. We wanted to end up with
the name A¥ for the last space to agree with Spivak, Benn & Tucker, Conrad and others, and this led to
the non-Greek L* for the corresponding non-dual wedge space.

We now go down the list of items in Section 7.3, adapting them as needed. Again, where there is no
comment on an item below, please see the the parallel item in Chapter 7. Multiindex versions of some

equations appear on the right below in red.

A¥ is a vector space (8.3.2)

Basis elements for A¥

Consider the following objects in A* obtained by wedging together k basis elements of V*, where each A*
is selected from the set of n available for V* (which has dimension n),

(AL ApI2 A Apd) (8.3.3)
There are (E) independent basis elements for A* and they all have this form

AL ApR2 A Atk where i <iz<...< ix (E) basis elements (8.3.6)
Fact: (M1 AA%24 Atk = Al((MM® A2Q ... @AYK) AT = Al (8.3.8)

This is just a special case of (8.1.2).

Components of the basis elements for A¥.

Now reconsider the basis vectors of the vector space A*
AT ApI2A ATk (8.3.3)

For this dual space A¥, we consider tensor functions in place of tensor components, so we then have these
special cases of (8.2.8a) and (8.2.8b),

(AWILANIZA L AAIRY (Vi Vige Vi) Arg (VI)
= (k) Zp (-5 W) @ VP@® ..@APE)(vi  vi,...Viy)
= (/&) Zp (-D3® AIBW)(vs,) WIB@)(vy,) ... WIBW)) (v, )  //(6.6.17) for vectors
= (1/k!) Zp (-1)° B (v4,) B D) (v5,)IB2) (v, )2 //(2.11.¢.5)

= (kD) det [ (vi)* ] . // (A.1.19) (1/k!) det [ (v1)® ] (8.3.9)

150



Chapter 8: Dual Wedge Products

Evaluation at the basis vectors then gives,
(I A2 A AR Uy ueus,) = (/KD det [ (ug,)3* ] A7 (Vi)

= (U/k) det[8:,9*]  //see (2.6.8) (up)* = 8" (1/k!) det [ 877 ] (8.3.9b)

Once again, in Spivak normalization (1/k!) — 1 for equations (8.3.9). Looking at det [ (vi,)?* ] above

we immediately conclude that,

Fact: (M1 Ap324 A Xjk)(vil,viz....vik) is totally antisymmetric in both the labels j, and the labels iy.

(8.3.10)
We saw an example of both antisymmetries for k = 2 back in equation (4.4.21),

WA (Vevs) =- WA ) (Ve,ve) =- (WA A (Vevs)  // two forms of antisymmetry (4.4.21)

Equation (8.3.9b) can be expressed in our usual informal notation,

(O3 AI2A L AAIRY Uy uy,.s) = (UKD [8315; 892;,..87%;, + signed permutations]

(8.3.11)
Example: [ see (7.3.12) ]
311 A I2AAIB) (U us,,us5) = 3! AaT(ug) = det(87r) = det (83192335 5 .5.) (8.3.12)
8.4 Tensor Expansions for a dual tensor in AF
Recall now the tensor expansion for a most-general tensor § in V**
= Yijiy. .. ig Tigip... i AT ®A2 @A) § ¢ V** (6.2.3) (8.4.1)

where Ti;i,. . ..1, are some general coefficients.

Consider then the similar-looking most-general object in A*, evaluated at (V31>Vi0Vig)s

) Tigiy. .. .1 (W AAM2 AR (VS V55005,

iqig....ix

=3 Tijiy. .. .ix Al @ A2 @ A H)(V4,,VipViy) 1/ (8.3.8)

iqig....ix
Tigin. .. .ix Tigip....ix AltaQ' @ A2 @ AK)(v4y,V4,-v5,)  //(8.2.9) and (A.8.27)
= Altg[ Ziqiy. . iy Tigip....ip A A2 @ A R)(V5,,V4p--V5,) 1 // (A5.10), Alt is linear

= AltgT(v31.VipV3) = [Alta(D)](Vi1.V5p0V3) = [AD(V31:V5vs)  / (84.1)

= 5A(Vj1,Vj2....ij) . (8.4.2)
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Here we define this functional (dual-space) notation,

J~ = AlL(9) (8.4.3)
which is really this statement about tensor functions,

TA(V41.V90--Vi) = [AI(T)] (V31,Vip0--V5y) - (8.4.3a)
From (8.4.2) we then have the following fully general element of A¥,
i1 Agi2

Jr= 2i:|_i2 R Tiliz R ( ----- A }\'ik) . (844)

We refer to this type of expansion as a symmetric expansion, and we know it is redundant since the
symmetric sum includes each true basis vector k! times.

According to (A.8.9), we know from (8.4.3a) and (8.2.2) that

Fact: J~(Viq,Vi,....vi,) is a totally antisymmetric k-multilinear tensor function. (8.4.5)

Therefore,

Fact: The space A¥ is the space of all totally antisymmetric k-multilinear rank-k tensors . To say that
g is totally antisymmetric means that 5+(vi,Vi,....vi,) is a totally antisymmetric tensor function.

(8.4.6)
In contrast, the space V** is the space of a/l k-multilinear rank-k tensors , so A¥ = V*¥,
Since the set (Xil’\ A2 o kik) with 1 <i1 <ip < ..... < ix < n forms a complete basis for A, as
discussed above in (8.3.6), it must be possible to express I+ in the following manner
Ga= Ticij<ip<. .. <ig<n Aigiy...ip W AA2 L ARTK) (8.4.7)
What then is the connection between the A*1%2- - %k of (8.4.7) and the T*1*2" - - *k of (8.4.4)?
The discussion goes exactly as in Chapter 7 and the result is,
AiliZ---ik: ZP (_l)S(P) TiP(l)iP(2)---iP(k) i1<i2< “““ < ik
= [ T*1*2---*k + gl signed permutations ]  // k! terms
= k! [Alf(T)]*2*2- - -k // (A.5.3a) def of Alt
or
A=k!AI(T)=k! T (8.4.16)
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where T~ = Alt(T) as shown in (7.4.3), not to be confused with tensor functional 5~ = Alt(J) in (8.4.3).
Since A =k! T~ , (7.4.5) shows that
Fact: A*1%2-- %k apnd Ta*122- - -3k gre both totally antisymmetric tensors. (8.4.17)

Vector Case. For k = 1, we find that

§ = %3, Ty, A1 //(6.2.3)
Ga =33, Ty, A2 // (8.4.4) =  G.=3 (8.4.19)

so for a vector there is no distinction between J and J (and in fact V** = A1),

8.5 Various expansions for the wedge product of k dual vectors

We have generally stopped bolding vectors in V, but in this section we bold the vectors a, to distinguish
them from the corresponding functionals oy, where recall (2.11.a.4) that a,(v) = a,® v.

The symmetric expansion is very straightforward. First, consider this rank-k tensor in v,

TiliZ- L T ((11)5_1 ((12)5_2 (ak)ik =(o01 ®ax® ... ® ak)iliz- Loy /oy €V

or (8.5.1a)
T= (01 @u2®...® o) or IT>= |ag,02,... 0> . /I T e V®

The corresponding rank-k tensor functional is,
T=(t1 ®02®....® o) /[l og € V¥, G e V*¥

or (8.5.1b)
<T| = <01,02,... (lk| .

Then the symmetric expansion (8.4.4) gives,

Ga=%i1i,. . ix Tigip...ip AW AAR2 L ANYK) (8.4.4)
=Yigip. i (01)ig (02)ig o (Gk)i, (W1 ARR2 ALY //(8.5.1a) (8.5.2)
= [Z3 (02)1, 2] A [ (02)35 A12] 7 [y (0003, MK
=01 NN Nog . (8.5.3)

This pure tensor functional 5~ = (ag ~ 0z * ... ~ o) is an element of A* .
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The corresponding element of LY isTa=(a1 " 02" ... M 0g) = Alt(ez ® 02 @ ... ® ay) as in (7.4.3).

Expressing a1 "~ a2 * ... » ox in terms of the ordered expansion is more complicated. One must first
compute the tensor A as in (8.4.16) or (7.4.3),

(1/k") A= AI(T) = Alt(01®02R....R0x) =T~ = (a1 " ax ... "ox) € AK (8.5.4)
Then the ordered expansion (8.4.7) can be written in a battery of ways,
o1 NN Nog = flTog Mo N...Nog € AK
(a) = E15i1<i2<. ...<ig<n Ailiz. LLip ()\‘il A }\‘iz ----- A )\'ik) I (847)
(b) = Tijcip<. .. .<ip K [AI(010028..Qu)]iqi,y. . 1 AT AN2Z AN L //(8.5.4)
(C) = z:i]_<i2<. LLL<ip k! [(11 A 02 A ak]iliz N O\'il A >\‘i2 ----- A Xik) . /1 (813)
(d) = Tijcip<....<ip det] (@)i,] (WL A2 AT //(8.2.8¢) with jr — 1
(01)ig (@1)iy ..o (O1)iy
02)i 02)i, ... (02)i . . :
(€ = Sijcije....<iy det (02)1 (#2)1 - (B2)ay (ML ApE2 ARy
(03)iq (Ox)iyp - (Ox)iy
(ul)il (a2)i1 (ak)il
O1)i 02)is ... (Ok)i . . :
® = Zij<ip<....<ij det (1)1 (2)s, ()1 (WML A2 AR
(al)ik (a2)ik (ak)ik
(©  =Zayiy gy (@0 025y (@)y, OF 22200 //(852) (8.5.5)

where we throw in the symmetric sum at the end. Remember that, since generally dim(V) = n > k, the
determinant in (f) is a full-width minor of matrix M = [a1, @2.....0k]. If k = n, the minor is the full matrix.

Example : Suppose k =n = 3. Then the following sum (form (f)) has only one term,

— i i i
o1 " 02 N a3 = Zi<iqg<ip<ig<s detfag, az, az] (A1 A A2 AAT3)

= det[as, 0z, @3] (A1 A A2 A )13)

as quoted in (4.4.15).

(8.5.6)
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Here are the above expressions for k =2 and general n >k :

(a) a1 Mo =Xij<iy Aigi, (WTALT2)
(b) = Zi,<ip 2! [Al(01®02)]1,5, (MM1AA2)
(© = Zij<ip 2! (017 02)i3i, WAL
(d) = Zijcip det] (0w)1,] W1 AAT2)
(ul)il (ul)iz . .
= . . 11 Ap12
© 7 s det((az)il (a)s, ) )

(01)i; (02)ig

(01)i, (uz)iz) (W AAI2) = 250 05,[(02)57(02)1,5- (02)17(02)1,] (A2~ A72)

(f) = Z:i.l<:i.2 det (
(@) = Zigi, (0)ig (02)ip A 1AA2) = [S45(02)3,0"] A [2,(02)1, A1) =0 " 02 (8.5.7)
Result (f) matches that shown in (4.4.12),

a”B=2s5a5B5 AP A M) = Zacs (asPs- a5Bs) AT AN =Zie5 Asy AT AN)

O Bi

~ -det( )(xiwj) Ais =(oc-[3--a-[3-)=det(ai Bi) (4.4.12)
i<j U.j Bj ij iPj JP1 U-j Bj . < T
8.6 Number of elements in A* compared with vk,

We know from (6.1.5) and (8.3.6) that,

dim(V**) = n* // number of basis elements of V*¥ (6.1.5)

dim(A¥) = (E) // number of basis elements of A* (8.3.6)

If the number of elements of field K is N ( N — oo for K= reals), then

n n
# elements of A¥ (k)N (k) (n) k
="k = /n" .

ratio = # elements of V¥* k

=~ =g (8.6.1)

For a given n, this is a strongly decreasing function of k, see graph in (7.6.2).
8.7 Multiindex notation

In this section, multiindex versions of equations are shown in red.
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Multiindexing is done in two different ways. First, for the symmetric expansion (8.4.4) :

Ga= Zigip. . ip Tigig. .. .1 WIAAR2 L ARTK) (8.4.4)
=31 Ty et where AT =M AQR2A Ak Tr = Tijip.. . 1p
and 1= {iy, iz,.... ix} With 1 <ip <n = ordinary multiindex, n=dim(V*¥). (8.7.1)

The more significant notation involves the ordered expansion (8.4.7) which has only one term for each
linearly independent basis element. Note our use of X'; (prime) to indicate an ordered multiindex

summation :
Gr= Zicij<ip<. .. .<ig<n Aigiy. . .1 W A2 ANTK), (8.4.7)
Ga=T'1 A hat where AT = A2 A Ak A1 = Aigigy. . ig
and [= {i, ip,.... ix} With 1 <i3<i2<....<ix <n = ordered multiindex, n = dim(V*). (8.7.2)

Here are some unofficial multiindex notations for other equations developed above:
Fa=a1 o2 N ... Moy J~=(Nog) (8.5.3)
Tijig...ip =(01)iq (02)iy ... (Ox)iy = (02)1 Tr = (02)1 (8.5.1a)
with the idea that Z = 1,2...k . Continuing on,
Gn =Zi1ip. i (02)iq (02)iy . (@i, WML AX2Z AL Fr=31 (0z)1 AT (8.5.2)
A =k! Alt(01®02R..... Qo) A =k! Alt(®ayz) (8.5.4)
a1 M 02 N Mok = Tijcige. . <iy K! [AI(01002®.. Q) ligi,. .1, (WL AAM2 L ANK) L (8.5.5D)

(Paz) =2'r k! Alt(®az)r At
(01)i; (02)i7 - (0x)ip
Asgsy. . u =det| (P2 (022 (00 Ar=detf(oz)s] (8550
(ul)ik (a2)ik (ak)ik
(al)il (U«Z)il (ak)il
(01)ip (02)ip - (Ox)ip

a2 M Mo = Tig<ipe. .. .<ip det (AL ARz AAEK), (8.5.50)

(a;l.)‘ik (a;jik (a;jik

(11/\
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(“oz) = E'r detf(az)z]An"
8.8 The Exterior Algebra A(V)

We now construct the graded algebra A(V) in analogy with that of T(V) in (5.4.1).

Define a large vector space of the form ( this is "the dual exterior algebra on V")

AV)=A° @At ATD A + . /I A(V) = Z820” AXV) (8.8.1)
Here A° = the space of scalars, Al the space of dual vectors, A2 =A"Ac V¥ the space of
antisymmetric dual rank-2 tensors (8.4.6), and so on. The most general element of the space A(V) would
have the form

X=s @ ZiTi )\.i (&) zij Tij }\.i/\lj @ Zijk Tijk XiAijkk + ...
or

X=5® ZiTi M @ Tics Aig AW @ Ticyex Apge WA + L (8.8.2)
The direct sum @ is described in Appendix B.

Associativity of the Wedge Product

See discussion near (7.8.3) and replace e;— A* and v—a. One then concludes that,

Fact: The wedge product of k vectors a1” ax” ..... " 0k can be "associated" in any manner without altering
the meaning of the product. By this we mean that parentheses can be added in any manner without
altering the object. (8.8.4)

What this in effect does is define an array of new objects to be the same as a1 ap” ....." ag. For example,

((11/\ ((12/\ o3 N 0,4) " (0,5/\ 0,6) = o1 o’ az” ag” a5 dg
o1” (a2 (03 0g)” as)” oe = o1 02" 03" ag” a5 O (8.8.5)

Since tensors like F~ can be expanded on (A*1 A A*2 A .~ A™k), and since one may associate this wedge

product arbitrarily as claimed in (8.8.4), one easily shows that :
Fact: The wedge product of N general dual fensors A+"$B"Ca.... can be "associated" in any manner
without altering the meaning of the product. By this we mean that parentheses can be added in any

manner without altering the object. (8.8.7)

This fact then extends the claim (8.8.4) made for N vectors, and is exactly analogous to the similar
axiomatic statement for ® associativity made in (2.8.21).
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Example: In (8.7.1) multiindex notation, consider three A(V) tensors J~,8~,R of rank k,k' k" :

(TSN AR = ( (Z1TIAD) A (Z5SaM7) ) A (ZxReh")

=31T12gSs { (Aal A AaT) A (ZxRrAAF) } // rules (8.2.3)

=31T1Z5SoZkRx (AT A Aa?) A (AAF) // rules (8.2.3) again

=319k T1SaRx (AaT 7 ha? A AaF) // detail shown above (7.8.8) with us—At
= (Z1T1AD) " (ZgSaghna?) ~ (ZxkRxA5) // rules (8.2.3) again

=FaNSN R .
Our example shows that for arbitrary A(V) tensors, (T * SA) N Ra = Fa N 8~ Ra.
Fact: The large space A(V) is in fact itself a vector space. (8.8.8)

We know this is true since A(V) = 2®k=o°° AF and we showed in (8.3.2) that each A¥ is a vector space.
For example, the "0" element in A(V) is the direct sum of the "0" elements of all the A*. See Appendix B
for more detail.

To show that A(V) is an algebra, we must show that it is closed under both addition and multiplication. It

should be clear to the reader that A(V) is closed under addition and has the right scalar rule. For example,
if k1 and s are scalars,

ki @ o @ B« @ po’n =sum of 4 elements of A(V) = an element of A(V)

stki @ a @ B« @ pro™) =(sk1) @ (sa) @ (sp)*k @ p~(so)*n = element of A(V) (8.8.9)
This additive closure is of course necessary for A(V) be a vector space.
The space is also closed under the multiplication operation *. For example

(BrONP o™ = Pprot =e AP=e AV). //(Brk) e A2 (pPo™) e A3 (8.8.10)

Here we have used the associative property (8.8.4). This closure claim is stated more generally below
(8.9.2.6).

One then makes the following definitions with regard to the space A(V), where n = dim(V*) = dim(V):
(the objects in this table are pure multilinear functionals)
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Object Name any blade lincomb: Grade(rank):  Space

S dual 0-blade  scalar € K 0 A°

a dual 1-blade  dual vector 1 Al

a’p dual 2-blade  dual bivector 2 A?

a By dual 3-blade  dual trivector 3 A3

o By dual 4-blade  dual quadvector 4 A*

oNBAYASA... dual k-blade  dual k-vector k AF

VA S A A dual n-blade  dual n-vector n A"

arbitrary element of A(V) dual multivector mixed A(V) (8.8.11)

Since A(V) is closed under the operations @ and *, it is "an algebra" (the space A* alone is not an algebra
because it is not closed under *). The A(V) algebra is different from that of the reals due to its definition
as a sum of vector spaces. The elements of A(V) have different "grades" as shown above, so A(V) is a
"graded algebra". Sometimes A(V) is called "the dual exterior tensor algebra" over V.

A k-blade is a pure wedge product of k vectors, whereas a k-vector is any linear combination of k-
blades. A multivector is any linear combination of k-vectors for any mixed values of k.

Note that

s1( ™) D s2(yd) = (s1)"B @ (s2y)"0 = (a*B) @ (y'"d) // 2-blades
s1( a™B) @ sa(y"0e) = (s10)p D (s27)"0"e = (a'B) @ (y6"e) // multivector

so it is also correct to say that a k-vector is any sum of k-blades, and a multivector is any sum of k-
vectors. That is, any linear combination can be written as a sum as shown in the above examples.

Unlike in Tensor World, in Wedge World the above list (8.8.11) is finite for a given n = dim(V). For
k = n there is exactly one linearly independent basis vector which is the ordered wedge product of all the
basis vectors of V*. For k > n, all wedge products vanish since the vectors in the wedge product are
linearly dependent, see (8.2.6). The dimensionality of the space A(V) is as follows, based on (8.8.1) and
(B.10),

dim[A(V)] =dim[A° @ A’ ® A2 ® A3 +....] =dim(A°) + dim(A?) + dim(A?) + dim(A?) + ...
but for dim(V*) = n this series truncates with A™ and we find from (7.3.6),

dim[A(V)] = 1+n+(121)+(131)+... + (E)z zk=on(ﬂ) —2" = afinite number  (8.8.12)

Recall from the discussion above (4.4.34) that the space A? of rank-2 tensor functionals is isomorphic to
the space A%¢ of rank-2 tensor functions, where we added a subscript f to distinguish these two vector

spaces. We apply this similar notation to the full space A(V) to obtain this tensor function version of
(8.8.1),
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Ae(V) =A% @ ATe @ A% D A3 + ... 1 Ae(V) = 280” AXe(V) (8.8.13)

where now Ag(V) is the space of all multilinear totally antisymmetric (alternating) functions of any
number of vector arguments.

8.9 The Wedge Product of two or more dual tensors in A(V)
(a) Wedge Product of two dual tensors 5~ and S~

Rather than translate the many details of this section from Chapter 7, we will skip these details and state
the conclusions. The details may be obtained from Section 7.9 by making these simple replacements:

' I I
uj;, — AL ur — A Uap — Aa
T2 3 o Ty, qy, TF 2T, Ta—> Ja
Slllz ko Siliz....ik: S _)SI 5 Sa— 8~ .

In subsection (d) below on the product of three tensors, more details are provided.

Here then are selected results:
Tensor product of two tensors:
FGASA= TP (TOS)) M T = LT =iginigsxr, AT =(AIAAR2  Ajdky) (8.9.a.5)
Closure: J~e A¥andSre A = G2 8. e A < AV . (8.9.2.6)

Basis relation: (A*1AA*2 A0 = A @ A2 ® ... @ AMK)
AT = Alt(L) (8.3.8)

GRS == T (TSN &' 1= LT =igizeipeicrs Ul =(Us;® Uiy o ® Uiy pe) - (5.6.5)
AI(T®S)(vy) = Altz(TRS)(vy) = Z (T®S)y Alty (k'(VJ)) //(5.6.5) and (A.5.10) that Alt is linear
=%, (T®S) Alty (\'(va)) // (A.8.31), M) (vy) has factored form A*2(v4,) A*2(v3,) ...
=3, (T®S)) M'(vy)  //(8.3.8)
= (TN Sa)(V3) //(8.9.a.5)
SO

G Sa = Al(T®S) . (8.9.2.7)

The "components" (tensor functions) are
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(F~" Sa)(va) = Al(TRS)(v.)

1
= Gk 2D (F@8)(ve )
1
= G 2D ® 50e @) S(veia)) (8.9.2.8)
where
J=i1 020k TV =ik+1s k2, dkekr J = LT =jnj2. ke (7.9.a.4)

The above is an explicit instruction for computing the "components" of the tensor 5+* §~ . We have
added this new notation,

5(VP(J)) = g(VjP(l)ﬂ Vip(2) U VjP(k)) forJ=j1,j2..Jk - (8.9.2.9)
Example: Let § and J both be rank-2 dual tensors so k =k'=2. Then
(5"/\ S")(Vl) = (5"/\ S'\)(Vl,V2,V3,V4) = (1/4') z"P('l)s (P)g(vip(l) 5 Vip(Z))S(Vip(3) 5 Vip(4))

=124 [ 5(Vi1;Vi2)S(Vi37Vi4) - 5(Vi23Vi1)S(Vi3aVi4) + 5(Vi2aVi3)S(Vi17Vi4) + 21 more terms]
(8.9.2.10)

Here as elsewhere we show in red the indices to be swapped to make the next term. From (8.9.c.6) below,
TN 8a=(-1)"2 §A Gn = SaN Gn. (8.9.a.11)
(b) Special cases of the wedge product J+" S+

Same as Section 7.9 (b) with T~— J+ and Sa— S+ . Here are the conclusions :

FNSa =78 =8arFa =8aM =KSa ifga=x e V¥* [V*¥0=V?]
GSa = FANK =80T a =KNFa =K Tn ifSa=x' e Vv*°
TS =1 =80T a = KNk = KK if Ga,82 =1,k € VO (8.9.b.3)

(¢) Commutivity Rule for the Wedge Product of two dual tensors 5~ and S~
Same as Section 7.9 (c) with Ta— J» and Sa— S+ and u—A\. Here are some of the translated conclusions:
(AT ATy = CD¥R T2 A7) . dual basis vectors (8.9.c.5)

S Fa= (-G Sa ranks of the two dual tensors are k and k' . (8.9.c.6)
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(d) Wedge Product of three or more dual tensors
For this section we do a full translation of Section 7.9 (d) :

FNEMNRA = [Z1TIMINZ5 Saha?] [k Rxhat]

(a) =X1,5,& TtSoRx (A1) (A7) A (A5)

(b) =21,5,%x T1SsRx (AAT A AT ALK // associative of  used here

(d)  =Zr,1v,10 T1S1 Rpv (AT ART AT // rename multiindices J—I', K—I"
[=1y, i2...0x I' = ike1, iks2, - dktke I"= Ik+k'+1, k4k' 42, - lk+k ' +k"
AL = ()\‘il/\m./\ xik) AT = (kik+1A...Axik+k') AL = (xik+k'+1A...Axik+k'+k")

() = I (T®S®R)1 AT AT = (AWI1A A pTk+k'+k") I= LI =iyi0 ikscsxr (8.9.d.1)

The outer product form is T:S1 Rz = (T®S®R)1, 1,1+ = (TOSK®R); .
The conclusion is this:

FGASAMRA= Zp (TOSOR) A T = LILI" = ig,in.igarr 4k, An' = W34 A ATR+R +Kk") (8.9.d.2)
Since the A" are basis vectors in A¥**' *k" we have shown that:

F~e AFand S~ € A¥ and R~ € A¥ = FASARae AR A(V). (8.9.d4.3)
Recalling the Chapter 6 result,

FRSOR = Ty (TAS®R) A 1= LII" =ip,izeigscrser AT =F®..OA )  (6.6.5)
and (8.3.8) that A+' = Alt(\"), we find,

ATRSOR) = X1 (TOS®R); Alt(L")  // Alt s linear, see (7.9.d.4)

=3 (T®S®R); An'! //(8.3.8)
= GAASAARA //(8.9.d.2)
SO
G R = Al(TRSOR) (8.9.d.4)
and then
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[TANSAARA (V1) = [AI(TRSROR)(vV1)
=3p(-1)3®) (FRSRR)(Ve (1)) 1/ (A.5.3)
=2p(-1)° ) F(ve (1))S(ve (1)) R(Ve 1)) (8.9.d.5)
which gives instructions for how to compute the "components" of T S R .
Using the systematic notation outlined in (5.6.10) through (5.6.12), and generalizing the above
development for the wedge product of three tensors, we find the following expansion for the wedge
product of N tensors of A(V),
(T)NIT2)N. NI~ = Zi (To)1(T2)1, - (Tr)1y A =2 (T1®T,...@Ty)p A

(8.9.d.6)
where M =aiagi2 | Apdkptkor. . tky = pi1Api2 A

and (T1®T2®Tn)| = (Tl)Il(T2)12 (TN)IN .

The rank of this product tensor is then k = Y;=1" k; and the tensor is an element of A* — A(V). Notice
that if k > n, the tensor product (8.9.d.6) vanishes since there are then > n factors in A s0 one or more
are then duplicated,

(T)NT)N. NIw)~=0 ifk=33-1"k; >n+1 . (8.9.d.7)
For example, if all the tensors are the same tensor 3~ of rank k, then

G = GG NG =0 if Nk >n+l or N>(n+1)/k. (8.9.d.8)

If N > (n+1), then N > (n+1)/k for any k > 1. Thus

g =0 for any N >n+1 assuming k # 0. (8.9.d.9)
Recall (6.6.16),

F1®F,®.. 09y = Iy (TiHTR2 . Ty A =3 (T1®T,...0Ty)"' . (6.6.16)
Applying Alt to both sides again with A" = Alt(A") shows that, as in (8.9.d.4),

(TD)ANT ). NTn)~ = Al(T10T2®..0Ty) . (8.9.d.10)

"Components" (the tensor function) of this tensor are computed as follows:
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[(T1)~( T2 NIw)Al(vi) = [AI(T18T28..8T9)](V1)

=3p(-1)3®) (5109,8..95%)(Ve (1)) // (A.5.3)
=2p(-D¥® F1(ve(11))T2(Ve(12)) - In(Ve (1)) (8.9.d.11)
where 51(Vp(11)) = 51(Vip(1) aVip(z) ... Vip (k)) forI; = i1, i2...ix1
52(VP(12)) = 52(Vip(xl+1) 5 Vip(xl+2) .. -ViP(xz)) for I :{ixl+1; i1<;|_+2 ----- 11(2}

etc. // see (5.6.10 thru 12) for details
In the Dirac notation of Section 2.11 one can write (8.9.d.10) as
(T N<(FDA N A< (Tn)A] = AI(<T1] ®<T2 ®..Q<TJy|) . (8.9.d.12)

It is shown in (C.4.14) that "pre-antisymmetrization makes no difference", so the above may also be
written

LT A< (F2)A| A < (Fa)rl = Al <(T1)r| ® <(T2)A| ® .. ® <(Tn)| ) . (8.9.d.13)

Both sides of this equation are elements of the dual wedge product space A¥1**2*--*8 pyt they are also
both elements of the larger dual tensor product space V**1 ® V**2 ® .® V**N  The action of linear

operator € on a dual tensor product space vector is defined in the obvious manner, as in (6.6.18),
[ <(T1)r] ® <(T2)r| ® .0 <(In)r| 1€ = <(T1)A@ ® <(T)rE ® ...0 <(Iy)~|& . (8.9.d.14)

In other words, the action of @ on the larger space is defined in terms of its action on the spaces which
make up the tensor product. This result holds as well for the wedge product of N dual tensors,

[T A< (G2 2 < (T TE= <(TDAE A < (TN < (Ty)AE (8.9.d.15)
Proof: [<(J1)a| < (T2)a| " < (I 1@ =[Al(<(T1)a| ® <(T2)2| ® .8 <(In)+[) ] &
=Alt[(<(T1)r| ® <(T2)| @ .8 <(In)~|) €]
= Alt[ (<(T)NE ® <(T2)A @ ® .0 <(Tn)Al€) ]
= <DV " (TN " P <(TE.

Equations (8.9.d.14,15) are the transposes of (7.9.d.14,15) if we set Q = P .
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(e¢) Commutativity Rule for product of N dual tensors
The argument of Section 7.9 (e) can be repeated with u—A. Here we just quote the conclusion.

Fact: In a product of tensors (J1)a"(J2)a(J3)~.... of rank ki, ko, k3 ... , if two tensors are swapped
(Tr)» &> (Ts)~ (with 1 <s), the resulting tensor incurs the following sign relative to the starting tensor,

sign = (-1)" where m = (Ke+1 k42 ... 7ks-1)(ketks) + keks . (8.9.¢.6)
Corollary: If the sum of the ranks of the two swapped tensor is even, in effect m = kks . (8.9.e.7)
Example:

(T)r » (F2)r N (T3)n = (DT (I3)n N (T2)r » (T)» r=1 s=3

m = (k2)(katks) + kaks =kikz +kiks+kaks (1) = (-1)Krkarkakariaes (8.9.¢8)

(f) Theorems from Appendix C : pre-antisymmetrization makes no difference

We showed above that one can form wedge products of elements of A(V) in this manner,

G Sa = Al((TOS) . (8.9.4.7)
TSR = Al(TOSOR) (8.9.d.4)
(TNT2)N N Tp)r = Al(T105,®...Ty) (8.9.d.7)

where the operator Alt acts on the vector arguments which are not displayed in the above compact
functional notation. For example

TN 8§a = Al(T®S)
means, in multiindex notation,

(G SA)(vr) = Alty [(F®S)(vr)] = Alty [ T(vr)S(vr)] = @ Ze(-D)%®) T(ve(1))S(Ve(x1)) -
A very simple case is the following (recall for vectors that o= o+ )

1
(0 BV, Vip) = Alt (@@B)(ViyVig) = Alt [a(viy)B(vap)] = iy Zo(-D¥ P alVip 1)) BVip (2))

= (172) [a(vipB(Vip) - a(viy)B(vig)] = (172)[ (a®B)(Viq,Vi,) - (BOWN(Viq,Viy) |

= {(172) [(a®P) - (B®) ]}(Viy,Vip)
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which replicates our Chapter 4 statement that
o’ B =[a®p- P&al2 . (4.4.1)

The objects here are functionals in A(V) which, when closed with a vector set, become tensor functions in
As(V).

Appendix C uses the rearrangement theorem in three separate Theorems to show that

TN 8~ = Al(TRS) = Al(TARS) = Alt(T®S+) = Alt(T~®8~) . (8.9.f.1)
Theorem One Theorem Two Theorem Three

These three theorems are derived in a generic space with vectors |1,2...k> and so apply to both tensors and
tensor functionals, TT and F(vy).

Recall that

I~ = Al(9) (8.4.3)
so that I+ is a totally antisymmetric tensor functional. What (8.9.f.1) says is that Alt(F®S) provides total
antisymmetrization on all the (undisplayed) vector argument indices, so pre-antisymmetrizing either or
both tensors makes no difference. A similar statement applies to working with totally symmetric tensors.

So we have,

AU[TRS] = AU[T~®S] = AI[TRSA] = AU[TDS]
where Ga=Al(T) S~=Al(S) (C4.1)

Sym[F®S] = Sym[Ts®S] = Sym[TRSs] = Sym[Ts®Ss]
where Js=Sym(J) 8s=Sym(S). (C4.2)

These can of course be rewritten as
Al[TRS] = AIt[AI(T)®S] = AIL[TRAIL(S)] = AIt[AIt(T)RAIL(S)] (C4.3)
Sym[F®S] = Sym[Sym(J5)®S] = Sym[F®Sym(S)] = Sym[Sym(F)®Sym(S)] . (C4.4)
Similarly Appendix C shows that
TSR = A(TOSOR) = AI(TAQSOR) = A(TOSAQOR) = AI(TROSORA)
= Alt(TArR®S~QR)= Al(TrRSOR~)= Al(TRS~QR~)

= Al(TRS QR . (8.9.£2)

Adding ” subscripts inside an Alt expression changes nothing. Here is another example:
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FNSAARA = AI(TRSRR) = AI((TRSRR) = Al(TRS)AQR) = Alt(AI(TRS)QR)
and
GNSAARA = AITRSRR) = AI(TR(SPOR)) = AI(TRX(SOR)~) = AIt(TRAI(SRR)) . (8.9.£.3)

This appears in Spivak p 80 as

2) Al(Ale ® n) ® 6) = Alt(w ® 1 ® 6)
= Alt(w ® Alt(n ® 6)). 48

(g) Spivak Normalization
We won't repeat the discussion of Section 7.9 (g), but the reader can do the translation with the usual rules
v—a es — A" T > Ty etc.

Here are the results, where factors shown in red show changes caused by the Spivak notation in which the
normalization factor in (8.1.2) is changed from (1/k!) to 1,

=k! Alt(ay; ® o0y, ® ....Qay,) . (8.1.2)s
In particular,
aB=1[ a®p - pRa] . // no factor of 1/2 (4.4.1)s

The affected equations are these:

WA ar2A AR =k AR AR2® L..® AtK) or AT = KIAIAT) (8.3.8)s
F~ = kKIAI(T) and S~ = K'IAIK(S). (8.4.3)s
G 8a = (k+k)! Alt(TRS) . (8.9.a.7)s
k+k")! :
G Sa =£M,l Alt(T®S+) Groe A¥ and S~e A*'. (8.9.g.1)
kt+k'+k™)! : ;
FANSan fRFWAIt(%@&@KRQ Gre A¥,S~e AF', Rne AF. (8.9.g.2)

These now correspond exactly with Spivak's wedge product definition for tensor functions,
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ke !
A= ;—TP Alt(w ® n).
Te page 79

(wAn) Abd=wA (g A8
_ (k44 m)!

P ml Altlw @ 7 @ 8).

page 80

In (8.3.1a) we showed a table comparing our notation to that of Spivak. Here are a few more items:

us Spivak

At (o} dual space basis vectors

AF -- space of k-multilinear alternating tensor functionals

A¥e AKV) space of k-multilinear alternating tensor functions

TR 8~  ©,n,0 typical elements of A¥ (and Akf)

k,k' k" k,6.m ranks (degrees) of the above typical elements

o P permutation operator

sgn ¢ (-1)S® permutation parity, S(P) = swap count

Sk G set (group) of all permutations of [1,2...k], App. A. (8.9.2.3)
Comments:

1. Spivak refers to a totally antisymmetric tensor function as an alternating function which is the
traditional terminology in this realm, hence the operator name Alt.

2. Spivak uses all lower indices, whereas we have used covariant notation where contravariant indices are
up and covariant indices are down.

3. The Spivak normalization is compatible with the traditional definition of a "pullback" as described
below in Chapter 10.
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9. The Wedge Product as a Quotient Space

We present here a wedge product "theory section" which really should be part of Chapter 1, but we
wanted to have the reader first immersed in the nuts and bolts approach to the wedge product presented in
Chapters 4, 7 and 8. As is the case for Chapter 1, this chapter makes no mention of the components of
vectors or tensors.

9.1. Development of L* as V*/S

The presentation below is based on the paragraph titled Definition 3.1 on page 5 of Conrad.

Consider the vector space V defined over some field K (the scalars, normally reals). If V used coefficients
in a ring R instead of a field K, V would be called an R-module. Since any field K is also a ring, we can
regard our usual V as an R-module (any vector space is also an R-module). Statements about R-modules
are more general that statements about vector spaces, so for that reason one sees the R-module moniker in
discussions of our current topic. We shall use the bare term module.

Thus, the vector space VX = V®V...®V can be regarded as a module since its vectors are defined over
the field K which is also a ring.

The pure elements of V¥ have the form V1®v,o®vs.... ®vy (k factors).

Consider the subset S of V¥ whose elements have a repeat of one of the vectors. That is, suppose we have
vi = v for some 1 #j in vi®v2®vs.... ®vy. There could be other vectors which are also equal to vi, so at

least two vectors are the same. For example, if k = 4 one would say a®x®b®x and x®x®b®x were in the
subset S. Adding elements of this subset produces another element of the subset, so this subset is itself a
module. Thus we are talking about elements of a submodule S of the module V*. Notice that 0 is an
element of S, which can be represented by any element of V* having one or more vectors being the 0
vector of V, as in (1.1.9).

For k =4, consider this element of Vk,

A'=3 a®b®c®d + 5 a®b®c®a - 2 a®a®c®d + 3 a®a®c®a . (9.1.1)
If we were to throw out elements of the set S, we would get

A =3 a®b®c®d . (9.1.2)

The set of elements of V* that is generated by adding all elements of set S to A is called the coset of A,
usually written [A]. Thus, the coset of A is A + s where s € S. The elements of V¥ can be partitioned into

an array in this manner, where each row (coset) involves all the s; € S :
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row name coset —

[0] 0 0+s1 0+sy ...
[A] A A+sy A+sz .
[B] B B+sy B+ss (9.1.3)

For example our V¥ element A' lies somewhere in the row of this chart labeled on the left by [A].

It turns out that the rows themselves (the cosets) form a module called V¥/S . The elements of this module
can be regarded as being those in the first column of the cosets. So A is an element of V¥/S , but A' is not.
Strictly speaking, there is an isomorphism between A and [A], but we ignore such details.

Fact: To enumerate the elements of the module V*/S we write down all the elements of V* and just set to
0 all terms in which a vector is repeated, such as the last three terms of A' in (9.1.1). We thus filter out

such terms, they are "modded out", which is why V¥*/S is sometimes called V¥ mod S. 9.1.4)
Define L* to be
Lk=v¥s . 9.1.5)

The fact that V¥ elements lying in S (those that have repeated vectors) are "thrown out" (modded out, set

equal to 0) is reminiscent of the construction (1.1.4) that F(VxW)/N = V®W and certain elements of the
full set F(VxW) were similarly modded out (set to 0, such as (va, witwa) — (V2,W1) — (V2,W2)).

Elements of V¥ are written v1®vo®vs.... ®vyk. This product is "associative" in that parentheses can be

placed any way one wants, such as vi®(vo®vs3).... ®vy, with no change in value. (9.1.6)

Elements of L¥ = V¥/S are written v1*v2"™Vs.... “vi . This product is declared to be "associative" in that
parentheses can be placed any way one wants, such as v1(v2"v3).... “vk, with no change in value. (9.1.7)

Using this definition of the wedge product of k vectors, we can derive some of its properties.

Fact 1: v17vy"vs.... “vi = 0 if two (or more) vectors are the same. (9.1.8)
Proof: This follows from the definition of L* = V¥/S and the Fact (9.1.4) stated above.

Fact 2: vi"vo =-vy"v; (9.1.9)

Proof:  We know that (vi+vz) » (vitvz) = 0 since this has the form vs ~ vz which is 0 by Fact 1.
Expanding,

0= (vitvz) " (vitva) = vi'vi +v1'va +vo'vi +vatvy = vitva +vatvy

SO
0=v1"Vva +vovy and vi"va =-vatvy QED
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Fact 3: Swapping any pair of vectors in v1vo"'vs.... “vx creates a minus sign. (9.1.10)

Proof by example: (swap vi and vz by making use of associativity and Fact 2 three times) :

V3 VoM V1. Mk =+ V3N (V2 V). Mk = - v3N(V1hV2)... Avie = - (V3N V1) Vo Mk
=+ (v1"V3)'Va.... vk =1 viN(V3'V2).... Vi = - V1N (V2 'V3).... vk
= -v1™Vva'Va.... "V QED
Fact4: vy, " vy, " oM Vie T €499 9 (V1IN V2N LM vk ) (9.1.11)
Proof: Fact 4 is the combination of Fact 3 and Fact 1.
Fact5: vy, “vj,” ...." vy, =0if the vectors are linearly dependent. (9.1.12)

Proof: See (7.2.6).

In this manner, we can derive all the properties of the wedge product stated in Section 7.2 without having
to lean on the construction of the wedge product as a linear combination of tensor products.

However, we know that the elements of L* are linear combinations of the elements of VX. We have
written in (7.1.3) that

V17 Vo' oLl " Vk = (1/1(') 25_112, R N 85_15_2, R TR (Vj_1 ® Vi2 ® ..... ® Vik)
= (/KD Zp -D3® (vpy® ve(2)® ....®Ve()) - (4.6.2)
Since in Section 7.2 this linear combination generates all the Facts listed above, and does not contradict
any of them, we conclude that this must be the linear combination of V¥ elements that equals

vit v oL " vk (apart from a possible normalization factor).

Alternate Language. Looking at A and A' above, we could say that A and A' are in the same equivalence
class so that A ~ A". Two elements of V* are in the same equivalence class if they differ by an element of

S, so we have A' - A =s € S. The elements of the equivalence class of A are then just the coset [A]. The
submodule of V¥ called V¥/S is called a quotient module. Using category diagrams, one can consolidate
this notion with that of quotient rings and quotient groups.
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9.2. Development of L as T/I
Start with the tensor algebra (vector space) shown in (5.4.1),

TV)=V ovevievie.... (9.2.1)

The elements of the vector space T(V) form a ring with operations @ and ®. It is easy to show that T(V)
is closed under addition @ and multiplication ® and has the other required ring properties.

Ideal Example 1: Consider the set S of elements of T(V) which are linear combinations of elements of the
form A®B®C (with coefficients in field K) where B is some fixed element of T(V) and A,C € T(V) are
allowed to vary. This set is closed under addition. For example, ARB®C + A'®B®C' € S. Since
coefficients in K can be absorbed into A, one could just say that the elements of S are sums of elements of
the form A®B®C. One could take any 0®B®C as the "0" element, and -A®B®C is the additive inverse.
The set S is commutative and associative under addition. Therefore S forms an additive subgroup of the
ring T(V). Moreover if we left or right multiply (using ®) any element of this set by any element of T(V),
the result clearly lies in T(V).

Q®(A®BR®C) € T(V) (A®BRC)®Q € T(V) . (9.2.2)
Therefore this set S is a two-sided ideal of the ring T(V).

Ideal Example 2: S = sums of elements of the form AQBXCX®D®E where elements B and D are fixed
and A,C are E varied, all letters being € T(V) .

Ideal Example 3: S = sums of elements of the form A®x®C®x®E where vector x is fixed and A,C,E €
T(V) are varied. This set is the set of all sums of elements of T(V) in which the vector x appears at least
twice. Let's call this particular ideal by the name S = I, because this is our ideal of interest.

Now suppose we declare the following equivalence relation
ARXxRCR®X®E ~ 0 x,A,C.E € T(V). (9.2.3)

Sums of such elements form the ideal I discussed above, and we are in effect setting all elements of this
ideal equal to 0.

There then exists a subset of T(V) which we shall call T(V)/I, or T(V) "mod" 1. This is a standard
algebraic structure where one takes the quotient of a ring R divided by a two-sided ideal I of that ring.

The upshot is that the elements of the new quotient set T(V)/I consist of all sums of T(V) elements except
that any term which matches the form (9.2.3) is filtered out ("modded out") by setting it equal to 0.

Example: t'=k; a®b®c®d + ko a®b + k3 b®c®c + k4 a®b®c®a = element of T(V)

t=k; a®b®c®d + ko a®b = element of T(V)/I (9.24)
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In algebra terminology, adding all elements of the form A®XxR®C®xXXE to t generates a coset associated
with t called [t], and T(V)/I is in effect the set of all such cosets. Element t' is one element of the t coset.
The elements of T(V)/I themselves form a new ring called the quotient ring or factor ring. The
ring/ideal situation is quite similar to that discussed above for the module/submodule situation V¥/S.

Recall from (7.8.1) that the full wedge (exterior) tensor algebra is given by the direct sum space

LV) =L oL@ L?®L3 +... . (9.2.5)
The claim then is that

L(V)=T(V)1 where [ = the ideal of Example 3 above. (9.2.6)

This is then the space of all T(V) elements where all terms in which a vector is repeated are set to 0 and
thus are not part of L(V).
Notice that the quotient of Section 9.1 has a finer granularity. It deals with individual L* = V*

spaces, whereas Section 5.2 deals with the entire L(V) < T(V).
Many texts refer to L* as A¥(V) and L(V) as A(V). We have reserved the A names for the dual

spaces.

The category theory approaches to L* and L(V) are similar to the discussion of Section 1.2 with the main
point being that L* and L(V) are "universal" and therefore uniquely defined up to isomorphism. The role
played by k-multilinear functions is played by antisymmetric k-multilinear functions.
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10. Differential Forms

In this chapter we consider aspects of the topic of differential forms from the viewpoint of Chapter 2 on
the tensor algebra of transformations, and Chapter 8 on the dual exterior algebra of wedge products.

10.1. Differential Forms Defined

A differential form is in fact just an element of the wedge space A¥(V) described in Chapter 8. Recall that
the most general element of A¥(V) was written in symmetric sum notation as (sums run 1 to n = dimV),

A:Z

«Q

i9ip. o ig Tigig. .. ix (W1 A2 A0 ir=1ton n=dim(V) (8.4.4)
Fa=31TohaT. // the above in multiindex notation (10.1.1)

This sum is redundant since each basis vector appears k! times. In an ordered sum form, each independent
basis vector of A* appears only once,

Ga= ZTicij<ip<....<igsn Aigip...ip AWM AN2 L ARTK) (8.4.7)
Fra=X1AAT (10.1.2)
where X't indicates the ordered summation.

If one is given Tj,i,. .. .1y in the first expansion, a viable expression for Aj,i,.. .1, which makes the

k
second expansion valid is this

A =Kk!AIY(T) (8.4.16) (10.1.3)
which is a shorthand notation for
A= k! Alt(T1) (10.1.4)
which in turn means
Aiqip. . i =K Alt(Tigiy. . 1y)
=Tiqiy....ix - Tipig....iy T all other signed permutations . (10.1.5)

Whereas T is an arbitrary rank-k tensor, A obtained from T in (10.1.4) is a totally antisymmetric rank-k
tensor if one allows all values of the 1.

On the other hand, if one is given Ajji,... .1, in (10.1.2), it is likely that Aj;ji,... .1, is not a totally

antisymmetric tensor. One might have, for example, As i, ... i) = 0i;Bi,. .. i,. The sum in (10.1.2)
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only "senses" the values of Aj,i,... .1, = Ar for values of I which are ordered, and Az for non-ordered I

play no role. Given some Aj,i,. ... in (10.1.2) a viable expression for Tiji,. .. .1, in (10.1.1) s this,

Ailiz- g fori; <ip <..<ix
L 0 for all other values of i1,iz...ix
or (10.1.6)
T = A1 0(I=ordered) // B(bool) = 1 if bool true else 0
since then
T:TihT = Z1[ Ar O(I=ordered) ] Aat = X't Aghat. (10.1.7)

We shall take the vector space V in A¥(V) to be V=R"

Below we shall treat the objects Ty and Ar as rank-k tensor fields with an argument in R”, so we will
then have for example,

Aiqiy. .. i (%) x e R? ( "x-space") . (10.1.8)

In the usual presentation of the theory of differential forms, the dual-space basis vector A* is given the
purely cosmetic name dx",

dxt =t = <u'| =(w")T, u*=axis-aligned basis vectors of R (10.1.9)
where A* was a notation introduced in (2.11.c.2).

This object dx'is very different from the normal calculus differential dx*, and for that reason we write
dx" in a red italic font. For example, one can then write,

dc'(v) =A (v) = <u|v> = vi, (10.1.10)
In contrast, there is no calculus differential object called dx*(v).

The differential forms (elements of A¥) shown above in (10.1.1) and (10.1.2) are now written in cosmetic
notation as

A= Zigig. i Tigig. .. .ip (X1 A dx*2 A dx'E) Fa=31Tz dxa" (10.1.11)

Q

Q

A= Ticiqg<ip<. .. <igsn Aigig. .. (TN dX2 LA deR) Fa=E1Ardet . (10.1.12)

We have used the hat subscript notation to distinguish dual tensors in V¥* from those in A¥(V),
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A=A @Atz @Atk // basis vector in dual space V**
AT =M Apt2 Atk // basis vector in dual space A¥(V) . (10.1.13)

The traditional names for differential forms are o, B, ® and so on, so we take I+ — a and write our
arbitrary differential k-form (10.1.12) now as

0=3"7 fi(x) ME =27 fi(x) dxat a e A¥V) V=x-space=R®  (10.1.14)

where f1 is the more traditional name for Ar. Once again, V = R", Euclidean space, where the basis
vectors u; = |uz> are independent of x, and so the A* = <u®| are also independent of x.

Comment: Since our monograph deals with both tensor products and wedge products, we feel it is useful
to maintain the distinction between AT and AT, or between dx~T and dx* . Most discussions of differential
forms involve only wedge products and the corresponding wedge spaces, so they write dx~" as dx*. And
of course they don't use our red italic notation, so the final result is just dx®. Furthermore, many
presentations don't show the wedge product ~ symbols, so one sees dx* = dxidxz which we would write
as dxn! = dxt A di® . (Our use of italics is only to maintain the form/calculus distinction for black and
white printed copies of this document.)

10.2. Differential Forms on Manifolds

Chapter 2 was concerned with the general transformation x' = F(x) where x-space and x'-space both had
the same dimension N. Here we shall be considering x-space = R™ and x'-space = R™ with n < m. If we
allow x to exhaust some dimension-n region U in x-space, the image x' = F(x) will exhaust some region V
in x'-space of dimension n < m. If F; and its derivatives are "smooth" and 1-to-1, the region V in x'-space
will lie on a "manifold" M which is embedded in x'-space. Here is a crude graphical representation,

Rn xn R™ x .
x-space x'-space
______________ o
~~~~~~ o i
U .'?' /.x:,""
xe__ 5 forward map i .
X x'=F(x x'
el I = el
x1 open region U, dim(U) =n x'1 open region V, dim(V) = dim(M) = n
(10.2.1)
Here we have in effect reflected Picture A (2.1.1) left to right to get
Picture A /dx’::(x)\‘
S.R ,
x-space x'-space
g g
(10.2.2)
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One can define a differential form oy at a point X' on manifold M in this way,
Ox' =2'1 fr(X) A"t = Z'1 fr(x") dx'"t = Z'7 fr(x') <e's’| e A% =A¥R™) (10.2.3)

where A'aT = <e'aT| is based on (2.11.c.11). Recall that the e'; are axis-aligned basis vectors in x'-space.
We think of this differential form ay: as "being in dual x'-space" to which we give the name A

The manifold M is a "surface" of dimension n within R™ with n < m. The manifold M could be some full
chunk of R™ (or all of R™), in which case it has dimension n = m. If the manifold is a "hypersurface" in R™
it then has dimension n = m-1. In general M is some n-dimensional "surface" embedded within R™ where
I<n<m.

Recall from (2.5.1) and Fig (2.5.4) (left-right flipped) that the x'-space basis vectors u'; = R u; are the
tangent base vectors for the inverse transformation x = F~*(x"). For m > n this inverse transformation only
exists for points x' on manifold M, and, for u'; with i = 1 to n, the u'; continue to be tangent base vectors.
The remaining u'; for i=n+1 to m can be defined "as needed" to provide a full basis in x'-space R™ .

By the definition of M as the mapping image, we know that the first n u'; are "tangent to" the surface M,
meaning that tiny arrows ¢ u'i(x") for ¢ << 1 lie on M at point x'. Since the full basis is by definition
complete in R™ (elements are linearly independent), the remaining u's(x') for i = n+1 to m are all "normal
to" the surface M. This is all specific to some point x' on M.

For example, for a manifold that is a smooth non-self-intersecting 3D curve embedded in R3, one would
have u'; being tangent to the curve at x', and then u'; and u's are both normal to the curve at x'.

On the other hand, if M is a 2D surface in R3, u'; and u', will be tangent to the surface M and u's will be
normal to that surface, all at point x' on M.

The set of n linearly independent basis vectors {u';...u'y} which are tangent to M at x' are first thought of
as having their tails right at the point x' on M. When these vectors are translated so their tails are all at the
origin, the {u';...u'y} then span an n-dimensional vector space. This vector space is usually written Tx'M
and is called the tangent space to M at point x' on M, dimension n. As with any vector space, there is a
corresponding dual space. The dual space to the tangent space is called the cotangent space T*,:M and it
is the set of all rank-n linear functionals of vectors in Tx:M. The name cotangent is like the name
covector mentioned below (2.11.a.3) and has nothing to do with the cotangent of any angle.

The conglomeration of all the tangent spaces Tx'M on M has the structure of a fiber bundle and is often
called the tangent bundle. There is a corresponding dual cotangent bundle. See Spivak [1999] Chapter
3, Lang [1999] Chapter 111, or wiki on tangent bundles.

As one moves from x' to a nearby point x' + dx' on M, the basis vectors in general will move slightly (M

is "smooth"). The dual basis vectors u'* of course also move to maintain u'* e u'y = 8. Thus we have
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A'* = <u'| also depending on x'. We don't want to write this A'* as A'(x') because then we have to write
<u'*lv>= (M'*(x"))(v) which is rather messy (although Spivak uses this kind of notation with x' = p in
various places). We hesitate to write the left side oy in (10.2.3) as o(x") because this makes o look like a
function, but it is in fact a differential form.

Notice one benefit of the cosmetic notation A'a* = dx's™. The dependence on x' can be regarded as being
implied by writing dx’ instead of say dy.

It is customary to abbreviate oy as just o with the understanding that it is at some point x' on M. In
proofs below we sometimes call it o' since it is a differential form in dual x'-space.

As already noted, a simple example of a manifold is a non-self-intersecting and "smooth" finite piece of
3D curve hanging in R3 which is defined by some function x' = F(x) where x is a scalar parameter which
marks points on the curve. In this case oy is a differential 1-form defined at every point x' along that
curve, and the tangent space at any point x' as noted is one dimensional and contains the tangent vector to
the curve at that point on the curve.

Our second example of a manifold is a non-self-intersecting and "smooth" finite piece of 2D surface
hanging in R® which is defined by some function x' = F(x) with x = (X1,X2) where every point on the
surface is marked by a unique value of x. Perhaps this surface is a piece of a toroidal surface or sphere. In
this case oy is a differential 2-form defined at every point x' on that surface. The tangent space at any
point x' on M is 2 dimensional.

See Sjamaar Chapter 1.1, 6 and 9, Spivak Chapter 5, or elsewhere for a formal definition of a manifold
and smoothness. A manifold is roughly a smooth "surface" which can be cobbled together from a set of
smooth mappings x' = F;(x) which are said to cover the manifold, the way an atlas of flat maps can cover
the entire globe of the Earth. A manifold is a "surface" which is locally smooth in the region of any point
x' on the manifold. Since x' = F(x) must be 1-to-1 between the parameter x-space and x'-space, the
manifold cannot be self-intersecting. That is to say, such a point of intersection in x'-space must back-map
into at least two different points in x-space hence the map is not 1-to-1. Each mapping has some open
domain Uj in R™ and one writes Fi: U; — M and F; must be 1-to-1 as noted. But (6Fi/8xj) : Ui—»M
must also be 1-to-1 to provide clean differentiability at all points on M and in all directions from any such
point. This is often stated as (DF;) must be 1-to-1. What this says is that at any local point in the mapping
(on the manifold), there must be differentiable "elbow room" around the point. This is illustrated in
Spivak's nice pictures on page 110, where his mapping h is our F 1,
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hix)

(a)

(10.2.4)
Spivak would like the mappings h and h™? to both be infinitely differentiable (C*), in which case he calls
h a diffeomorphism. Notice that his U and V are the reverse of ours in (10.2.1) and have one higher

dimension. For example, Vus = Uspivak M M which is the gray patch on his toroid above.

Here is a simple example of a manifold (a circle in Rz) being covered by two charts.

chart 1

pullback 1

\—’\pullback 2
chart 2

* (10.2.5)

Most of the circle is "covered" by the larger chart whose t-space is the red line segment at the top. But a
small part of the circle shown in blue is covered by a second chart whose x-space is the short lower blue
line segment at the bottom. There is some overlap of the charts. So to integrate a 1-form over this circle =
manifold, we could do two pullbacks of 1-forms. The circle cannot be covered by just the upper chart
extended because then the bottom point on the circle would correspond to both ends of the red segment
and then the mapping is not 1-to-1. This is an example of "the seam problem".

Regarding our "cosmetic notation" dx' =2 of (10.1.9), the reader can take some support from Lang
[1999] page 131,
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point in R", it is customary in the literature to use the notation
dii(x) = dx;.

This 1s slightly incorrect, but is useful in formal computations. We shall
also use it in this book on occasions. Similarly, we also write (incorrectly)

W= Zf[,-} dxy A --- adx,
)
instead of the correct

w(x) = Z Sio(xVig A we A Ay
(@) (10.2.6)

In Lang's second equation, he "incorrectly" writes A* as dx* which is our cosmetic dx" = . We would
write his third equation in x-space as 0x = X'z f1(X) AaT .

That is our main point from the snippet above, but Lang's first equation also deserves some comment.
Recall from (2.11.c.5) that A*(x) = <u*|x> = x* where x is a vector in V. If the u* are constant vectors in

x-space (as they are for V = R") then

d(A*(x)) = d (<u* | x>) = <du?|x> + <u?| dx> = <u?| dx> =dx*
or

dAt(x) = dx* (10.2.7)
and this is the gist of Lang's first equation. This equation is a little confusing for the following reason.
Below we show that if we take a = X;f; (Xx)A™ then da = X325 (05f(x))A™ ~ A, which is a 2-form. If f;(x) =

di,n then (95f(x)) = 0. In that case we have a = A" and do = dA™ = 0 which is then a null 2-form ( 0 is a
valid element of vector space A?). Then we would say

(dAM)(x) = (0)(x) =0 (10.2.8)
which is not the same as (10.2.7) that d(A*(x)) = dx*.
10.3. The exterior derivative of a differential form
Motivation
The exterior derivative da plays a key role in the theory of differential forms, as does the notion of the

boundary oM of a manifold M. Although we shall not derive it, Stokes' Theorem for differential forms
says
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.[Md(l:faM(l :

Here a is a k-form, and da is the exterior derivative of o which we shall see below is a (k+1)-form. The
main work involved in proving this theorem involves not so much an understanding of da as it does
dealing with an explicit definition of the boundary 6M of a manifold M in an arbitrary number of
dimensions including issues of orientation. See Sjamaar Chapters 5 and 9.

The single statement above encompasses a large set of integral theorems from analysis only one of which
bears the specific Stokes' Theorem moniker. Here we list some of these theorems ( red = functionals) ,

fc Vfedx = f@M f =1(b) - f(a) "line integral of a gradient theorem" (H.2.3)
.[M [f(V3g) + VfeVg]dV = f@M fVgedA  "Green's first identity" (H.3.6)
IM (divF)dlV = f@M F e dA "the divergence theorem" (H.4.6)

[ (01F2 - 02F1) dx* A dx® = [ gp [ Fade*+Fp dx?]  "Green's theorem in the plane” (H.5.6)

.[M (curl F) e dA = J.aM F o dx "traditional Stokes' Theorem" (H.5.10)

The sudden appearance of familiar objects like the grad, curl and divergence is part of the Hodge * dual
operator "correspondence" we mentioned below (4.3.18). In that correspondence one has

a=f 0-form in R® aef
do= Vfedx 1-form in R™ do > V£ . (H2.2)
a=f 0-form in R® aef
*(d(*da)) = V3f 0-form on R® *(d(*da)) < V3f. (H.3.3)
a=F edx 1-form on R™ a < F
*(d(*a)) =div F 0-form on R® *(d(*a)) < divF (H4.5)
o=F e dx 1-form in R® o —F
*(da) = [curl F] e dx 1-form in R3 *(da) «> curl F (H5.4)

where one sees various appearances of the exterior differential operator d on the left side. The action of
the Hodge * operator is a follows (see Section H.1),
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dx~" = some ordered multi-index wedge product of k dx'in R® (a basis vector k-form)

(*dxa") = (sign)z,x dxa 1€ = ordered wedge product of the missing dx" within R® (c = complement)
Requirement: dxat A (*dxal) = dxt Adx® ... dx"  which is satisfied by the following sign,
(sign)z, = (-1 ¥ CRE/2 Ghere deal = @A d® A LA a<b<..<q  (H17)
Fact: *(*dxa') = (-1)¥** g (H.1.20)
Example: (k=2, n=6) dx' =dx® "dx* = *dx'=- dxt 2 d® Ndx® A di®

since (sign)z x = (-1)2* (-1)2®/2 = (1) (-1)® =-1.

Our intention here is to provide the reader with some motivation for slogging through the rest of this
section on "d". The above material is treated in Appendix H based on results below.

Definition of the Exterior Derivative

In Section 10.1 we noted that Tr(x) = Tiqi,....5,(X) and Ax(x) = Ajji,.. .5, (X) were rank-k tensor

fields with respect to some unspecified Chapter 2 transformation x' = F(x) and dx' = Rdx. We now regard
these objects as being just scalar-valued functions which happen to have label 1. We refer to either of
these functions for the moment as f(x). Such a function by itself is a 0-form because it has no A* factors.
That is, the object f,

f=f e A° (10.3.1)
is a differential 0-form (abbreviated 0-form).
The exterior derivative of such a 0-form is written df and is defined as

df = 521" [0f(x)/0xI] 03 = Z34" [05F0)] A3 . (10.3.2)

Here we put df in red italic so it won't be confused with a calculus differential df of a function f(x). We
could have written the O-form f as /', but since then /" = f there is no reason to do so.

The first thing we notice is that, since f is a O-form, df'is a 1-form because the sum is a linear combination
of single A7 dual basis vectors Using the cosmetic notation defined above, we then write (10.3.2) as,
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df = Z3=1" [05F0)] . (10.3.3)

Now we begin to see the motivation for the cosmetic notation dx”. The above equation looks just like the
corresponding calculus equation

df = 31" [05f(x)] dx? . (10.3.4)
In this last equation df(v) would make no sense, but in (10.3.3) one can write
df (V)= Z3=1" [05F 0] M (v) = Zy=n™ [05F(x)] v3 . // (2.11.¢.5) (10.3.5)

The exterior derivative of a general differential form a has an extremely simple definition. Renaming A
in (10.1.2) to be the more traditional fr, we write

o= fr(x) AT  general k-form o e A¥

do = X' (dfr(x)) » AT

21 (521" [05F1(0)] A7) A dat // from (10.3.2)
= Ticij<ip<...<igsn =1 [03fii,. . 1 (O] AT AAIT AQR2 ApTK (10.3.6)
Since there are now k+1 wedged dual basis vectors A”, this da must be a (k+1)-form. So,
Fact: If a is a k-form, then da. is a (k+1)-form. (10.3.7)
We pause to take note of a fact that perhaps seems obvious:
Fact: One can compute da in the same manner for the ordered or the symmetric sum form of a,
0=37 Ar(x) AT = do = Z'1 (521" [05A1(0)] M) A AT // ordered sum
(10.3.8)
0=31 T:(x) A" = do = Z1 (Z3=1" [05Tz(x)] A AT symmetric sum

where we assume that the A+T are constants in x.

Proof: The only question here is whether the da computed on the second line above is the same as the da
computed on the first line. Assume they are different and call the second line da". Reorder to get,

do = 25217 A3 A (21 [05A1(0] AT
da" =2309™ M A (Zx [05Tz(0)] aT). (10.3.9)

But write (10.1.1) = (10.1.2) and then apply 05 to both sides,
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Y1 Tr(x) AT =3'7 Aghat = Y1 05T1(x) At =Z'1 05A1(X) Aa'
and thus the two right-side expressions in (10.3.9) are the same and so a" = a. QED
So far we have shown that if a is a k-form, then da is a (k+1)-form.

What can be said about d?a = d(da) ? One might reasonably think this would be a (k+2)-form, but that is
not correct. In fact:

Fact: d2o0 =0 for any k-form o (differential forms have zero "curvature") . (10.3.10)
Since a differential form involves linear functionals, the above Fact seems intuitively reasonable.
Proof: The proof'is quite simple if we use the redundant symmetric sum (10.1.1) to express a. Then
o =Z7Tz(x) Ant
do=Zg(dT1(x)) " A" = Zp(Ze=" [0:Tr(X)] M) " Aa® = ExZpar™ [0:T2(0)] (AF A AaT)
d(do) = 1 Te=1® d[0:T2(x)] (A% " AT
=1 Tpm1” (Bem1"0s[0: Tr(0)] 1) A (A7 A 2nT)
=21 Zrm1” Zema™[ 00, T2(0)] (F° A 17 A 1aT)
=0 . QED

The result is 0 because in the symmetric sum X, the object 0s0-F1(x) is symmetric under r<» s while the
object (A® A A¥ A AaT) is antisymmetric under r<>s. That is to say, if S is symmetric and A antisymmetric,

Swap names r<»s use symmetries
Sum = Xrg SrsArs = Zsr SsrAsr = Zrs (+Srs)('Ars) =-2rs SrsArs=-sum =0 (10.3.11)

Expressing da in standard form

Recall from above that
o= X'1 fr(x) At k-form
da=2%"7 ( Zj=1n [05f1(x)] Kj) AT (k+1)-form (10.3.6)

We wish to rewrite da in a more standardized form. To this end, starting with the k-multiindex I we create
a (k-+1)-multiindex J as follows
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J=J1j2.jk,jk+1 = l1,i2....0k, /1] =]k+1
I'=jijo2ejk =1= ig,ip.....0k . (10.3.12)
Then one can rewrite the summation appearing in do above as
Y12y =25 Tjppr = 231<32<. . <3k Z3kel - (10.3.13)
Then
do = Ty <in<. . <ix Zigsr [O5xarligio3x(X)] AR ARIT AQI2 | Ajdk (10.3.14)
Because each swap of vectors in a wedge product of same creates a minus sign,
WIk+1 A9I1 A2 ATk = (-l)k WJ1 Apd2 A Ik A dk+l
= (-1)¥ a7 (10.3.15)
and then
do= (-1)* Z5.<50<. . .<ix Zine1 [Oixanli1z 5 0] A . (10.3.16)
The summations appearing above can be written as
231<2<. . .<Ik Skl
= Z31<ip<ix<iker T Z31<ize<irs1<dx T o T Zika1<ii<ize<ix - (10.3.17)

Here we are just exhausting all possible locations that jx+1 can take relative to the other indices. We don't
have to worry about cases like jx+1 = j2 because in that case A7 = 0 and there is no contribution to the

sum (10.3.16). One can then write,

ki _
(-D)7da = Z51<5p<ig-1<3k<ixs1 [Oxs1f3132-3%]

. . . . . . J1 An32
+ 231<32<Ik-1<Tk+1<TK [a:lk+1f3132"':lk]7“ A2

+ Zj 1<32-<Jk+1<3k-1<Jx [ajk+1fjlj2‘“jk]

Next, define the following index subscript swap operator S(r,s),

S(,8) F3132 3p3s3x = Fi1dz 3s3p3x -

A1 Apd2

M1 apdz

. .. . . . .. . j1 Aqd2
2Jk+1:11<212"'<Jk—1<3k [aJk+1f3132"‘Jk] A Az

A }ij+1
A )\‘jk+1
A xjk+1

ApIkHL (10.3.18)

(10.3.19)
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In each term in (10.3.18) all the summation indices are of course dummy indices and their names can be
swapped around at will. Notice that :

SKKF1)[Z51<50 <Ik-1<Tks1<9k] = Z91<I2-<Ik-1<Ik<Tk+1

S kFDS(k-1 kT 1)[Z 51 <5< xep1<3x-1<ik ] = SKKFD[E51<55-<3x-1<xs1<3x]
= 231<i2 <Ip-1<Ik<Ik+1

Sk +1)S(k- L+ DSK-2K+1) [ Z51<5---<5 500 1< 2<5 k- 1<
= S(kk+DSk-1,kH1) [ Z57<9-<552<511<5x- 1<5]

= SkH1) [Zg5<50-<i-2<ik-1<Tks1<9k] = Z91<I2-<Ik-1<Ik<Tk+1

SCKADS(K-1,kH1). S(LKHDE S 41 51<5 2 <51 1<51] = Z31<5 2+ <31 1<35< st (10.3.20)

Thus these swap combinations convert each summation to the standard form shown in the first line of
(10.3.18).

So the next step is to apply the swap combinations not just to the summations, but to the entire lines
shown in (10.3.18), since one is allowed to do this without changing each line's value since these are just
dummy index swaps. The first effect of doing this is that all the summations become that shown on the
first line which is just X';. The second effect is that the A wedge products can be restored to their first-line
ordering by adding a minus sign for each swap. For example,

S(k,k+1)S(k-1,k+1) A3 A3z Apdk+l = ()2 331 Apd2 | Apdket
or
S(k,k+1)S(k-1,k+1) A7 =(-1)2 a7 . (10.3.21)
Since on each line going down the number of swaps increases by 1, we pick up alternating signs.
Doing this, one can rewrite (10.3.18) as
(—l)kda = X5 [O5x41f5132- 3] AT
- X5 SOkt 1) {0541 5150 50t ] A7
+ X5 [SOkKFD)S(K-1,k+1) {035 41 F51 30+ 31 ] Ar”

+(-1)* =5 SOkt DS(k-1kH+ 1) S(LKH1) {03541 T3 5030t T AT (10.3.22)
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Here then is the way to write the derivative of a k-form in standard form:
o= X'7 fr(x) At k-form
da = (-1)* Z'5 Qa(x) As? (k+1)-form (10.3.23)

Qs=[1 - S(k+1) + S(k+DS(k-1,k+1) - ... +H-D*S (ke 1)S(k-1,k+1)...S(LK+1)] 83541373055 -

The general result is admittedly unwieldy and perhaps has some more pleasant form, but we take it as is
and consider some simple examples.

Example 1: Exterior derivative of a 1-form:
a= X7 fi(x) Mt =35, i, (x) A1
Q5= [1-5(12)] 85,3, = @s,fs1- 5,3,)
do=(-1)* 25 Qahn" =- Z31<32 (03,131 031f5,) M1 ~p32
=Yy1<ip (051F5, - O3,f5,) A3 A032 (10.3.24a)
In cosmetic notation,
a= Ti fi,(x)dx"?
da=23,<5, 03,85, - 03,f5,) dxfl ~dxl2 (10.3.24b)
do=i<s (Bify - O563) dx' ~
which agrees with Sjamaar p 21 (2-2).
Example 2: Exterior derivative of a 2-form:
a= X7 fi(x) Mt =i, figi,(x) AL AAT2
Qs= [1-S(2,3) +S(2,3)S(1,3) ] 0355755
S$(2,3)33f51352 = 3205133
8(2.3)S(1,3) 053f313, = S(2,3)031 1535, = 05113233

Qo= 033f3135 - 05505153 0318533
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da=(-D* 5 Qah’
=+ Z31<52<33 (9315233 - 032f51337 O33f3132) AL ARIZ AT (10.3.25a)
In cosmetic notation,
a=Ti<ip figiy(x) di'l Adx'2
Aot = 241<50<33 (03135233 - 035T5155+ O3aT313 ) AL A did2 A dxd3 (10.3.25b)
dor = Zi <5<k (Oifsx - D3fax + Oxfig ) dx' ~dxd ~
which agrees with Sjamaar p 21 (2-4).
Example 3: (last one!) Exterior derivative of a 3-form:
o= X' f1(x) At = Ziq<ip<is fiqizig(X) AT AQT2A T3
Qs = [1-S(3,4)+S(3,4)S(2,4) - S(3,4)S(2,4)S(1,4) ] 05,F313235
S(3.4)034f313233 = 933313234
SG.4)S(2.4)014f313233 = SG:A0358313433 = 9321513334
SB3.4)S(2AHS(1,4)054f515233 = SGHS(2:4)0511543233 = SG:H0511523435 = 9315523334
Qs = 0341513233 - 0338313234 T 9320513334 - 931523334
da=(-1)* ='5 QA7 (10.3.26a)

A1 Apiz Apizania

Y31<32<33<34 (318523334 - 03285133347 O33F513234 - O34f513233)
In cosmetic notation,
0= %5 <ip<is figigig(X) dx'l Adx'2 A x's (10.3.26b)
do = 51553330 @316523330 = 032T313334™ 03313234 - O3afniz3) Pt » a2 A3~ e
da =X <j<k<t (0ifjke - Ojfixe + Oxfise - Ofisx) dx' A dd A d A axt

We leave it to the reader to deduce a "general rule by inspection" for the series of terms for any k. This
might involve rotations of certain subsets of the subscripts.
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Exterior Derivative of products of differential forms

Whereas d(fg) = (df)g+f(dg) in calculus, the result is slightly different if f and g are differential forms :
Fact: If o is a k-form and P is a k'-form, then d(a. * B) = (da) ~ B+ (-1)* a ~ (dB) . (10.3.27)

Proof: This is a "brute force proof". See Sjamaar p 22 for a denser proof which uses (10.4.1) below. The
forms are assumed to exist in R™ so x has n coordinates (n > k+k') and Zs = Zg=1" .

Consider, using (10.3.6),

0= fi(x) A //ak-form = do = X1 I [0sfr(x)] A% " Aal
=37 gx(x) A7  /ak'-form = dp = 5 Zg [0sga(X)] A5 A AaT

AN B= (T Fr(x) M) A (B ga(X) M) = X1 By Fr(X)ga(x) MnT A a?
= d(0"B)= X' X'y Ts Os[fr(X)gs(X)] A5 A Aal A AT
Then just evaluate the right side of (10.3.27) :
(da) "B = (T'1 Ts [0sf1(0)] A% " AaT) A (g ga(x) An7)
= T2 Zs [Osf1(X)] ga(X) A% A haT A a7
o0 (dB) = (Z1 f2(3) M) " (Bl Zam1” [0sga(0] A% " 17

= Y1252 fr(X)[0sgr(X)] AT A had A0AT

Y125 Ze fr(X)[0sgr(X)] (-1)F A% ARaT ARaT
Here AT A A5 = (-1)¥ A% ~ AaT because AS has to slide left through k vector wedge products. Then

o) A B +(-DF 0" (dP) = T'1 'y Temr® [Osfr(X)] ga(x) A5 A AaT A RaT
+ Z'I 2'J Zs=1n fI(x)[asgI(x)] AS A}\,AI /\}\,AJ

=21 %5 Zem” { [0sf2(0)] ga(x) + fr(x) [Osgz(0)] } A% A AaT A7

= Z'I Z'J Zs=1n 6s[f1(x)gJ(x)] }\,S A )\,AI A }\,AJ

=d(a”"p). QED
Reader Exercises: (10.3.28)
(a) Show that d is a linear operator so d(sia + s2B) = sida + s2df for any forms o and 3 .
(b) Use (10.4.1) below three times in (10.3.27) and show result is consistent with (10.3.27) for d(p " o).

(c) Write an expression for d(ap"y) where a,B,y are forms of rank k, k' and k".
(d) Write an expression for d(a1” a2” ...om) Where a; are ks -forms.
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10.4. Commutation properties of differential forms
Recall these three results from Chapter 8 concerning elements of A(V),

o SAFa= (-1)* T Sa ranks of the two dual tensors are k and k' . (8.9.c.6)

o In a product of tensors (J1)+"(F2)~" (T 3)....of rank k1, k, k3 ..., if two tensors are swapped
(Tr)» &> (Ts)~ (with r <s), the resulting tensor incurs the following sign relative to the starting tensor,

sign = (-1)" where m = (K41 k42 ... ks-1)(Ketks) + Keks (8.9.¢.6)
e G =0 for any N>n+1 assumingk #0 . (8.9.d.9)
In the language of differential forms these three results become
e o B=C-D*Bra o =k-form, p= k'-form (10.4.1)

e 0102 Or.Os..ox = (-DMag N a2 N Os e O L D Ok

where m = (Kp41tkes2 ... tks-1)(krtks) + keks (10.4.2)
e o =0forN>n+l dim(V) =n a = any k-form with k> 1
where o™ = 0 o ... a . (10.4.3)

Equations (10.4.1) and (10.4.3) appear in Sjamaar as "2.1 Proposition" and the preceding equation on
page 19 . In Sjamaar, Buck and many other source all  symbols are suppressed so (10.4.1) is written off =
(-1)**'Ba and one must understand that these are wedge products in A(V).

10.5. Closed and Exact, Poincaré and the Angle Form

Closed: If da = 0 for a k-form a, a is said to be closed. The analogous fact for a function f(x) with df =0
would be that f(x) = constant. (10.5.1)

Exact: Sometimes one finds that a form o can be written o = dff where P is some other form. If o is a k-
form, we know from (10.3.7) that  must be a (k-1)-form. When a = df for some form f, a is said to be
exact. We showed in (10.3.10) that dZB = 0 for any form P, so it follows that if a = df, then doo = 0 and a
is closed. Thus we have shown that : (10.5.2)
Fact: If a is exact, then a is closed. (10.5.3)

In 1D calculus if f = dh/dx one says that dh = f dx is an "exact (perfect) differential" and one then writes
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[ dx = fb(%)dx = [ " dh =h()-hev) dh=(%)dx. (10.5.4)

In nD calculus if f= Vh one says that dh = Vh e dx is an exact (perfect) differential. The above integral
then becomes a line integral over a smooth curve C having endpoints a and b,

[Pfx)edx = [P Vhedx =Jc dh =h(b)-h()

where
dh=Vhedx = Zi=1n (aih(X))dXi = 25_:1“ i(X) dXi = f(X) o dx. (1055)

The line integral depends only on the line endpoints a and b, and not on the particular shape of the curve
C joining a and b. For a closed curve a =b and one finds

J ¢ dh = h(b) - ha)

$dh = h(a)-h(a) =0. (10.5.6)

In physics if f(x) is a "conservative force field" (like gravity) then h(a) - h(a) = 0 is the work done in
moving a particle that senses the field (has mass) around a closed path.

A similar theorem exists for oo = dg where g is a 0-form (a function) and o is 1-form. Here we provide a

preview of things to come. C' is a curve in X'-space running from point a' to point b', while C is the
pulled-back curve in x-space running from a to b, where a' = F(a) and b' = F(b) :

fcv Oxr = fcvdg(x') // 0g' =dg so0 0 is an exact 1-form (g is a function)
= fc F*(dg) // pullback of a 1-form, (10.11.2) with Bx = F*(dg)
= fc d[F*(g(x"))] //fact (10.7.22) that d commutes with F*
:fc d[g(F(x)] // fact (10.7.19) item 1 (pullback of a function) that F*(f(x')) = f(F(x))
= g(F(b))-g(F(a)) // think of g(F(x)) as h(x) so d[g(F(x)] =dh
=g(b')-g(a"). (10.5.7)
Then for a closed curve C' the line integral of an exact 1-form vanishes,

o 0x =g@)-g@)=0 (10.5.8)

in analogy with (10.5.6). A 1-form a being exact is like dh being an exact differential.
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Fact (10.5.3) above says o exact = a closed. Is it possibly also true that o closed = o exact and so then
the two descriptions are one in the same? The answer is "not quite" as expressed in this claim:

Poincaré Lemma: If any differential form a on R™ is closed for x in some open star-shaped domain in R™
which includes the origin, then a is exact. (Poincare for PDF search) (10.5.9)

This Lemma appears on p 94 of Spivak from which we quote,

4-11 Theorem (Poincaré Lemmma). If A C R"isan open
set star-shaped with respect to 0, then every closed form on A
is exact.

and Spivak proceeds to give a detailed proof. In topological language, the star-shaped domain is any
domain that is "contractible to a point". Certainly the Lemma is valid for a domain which is an open
"cube" or "sphere" (n dimensions) about the origin. The domain need not be convex (as the star shows).

A classic application of this theorem involves the so-called angle form defined on R? with coordinates

(X1,X2),
o= Ei=12 fi(x)ki where f1(x)=- (x2/r2) 2= x12 + x22 .
f2(x) = (x1/1%) (10.5.10)
Then
do=32; df; ()N = Zi3 (05f) AF ~AF

Notice that, using the fact that 0;r = x;/r,

(01f2) = d1(x1/t?) = [P * 1 -xq (O1rD)] /1t =[ 1% - x12r (B10)] /1% = - [1? - x12r(x2/1)] / 1*
= [r2 - 2x12] /1* = [x12 + xzz - 2x12] /= (xz2 - x12) /1
and
(D2f1) =- 02 (x2/1?) =-[12 * 1 =X (D212)] /1* == [1? - x22r (Bar)] / 1* =- [1* - X221(x2/1)] / 1*
=- [r2 - 2xz2] /1t =- [x12 +x22 - 2X22] /rt = (xz2 - x12) /1t = (61f2) .
Thus it turns out that the quantity (05f;) is symmetric under i <> j. Then by the argument (10.3.11) we get
do= Zi35 (@5f) A3 ~AY =245 (Si5)(ATH) =0 — o= closed
so a is a closed 2-form. As we shall show below in (10.12.21), the line integral of o around a circle

centered at the origin gives fﬁ o = 2m. Thus the angle form is not exact because if it were one would have

fﬁ o =0 as in (10.5.8). So here is a form a which is closed, but which is not exact. The condition of the
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Poincaré Lemma must therefore be violated, and that is indeed the case since the form o is undefined for r
= (0 where f1 and f2 blow up, so a is then defined only on R? punctured at the origin, sometimes written
R?/ {0} or R? - {0}. Thus we can't have any open star-shaped domain including the origin for o, so
Poincaré's Lemma does not apply. Note that R?- {0} is not "simply connected" due to the puncture hole.
The presence of holes ("multiply connected") means that line integrals are no longer path independent.
Here a line integral around the hole gives 2w, whereas one not looping the hole gives 0.

Our plan now is first to define the "pullback" of a differential form, and then in later sections to use the
pullback to define the meaning of integration of a differential form over a manifold. But we wish to show
how the notion of a pullback fits into the general transformation scenario of Chapter 2, and this requires
several digressions before we get to the pullback discussion in Section 10.7 through 10.9.

10.6 Transformation Kinematics

Much mathematical hardware accompanies a mapping. In mechanics, the selection of an appropriate set
of coordinates and corresponding basis vectors is sometimes referred to as stating the kinematics of a
problem (as opposed to the dynamics which involves equations of motion). Here we apply this term
loosely to the cloud of equations associated with a mapping. Not all these equations will be used in our
analysis, but we like being able to see them all in one place just in case something is needed.

In the following Sections we shall move in and out of the Dirac notation of Section 2.11 in a somewhat
repetitive fashion intended to make the reader more comfortable with that notation.

The notion of a pullback is often presented as "something new", but the main point of the following
sections is to show that the pullback operator is just the R/ matrix/operator of the underlying
transformation.

In Chapter 2 we discussed the transformation x' = F(x) from x-space to x'-space using Picture A (2.1.1).
The vector transformation and "the differential" (the R-matrix) of the transformation were given by

V'@ = R3%VP R3, = (0x'*/0xP) = dpx® =(VF) = (DF)%, = (DF)% (2.1.2)
dx'® = R%,dx® dx' =Rdx . (2.1.12) (10.6.2)
Here V' = R®,V® shows the transformation of a contravariant vector under x' = F(x). In matrix notation

one would write V' = RV. Repeated indices are always summed unless otherwise stated.

Above we have defined VF and DF as alternate names for matrix R because many authors (like Spivak)
use this notation. In Tensor (E.4.4) we show that this is in fact a "reverse dyadic notation". Often (DF)?,
is written unbolded (DF)®y so then R = (DF) with the idea that a matrix like R is normally not bolded.

(a) Axis-Aligned Vectors and Tangent Base Vectors : The Kinematics Package

We gather here various facts derived in Chapter 2 which comprise our "kinematics package" for the
transformation x' = F(x) . We cosmetically flip Picture A of (2.1.1) left to right.
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Picture A /’:;(x)\*
8.R

X-space x'-space
g g
R® R™ m>n
(a) x'=F(x) transformation R.ij = (ax:i/ﬁxf') = 6jx'i. R = (DF)
V'=RV vector S*y = (ox*/ox7) =0'yx* (2.1.2)

(b) €5 with (e's)? =833

axis-aligned basis vectors in x'-space (i=1..m) (2.5.2)

e e;=Se'y tangent base vectors in x-space (i = 1..n) (2.5.1)
(c) uy with (uy)? =857 axis-aligned basis vectors in x-space (i=1..n) (2.4.1)

u'y u';= Ru; tangent base vectors in x'-space (i = 1..n) (2.5.1)

(u's)? =Ry (us)*
(2.11.h.8)

(d) I'=|e's><e| = |e™> <e's|= |u's><u'| = |u> <u'y) completeness in x'-space

1= |es><er|= |e*><ei|= |u;><u| = |ut><u completeness in x-space
(e) (uj)i =ule uy = <u* lug> = gij =u? ou'y =<u' | u'y >

(e5' = utee; = <u'ley> =S'5=Ry’

(€3)" = eteey= <e™|ey> =g _
(u'5)" =eteu'y= <e™ [u'y >=R*j = S5*

(f) el= g-ij e o't = gvij e'j. ul= gij us
e; = g'ij e’ e'y = g’ij e u; =gij u’
(g) <es |S|e™>=<e [R|es> = gy
<e; | S| ut>= <y | R|es> = Sij = Rji

<uj |S|e*>= <e* |R|uy> = R*j=S;*
<uy | S|ut>=<u? | R|up> = g'y.

(h) S=RT S§=R' $*5=(R")*; =Rs*
R=S" R=S§" RY; = (S5 =8t
(i) S=R?* R=ST? RS=SR=1

RRT=R'R=5ST=8"s=1.

ol _ el
=e eoey = <e |ey>

(2.5.8)

i i
uT =g uly

' =giyu

(2.3.2),(2.4.2),(2.5.6)

J

/] <e™ | Rey> = <e' | e'y>= g'ij from (e)
// <u'™ | Res> =<u' | e'5>=Ry" from ()
// <e™ | Rus> =<e'* | u's>=R"; from (e)
//<u™ | Rus> =<u"™ | u'y>=g*y from ()

(2.11f3), (2.11.f1)

(2.11f3)
(10.6.a.1)

In item (g) one has in general <a | S | b> =<a| R |b> =<b|&R|a>asshownin (2.11.g.11).
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In any equation above, any index or label can be raised or lowered on both sides. The object gij is the
tensor-correct form of g*5 =" = 83,5 , allowing for indices to be raised and lowered, see (2.2.2). Here is
a sample Dirac notation manipulation using the above information (implied sum in completeness),

e*> = [1]|e*> =] u?><ujle*> = [uI>R*; =R*j [u?> or  e"=R%ju’. (10.6.a.2)

The result e* = Rijuj appears in (2.4.4) showing that Rij is the basis change matrix between these two
sets of basis vectors. Notice that an equation like e* = Zj=1“ leuJ is a "vector sum equation" since it has

a sum of vectors on the right side. No component indices appear on the vectors in this equation (i and j are
labels).

As discussed in Section 2.11 (g), abstract operators in the Dirac space will be written in script font. The
operator R for example is completely determined by all its matrix elements <e'"| R | u5> = R*j. The

identity operator in a Dirac space we then write as / for x-space and /' for x'-space, as appear in the
completeness statements of (10.6.a.1) item (d).

(b) What happens for a non-square tall R matrix?

In Chapter 2 and in Tensor it was assumed that x' = F(x) was an invertible mapping F: R"—R" . Now
however we wish to consider the non-invertible mapping x' = F(x) where

F: R —» R" m>n

F: x-space — x'-space x € R", x' e R" F(x) =x' . (10.6.b.1)

In R®, = (8x'%/0x®) the row index a ranges 1 to m, while column index b ranges 1 to n. Thus the down-tilt
R matrix is a "tall" non-square matrix having m rows and n columns with m > n.

As outlined in Section 10.2 and Fig (10.2.1). if we let the variable x exhaust some domain U within x-
space, the mapping x' = F(x) generates a "surface" embedded within x'-space = R™ which has dimension
n. We assume that the mapping F has appropriate properties so that this surface is a Manifold M.

Thus, the mapping x' = F(x) is defined in effect for all x in R™ (or perhaps for a region U in R" as in
Fig (10.2.1), and produces (as its image) the manifold M within R™ . The inverse mapping x = F"}(x') is
then only defined for points x' on the manifold M. For such points, the mapping and its inverse are
assumed one-to-one. This inverse mapping is a set of n equations which one can presumably write down.
The equations represent x = F~2(x') only when x' lies on M. For other values of X', the set of equations
still exists but no longer represents the inverse function x = F~X(x'). This point is hopefully clarified by
some Examples.

Example 1: Let U be a square in R? x-space with corners (-1,-1) to (1,1). We map this square into R?
using the following map x' = F(x):

=X
x3 =4[22- (x1)%-(x2)? x' = F(x) (10.6.b.2)
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The image in R3 x'-space is a partial upper hemispherical surface of radius 2 (see below).
What is the inverse mapping x = F~*(x') ? One can take it to be the first two lines above,

1 Xul

2 2
x“=x'

= x=F(x (10.6.b.3)

but the inverse mapping only applies to points x' on the hemisphere. The above two equations of course

exist for points x' not on the hemisphere, but they only act as the inverse mapping for points on the
hemisphere.

Here is Maple code for Example 1. The transformation is first entered and plotted, xp = x':

restart; r := 2;
=2
xp[1] = x[1]1;
Iy =xy
xpl2] := x[2]1;
APy =Xy
xp[3] = sgrt(r"2-xpl[l]"2 - xpl[2]172),

xpy = 4—x12—x22
plot3d{ [xp[l] ,xpl[2],xp[3]1],x[1]=-1..1,x[2]=-1..1,axes = boxed);

e
g
it eSS Y
fff!ﬂlf#f;”.. ’q}o&"“\“\\\\\\\\\\ _

RIS )
QR

L ommmen

Maple then computes the "tall" R matrix, Rij = (ox'*/0x7),

B = (i,3) -> diff(xpl[il,x[31);
=L =TTy,
_ J . £y
J
B := matrix(3,2 R ),
1 0
0 1
=

X X

1 2
\/47}(127;{22 \/47}(127:{22

The S matrix Sij= (0x*/6x') is computed by hand from (10.6.b.3) and is then entered into Maple. Maple
then computes the matrix products RS and SR,
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S = matrix(2,3,[1,0,0,0,1,01),;

evalm(R &* S),

evalm(s &* R},

Notice that RS # 1 while SR = 1.

Example 2: Let U be the same square as in Example 1, but the new mapping is this

x? =xt +2x? 1
x? =2xt +x? 2
x'? =x! +3x2 3 x' = F(x) . (10.6.b.4)

The image in R x'-space is a tilted plane passing through the origin. We reuse the above Maple code for
this example, but don't display the Maple output.

What is the inverse mapping x = F7*(x') ?
If one solves the first two equations for x* and x? the result is

xt =-13xT+2/3x?
x2= 23xT -1/3x? x=F1x) (10.6.b.5)

and this then can be taken to be the inverse mapping x = F'l(x'). Inserting these expressions into the third

equation gives

53x1-13x%2-x3=0 (10.6.b.6)
which is the equation of the tilted image plane passing through the origin whose normal is (5/3,-1/3,-1).
On the other hand, if one instead solves the second two equations in (10.6.b.4) one finds

x}=3/5x?%- 1/5x"
x2 = -1/5x2+2/5x3 x=Fx) . (10.6.b.7)

Notice that this inverse mapping is different from (10.6.b.5). When these two expressions are inserted into
the first equation of (10.6.b.4), one gets
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xS 1/5x2-3/5x2=0 (10.6.b.8)
Multiplication by 5/3 gives (10.6.b.6) so this is, of course, the equation for the same tilted plane.

In this Example we find that the inverse equation set x = F~}(x") is not unique. If we work with the first
and third equations in (10.6.b.4) we get a third set of inverse equations which we leave to the reader.

By visual inspection, the R matrix computed from x'= F(x) (10.6.b.4) is this:

12
R=R3% = (6x"*/0x°) = [2 1 J (10.6.b.9)
13

and is the "tall" R matrix for this example. For the two inverse transformations stated in (10.6.b.5) and
(10.6.b.7) we compute an S matrix, again by inspection (Maple did the products on the right)

12
e (1B 273 0) _(-1/3 2/3 0) _(10)
S‘Sb‘(a"/ax)‘(z/s 13 0 SR={ 23 _113 0 1 ; =01
(10.6.b.10)
12
e (0305 -1/5) _(0 3/5 -1/5) 7(10)
S_Sb‘(a"/ax)‘(o 15 25 SR={0 _1/5 2/5 1 ; =01

Thus we have found two different "left inverses" S of the tall matrix R. If we try out these S matrices on
the right of R, we find

12 1 0 0 100

RS =21 (21//33 21//3.;,8): 0 1 0J¢(010]
13 ) 5/3 -1/3 0 0 01
12 0 1/5 3/5 100

RS =| 2 1 (8 _31//55 21//55) o1 o0 J;ﬁ [0 I oj (10.6b.11)
13 00 1 0 01

Example 2 serves then to illustrate that a tall R matrix might have multiple left inverses, but those left

inverses are not also right inverses. It turns out that there are in fact no right inverses for a tall R, as
shown in section (c) below.

Before leaving this example, we comment on the "coordinate lines" in x-space using our first inverse
solution (10.6.b.5).

=13 xt+2/3x?

X
x2= 23xT -1/3x? x=F1x) (10.6..5)
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If we vary only x't (keeping the other two coordinates in x'-space fixed) both x* and x? vary, and not
surprisingly they define a certain line in x-space, and this is the coordinate line in x-space for x'* . If we
instead vary only x'2, again both x* and x2 vary and they define some other line in x-space, the x'?
coordinate line. If we vary only x| then x* and x? do not vary and this coordinate line is just a point!

Recall that the tangent base vectors e, are tangent to the coordinate lines in x-space. As shown in
(10.6.a.1) (e) one has (ej)i = Sij so the tangent base vectors are the columns of S, S = [e1, ez, es].

-1/3 2/3 0
Looking at S = ( 273 13 0 )for our first inverse solution, we see that the first two tangent base

vectors are indeed reasonable tangents to coordinate lines in x-space. Since the third coordinate line is just
a point, it can have no tangent base vector, and in fact ez = (0,0) which "resolves" this problem.

(c) Some Linear Algebra for non-square matrices

The linear algebra for non-square matrices is a topic often omitted in linear algebra presentations. Here
we consider only the special case of two matrices where each has the shape of the transpose of the other,
and we cherry-pick a few relevant theorems. As shown below, non-square matrices never have two-sided
inverses, so one talks only about the possibility of such a matrix having a "right inverse" or a "left
inverse".

Consider then the following matrix products where we assume m >n :

(10.6.c.1)
A nameless matrix rank theorem states the following :
Fact: rank(AB) < min{rank(A), rank(B)} . (10.6.c.2)

Consider first the upper part of Fig (10.6.c.1). S and R each have some rank < n, since n is the smaller
matrix dimension. The Fact then says rank(SR) < n. Since SR is an n x n matrix, it could therefore have
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full rank n, and then it is possible that one could have SR = 1. This says that it is possible for R to have a
left inverse S, and for S to have a right inverse R.

Another nameless theorem states that if R has full rank n then in fact it has at least one left inverse S, and
if S is full rank it has at least one right inverse R. The theorem does not say how to compute these

inverses, nor does it suggest how many inverses there might be (a non-trivial problem). So,

Fact: tall R has full rank = R has at least one left inverse S
wide S has full rank = S has at least one right inverse R (10.6.c.3)

In our Example 2 above, matrix R in (10.6.b.9) has full rank 2, so we know it has at least one left inverse
S. We explicitly found two such left inverses S as shown in (10.6.b.10). Since each of these left inverses
has R as a right inverse, we know (and confirm) that each S must have full rank 2. Thus, we know (and
confirm) that two of the tangent base vectors e, are linearly independent (these being columns of S).

Now consider the lower part of Fig. (10.6.c.1). Fact (10.6.c.2) says rank(RS) < n, but the matrix RS is m x
m. Thus it cannot possibly have full rank m, so it can never be the m x m identity matrix (which would

have rank m). We may then conclude that R has no right inverses and S has no left inverses:

Fact: tall R has no right inverses
wide S has no left inverses (10.6.c.4)

Corollary: A non-square matrix cannot have a two-sided inverse. (10.6.c.5)

If we take S = R”, then the two matrices on the right in the drawing are R'R and RR”. Yet another matrix
rank theorem says,

Fact: rank(RR”) =rank(R*R) = rank(R). (10.6.c.6)

If R has full rank n, then the small matrix RTR has rank n and so is full rank, det(RTR) #0, and R™R is
invertible. But the m x m larger matrix RR* having rank n must have det(RR”) = 0 and is not invertible.

Fact: If tall R has full rank n, then (R*R)™? exists.
For any tall R, (RRT)™* does not exist. (10.6.c.7)

With this in mind, another theorem says that if tall R is full rank, then we know one of its left inverses:
Fact: Iftall R has full rank n, then one left inverse is given by S = (RTR)'IRT . (10.6.c.8)
Proof: By the previous fact we know (R™R)™? exists, so SR = [(R"R)"*RTIR =((RTR)? (R™R) =1.
Fact: If wide S has full rank n, then one right inverse is given by R = ST (SST)'I. . (10.6.c.8)

Proof: Reader exercise.
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We mention in passing two other matrix theorems for arbitrary conforming matrices A,B,C:

Fact: (Sylvester's Inequality)
rank(A) + rank(B) <rank(AB) + n where n is the conforming dimension (10.6.c.9)

Fact: (Frobenius Inequality)
rank(AB) + rank(BC) < rank(ABC) + rank(B) (10.6.c.10)

(d) Implications for the Kinematics Package

The set of relations shown in (10.6.a.1) still stands for F: R®— R™ with its tall R matrix, with the
exception of the last item (1),

(i) S=R™* R=S' RS=SR=1 RR"=R'R=88"=5"s=1. (10.6.a.1)
This must be replaced by
(i) SR=1  SS'T=R'R=1 (10.6.d.1)

since RS # 1 and two-sided inverses R™Y and S™* do not exist for F: R*— R™ with m>n.

A second implication is that certain items in the kinematics package are no longer unique. We have
already seen that S*j is not unique, so anything depending on S*j is also not unique. Here is a list
showing which objects are unique, and which are not:

Metric tensors

gij, g*3  unique

g’ unique, since g7 = R*;RI,g*°

g'i3 not unique, since g's 5 = Riaijgab = SaiSbj gap and Sij not unique

Transformation matrices

Rij = Sji unique (tall R matrix from x' = F(x))

R* =g3t unique since R*3 = g3R*, and both g2 and R*, are unique
R;* = S%; not unique

Riy =S5: not unique, since Ry = g'sa Raj and g';  not unique

Axis-aligned basis vectors

(uj)i unique since (uj)i = gji (e'j)i unique since (e'j)i = g'ij = ﬁij)
(u3)i unique since (u3); = g3i (e'y)1 motunique since (e'5); = g's5
(ud)* unique since (u?)* = gI* (e')* unique since (e'?)* = g3

(ud); unique since (u?); = g3; (e'9); unique since (e"7); = g7 (=8;9)

201



Chapter 10: Differential Forms

Tangent base vectors

(ej)i not unique since (ej)i = Rji (u'j)i unique since (u'j)i = Rij

(e5)1 not unique since (e5);: = Ryi  (u'y); not unique since (u'y); = Rij

(eh)* unique since (e?)* =R3* (u'?)* unique since (u'?)* =R*3

(eh); unique since (ej)i = R3; (u'?); not unique since (u); = RyI (10.6.d.2)

(e) Basis vectors for the Tangent Space at point x' on M
From (10.6.a.1) we select as a basis for x-space the set of n axis-aligned basis vectors uj,
{ui} i=1,2..n basis for x-space
(ug)? =35, components of these basis vectors in x-space . (10.6.e.1)
These map into a set of n tangent base vectors u'; in x'-space,
u';s =Ru; |ll'j_>:gl|lli> (2.5.])
or
(u'3)? =R7; (u;)*=R7,6;=R7; i=12.n j=12.m . (10.6.e.2)

We know that u'; = R u; because this is the way any vector transforms: v' =R v.

Since there are m basis vectors in x'-space, we define the rest of the u'y arbitrarily such that the m basis
vectors {u';} in R™ are linearly independent, so

u'; = as needed i=nt+l,nt+2 ...m. (10.6.¢.3)

Note in (10.6.¢.2) that (u's)? = RI (u3)? = Zo—1™ RIL(u3)? is a "component sum equation”, in contrast
with the "vector sum equation” e* = Zj=1"Rijuj appearing in (10.6.a.2). To summarize for u'; :

lll—

Rus i=1 through n
(10.6.e.4)

asneeded i=n+1 through m

We show just below that the first n u'; span the tangent space Tx:M. Since the remaining u'; must be
selected so that the full set of m u'; is a basis for x'-space, we know that the higher m-n u'; must span the

perp space (Tx-M)™ of the tangent space, and this space is said to have codimension m-n within R™.

Based on (10.6.¢.2) that R3; = (u';)?, one concludes that the columns of R« are the contravariant basis
vectors u'; which span TxM. Each of these u'; has m components and R« has m rows.

R = [u'y,u'2...u'n] . (2.5.9) (10.6.¢.5)

As long as R*« has full rank n, the columns are linearly independent so the u'; form a (complete) basis.
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We now show that the first n tangent base vectors u'; do in fact span the tangent space Ty M.

Assume that, as x ranges over some portion of x-space, the mapping x' = F(x) describes a "smooth
surface" M embedded in x'-space, hopefully a manifold or a piece thereof. If we start at some x and move
to x + dx in x-space, we move from some point X' on M to some nearby point x' + dx' on M. By the
definition of M, this dx' lies on the surface M and so is tangent to the surface M at x' and thus lies in the
tangent space Ty M of M at point x'. Applying R to each of the n axis-aligned differentials dx* = dx*(u;)

in x-space (no i sum), we thereby generate a set of n differential vectors dx'* = Rdx* in x'-space which are
in effect a set of short basis vectors which span the tangent space Tx+M. Since dx'* = dx'* (u';), we may
take the basis vectors {u';, i=1,2..n} as spanning Tx M. The upper u'; are orthogonal to M and span the
perp space (Tx'M)™* as noted.

We know from the fact u'* e u'y = Sij that the up-label (dual) vectors {u'?, i=1,2..n} also form a
basis for the tangent space Tx'M. This conclusion can be reached as well by raising all i indices in the
previous paragraph. In this case, the set {u'*, i=n+1,n+2..m} are then all orthogonal to the "surface" M.

These last paragraphs and (10.6.¢.5) have shown that:

Fact: The first n x'-space tangent base vectors u'y, which are the columns of full-rank R*x , span the
tangent space Tyx+M at point X' on M, and this is true as well for the u'* . (10.6.¢.6)

10.7 The Pullback Operator R and properties of the Pullback Function F*

The Pullback Operator £

From (10.6.e.2), or just from the fact that vectors transform as v' = Rv, we know that
u';= Ru; u's>=R |u;> i=12.n . (2.5.1) (10.7.1)

One can say that the n axis-aligned basis vectors u; in x-space are "pushed forward" by R to become the
tangent-space-spanning vectors u'; in x'-space. Applying S to both sides and using (10.6.d.1) that SR =1,
one finds that

ui=Su'y u;>=8 |u's> i=1,2.n . (10.7.2)

From the package (10.6.a.1) item (h) we know that S = R" and § = R for the corresponding Dirac
operators, so the above may be written,

u;=R" u'; u;>=R" |u's> i=12.n . (10.7.3)

Thus, while operator R "pushes forward" the |u;> to the |u';>, the operator R "pulls back" the |u';>
from x'-space into the |u;> in x-space, just reversing the first process.
For the label-up u and e basis vectors one then has,

u't =Ru? u'*>=R [u*> i=1,2.n push forward
uf =R vt lut>=R" jui> i=12.n pull back
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e'* =Re’ e'> =R e*> i=1,2.n push forward
et =RT e ei>=RT |e'i> i=12.n pull back . (10.7.4)

Here is a picture, reminiscent of Fig (2.5.4) (but reversed left to right), showing the above activity just for
the u' and u'* basis vectors,

R n Xn Rl’l‘l X11'|:|,

x-space X' = F(x) X-space

' tangent base

X
axis-aligned \‘xu,l vector
base vector
xe /:’

ul :RT ull

pull back
(10.7.5)
In the dual space of bras (linear functionals) (10.7.4) becomes, according to (2.11.g.10),
(“'i)T: (“i)T R" <u'i| = <ui|f72T i=1,2.n push forward
h* = @R <ul| =<utR i=12.n pull back
(e™)™= (&M’ R' <e'|= <ei|:7£T i=1,2.n push forward
(e = (MR <el| =<e R i=12.n pull back . (10.7.6)

We refer to the R operator acting to the left as the pullback operator.

A picture similar to (10.7.5), which has dual x-space (R™)* on the left and dual x'-space (R™)* on the
right, would show the push forward <u'!| = <u1|fRT in red and the pullback <u'| = <u'*|® in blue. Below

we shall have hybrid pictures showing the non-dual spaces but also showing the mapping of linear
functionals between the dual-spaces.

Recall now the notations used in (8.7.1) for basis vectors in the dual wedge product spaces A®(R™) and
AR,

AT = attagiza Atk o el ] s<ertl] A <2 A A <ett

T = At Aapt2a | Apie = <u.t| =<ul A <u®2 A A <ol (10.7.7)

where the e' (u?) are axis-aligned basis vectors in x'-space (x-space). Recall also that,
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<e'| =<e'|R (10.7.6)
et =RY%ud or |er>=RYyuI> = <] = RYy<ud| = <eMR . (2.4.4)
Then,
<e'" IR = <e"LR N <e"2RN ... <e" K| R //(8.9.d.15)
= (R*1y,<udl|) ~» (R*25,<uI2|)~ A (RY%y <udk]) // (2.4.4) above
= Rilleizj2 ...Rikjk ( <uIl| A<ud2Zr A<yl // reorder
=37 RY; <u.’| // multiindex
or
WAt R] = <e'" R =ZsRYy<ud| =ZsRI A7 . (10.7.8)

On the last line we write [\'a* R] where R acts to the left on A'< as a reminder of what is happening in
the Dirac notation. For k=1 one would write <e|R =[A*R].

Eq. (10.7.8) shows that the pullback of a k-form basis vector '’ = <e'~*| from dual x'-space to dual x-
space is a linear combination of k-form basis vectors A+’ = <ua?| in dual x-space which is then some k-
form in dual x-space. The above equations are meaningful for k > 1.

For k=0, a 0-form in x'-space is just a scalar function f(x'). Since there are no basis vectors involved, there
is no shuffling with RYy and the pullback of the scalar f(x') is just itself. That is to say, there is no
distinction between the spaces A°(R™) = V° = K and A°(R™) = V' = K where K is the field of scalars .
However, in x-space we want any object to be expressed in terms of x-space variables, so we write f(x') as
f(F(x)) since x' = F(x). Therefore,
Fact: The pullback of a 0-form may be written as

[(f(x) R] = f(x)= f(F(x)) (10.7.9)
so R is really the unity operator in this A° = V = K (scalars) space. Note that

[f(x)g(x) R] =f(x)g(x') = [f(x) R] [f(x) R]. (10.7.10)

The pullback of a 0-form (a function) times a k-form basis vector is then,

[f(x') Ml ] R =<f(x) "1 | R

=(fix)<e' IR // the space A™(R™) is linear since it is a vector space
=f(x') (<e' ' | R) /I R is a linear operator as in (2.11.g.29)
= [f(x") R] [M-T R ] // using (10.7.9) and (10.7.8) . (10.7.11)
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The pullback of an arbitrary k-form is then given by,
Oxr =27 fr(X)MAT e A% // k-form as in (10.2.3) (10.7.12)

[0 R] = <Z'1 fr(x) €' | R

= [Zrfix)<et|]R // the space A¥(R™) is linear since it is a vector space
= ¥ fix) [< et | R] // R is a linear operator as in (2.11.g.29)
=3 fr(x) [ AT R ] NSER

T fr(F(x)) Z3RI A7 //(10.7.8)

Y5 [ Z'1 fr(F(x)) RT3 ] A7 // reorder

T3 Ga(x)? e A¥ where Ga(x)=2'; f1(F(x)) R . (10.7.13)

Note that oy is a k-form in dual x'-space, while [0k R] is a linear combination of the A7 and therefore is
a k-form in dual x-space. This will be rewritten with the ordered sum X' in Section 10.8 below. So,

Fact: The pullback of a k-form in A®(R™) is a k-form in A¥(R™) . (10.7.14)
Finally, for a general k-form scaled by a function g(x'), using the same steps as above,
(g(x)ax )R =<g(x)ax [ R =gX) <ox [R = [g(x)R ] [0x R] . (10.7.15)
The pullback of a rank-k tensor function is obtained by closing [ax ®] with a vector in the space V¥,
[ox R](V1,V2...Vk) = < 0x' |R]| V1,V2....V>
=<ox' |R[ |V1>®|v2> ... ® | vi> ] // definition of |vq,Vz....vi>
=<ox' |[ |RV1>® |Rvy> ... ® | Rvi> | /1(5.6.17)
= <oy | Rvy,Rva...Rvi>
= Ox'(Rv1,RVa... Rvy) . (10.7.16)
The object ay: (Rv1,Rva....Rvy) is a rank-k tensor function in A™g(R™) : the functional ox: lies in A™(R™)
while the k vector arguments v'; = Rv; all lie in R™ . In contrast, the object [ox' R] (V1,V2....Vx) is a rank-k

tensor function in A*¥¢(R™): the functional [0 R] lies in A¥(R™) while the k vector arguments v; all lie in
R"™. The functional [0+ R] is the pullback of the functional ay'. Equation (10.7.16) says that the pulled-
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back tensor function [ox+ R] in A¥¢ when evaluated at arguments (v1,V2....vx) is equal in value to the un-
pulled-back tensor function oy in A'kf evaluated at arguments (Rvi,Rv,....Rvy).

These tensor functions are the objects that Spivak [1965] uses and he refers to them as k-tensors.
Presentations which use only tensor functions regard (10.7.16) as the definition of a pullback [ox' R] of a
differential k-form oy .

The Pullback Function F*

The notation used above with the Dirac operator R acting to the left on a dual space vector is a bit
clumsy, so one defines the following pullback function where <a| is any k-form in A™(R™),

F*(') = <d'| R /o' = ok (10.7.17)
F*: A¥R™ — A¥R?) . (10.7.18)

Recall that the differential matrix R = (DF) and its associated Dirac operator R are specific to the
underlying general transformation x' = F(x), so to be more precise we could have written Ry and Rg. The
letter F in the function F* makes this connection explicit.

Various equations above can now be recast in terms of the pullback function F* :

Some Properties of the F* pullback function (10.7.19)
0 F*0o) =<a'|R = <d'|Rr // definition of F*, (10.7.17)

1 F*(f(x)) = f(x') = f(F(x)) // F* on a 0-form, (10.7.9) fork=0

2 F*(f(x) g(x') ) = F*(f(x")) F*(g(x") // F* on a product of two 0-forms, (10.7.10)

3 F¥(f(x") M'aT) = F¥(f(x")) F*( X'aT) // F* on 0-form and basis-vector k-form, (10.7.11)

4 F*(MaT) =Z5RIz A7 // F* on a basis-vector k-form, (10.7.8) for k > 1

5 P\ = 25 Rij A3 // F* on a basis-vector 1-form, k=1 of the above

6 Ox =21 fr(X)\'AT // general k-form in A*R™), (10.7.12)

7 F*(ox')= 2'7 f1(F(x)) g Rz AA7 // F* pulling back a general k-form from A™, (10.7.13)
8 F*(g(x') 0x')=F*(g(x") F*(ax) // F* on a 0-form times a general k-form, (10.7.15)

9 [F*(ox')](V1,V2...vx) = dx'(Rv1,Rva...Rvy) // F* pulling back a rank-k tensor function, (10.7.16)
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Note that X5 in items 4 and 7 is the redundant symmetric sum. In (10.8.2) below we restate items 4 and 7
using the ordered sum X'5, and then we restate everything again using cosmetic notation.

Other Properties of the F* pullback function

Fact: F* is linear, so F*(s1a' + s2f") = s1F*(a') + so2F*(B") where o' and p' are k-forms. (10.7.20)
Proof for k>0 : F*(sia'+s2f') =<sia'+ s2B'| R //(10.7.19) 0, definition of F*

=s1(<a' [R) + sa(<P' |R) // R is a linear operator, see (2.11.g.29)

= s1F*(a") + so2F*(B") //(10.7.19) 0, definition of F* twice

Proof for k=0 : F*( s1f(x') + s2g(x') ) = s1f(x') + spg(x') //(10.7.19) 1, definition of F* on a function
= F*(s1f(x')) + F*(s2g(x")) // (10.7.19) 2 definition of F* twice

=s1F*(f(x")) + s2F*(g(x")) //(10.7.19) 2 and 1

Fact: F*(a'y " a'2 M. a'y) = F*(a'y) » F*(a'2) 2.2 F*(o'y) where o'; is an arbitrary k;-form. (10.7.21)

Proof: F*(a's Ma'2 M../had'y) = [<o'p] M<a'z] M. N<a'y| ]| R //(10.7.19) 0 + Dirac notation
= [<a'l R "<a'zl R M. N <day R ] //(8.9.d.15)
= F*(a'y) * F¥*(a'2) *.." F*(a'y) - //(10.7.19) 0 QED

The result is valid if one or more of the forms are 0-forms. In this case, the two ~ operators surrounding a

0-form can be replaced by one . For example, <a'i| " f(x) * <a's] = f(x) <a'y| ™ <a's| . In vector space
notation, one has A"~ A° A A™ = A™ A A™ where A° is the space of scalars.
Fact: F*(da') = d(F*(a')) where o' € A™ is a k-form in x'-space (10.7.22)

This Fact says that the pullback function F* commutes with the exterior derivative operator d.

Proof: Show that Left Hand Side = Right Hand Side:

LHS: o = Z':fi(x) M- e A® (k-form in x'-space) /1 (10.7.12)
do' =2'1 dfi(x") M'aT = Z'p Z51™ [05Fr(x)] AT ANNE e AR //(10.3.6)

F¥(da) =X'1 Tyz1™ [0'5Fr(x)] F*QAI AT e AR // (10.7.20) F* linear
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=31 Ty™ [0'5F2(x")] FXAT) A FFQAT) /1 (10.7.21) product
RHS: o = Z':fi(x) M- e A® (k-form in x'-space) //(10.7.12)
F*(a) =2'; F¥(fr(x)) F¥(XaT) e AF //(10.7.19) 3
=3'1 fi(F(x)) F¥(\'a%) e AF //(10.7.19) 1
d(F*(a)) = 21 dfi(F(x))) F*(M2T) e A¥*? //(10.3.6)
= ¥ T521™ [0'5F0(X") Te=a® (OX'I/0xT)] AT A FH(UAT) // (10.3.6) + chain rule
= X'1 Zy=1" [0'5F2(X") p=a” RI 1A% A F*(LaT) /1(2.1.2)
= ¥ Z521™ [0'50(X")] (Ze=1® RIp AF) A F*(WaT) // regroup
= ¥ T521™ [0'5f0(x")] F¥(AF) A FX(WAT) //(10.7.19) 5
The LHS and RHS results are the same, so F*(da') = d(F*(a")) . QED

Corollary: d(F*(da'))=0. (10.7.23)
Proof: d(F*(do')) = d(dF*(a')) =d® [F*(a')] =0 //(10.7.22) then (10.3.10)
Fact: F*(G*a)=(GoF)* a where a is a k-form (10.7.24)
Proof: This theorem involves two mappings F and G which are composed to form a third H :

x"=G((x") x'=F(x) Xx—>x —->x" x—ox"

F G H

x"= G(F(x))=[GoF J(x) =H(x) = H*=(G o F)*

dx" = R¢ dx' dx'=Rgdx = dx" = RgRrdx

x"=H(x) = dx" = Rudx SO: Ru=RgRr and Ry = ReRr
Using the definition (10.7.17) that F*(B) = <B|Rr and G*(a) = <a|Re we find,

F*(G*a) = F*(<a|Re ) = (<0|Re) Rr =<0a| ReRr = <0|Ra=H*(0)=(GoF)* () QED
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If o is a 0-form (a function) o = f(x"), then by (10.7.19) item 1,
G*(f(x")) = f(G(x"))
SO
F*(G*a) = F*(G*f(x")) = F*(f(G(x"))) = f(G(F(x))) = f((G o F)(x))
= f(H(x)) = H*(f(x")) = (G o F)*(f(x")) = (G o F)*«a QED

A Chapter 1 style category diagram for this scenario would be

X-space F X'-space
AXV)® > ¢ AXVY)
L6
G Y Ak(V")
x"space

(10.7.25)

The following hybrid drawing shows the forward mapping x' = F(x) between the non-dual spaces, and at
the same time the pullback Py = F*(ux+) from the dual space A'* on the right to dual space A on the left,

n Rl'n m
R x pullback x'-space =
X-space Bx =F*(ax+)
---------------------- — T~ ).
U Bx [ >es
xe_ forward map {
x2 x' = F(X) V W x'2
x1 open region U, dim(U) =n x'1 open region V, dim(V) = dim(M) = n
Bx € A* (U cR®) Oy € AR(V < M c Rm)
(10.7.26)

Here By is just a made-up name for the pulled back k-form ox:. Recall that X' on 0oy means that the k-
form oy = X't f1(x") AT s specific to the point x' on manifold M, while the x on Bx means that the k-
form By is specific to the point x in x-space.

10.8 Alternate ways to write the pullback of a k-form

The ordered sum form of a k-form pullback

Certain expressions above contain the sum X5 RT3 A~ . As shown in Appendix A, because the object R 5
has a "factored form" , this sum can be written as on ordered sum X'y as follows

T3 RI; A7 = 25 det(RT5) A7 /1 (A.8.37) (10.8.1)
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where the determinant magically appears. We can then rewrite two items from (10.7.19) :
4 F*(\MaT) =35 det(R%y) An? // F* on a basis-vector k-form
7 F¥*ox')= 2'7 f1(F(x)) X'y det(RTy) A7 /I F* pulling back a general k-form from A*
=37 gs(X)A?  where  gs(x) =31 fr(F(x)) det(RYy) . (10.8.2)
It is useful to write out (10.8.2) in full detail. using the cosmetic notation A* = dx! ,
F*(oxr) = Z1<39<9p<. .. .<jgsn Z1<ig<ip<....<ig<m lizip...i(F(X))
* det [RYg] * ( dx™L A dx*2 ..~ di'k)
= Z1<iq<io<....<igsm figip.. .1 (F(X))
Y1<ii<in<. . . .<ixsn det [RTg] * ( dx'L A dx*2 A di'k) (10.8.3)

where RY; is this kxk matrix,

R, R, .. R,
RY; = R'2;, R'2, .. R*23,
Rikj1 Rika... Rikjk (10.8.4)
where _ _ o _
RY; = (DF); = (@FYoxd) = o5F (x) . //(10.6.2)

The object det(RT5) is a k x k minor of the full "tall" m x n matrix R, so k < n < m in our application.
Remember that, due to the ordered sums, all the i, are different, and all the j, are different, so no row or
column appears twice in R% 5.

The dF?* form of a k-form pullback

It is customary to define the object shown above in (10.8.1) as a certain k-form,
dFs = 23R M7 = 25 det(R) a7 . (10.8.5)
The motivation for doing this arises from the k = 1 case where the above becomes

dF' = R} 03 = RYy (10.8.6)
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where we replace A3 by its cosmetic notation dxJ. The above equation then "looks just like" the normal
calculus differential one obtains from transformation x' = F(x) so x'* = F*(x),

dF* = (0F*/ox3) dx? = (ox'*/ox3) dxI = R*5dx? . (10.8.7)
That is to say,

dF* = R*;dx? (10.8.7)
dF* = R dd (10.8.6) (10.8.8)

and in this same cosmetic notation we can rewrite (10.8.5) as
dF-Y = $3RY; den? = T3 det(RYy) dxn” . (10.8.9)

Using this new object, we write (10.8.2) as

4 F*(NaT) = dFt /I F* on a basis-vector k-form
7 F*(ox') = 2'1 fi(F(x)) dF~" // F* pulling back a general k-form from A (10.8.10)
Therefore,
dF-T =F*(VaT) = F*W) AF*(W*2) A A Fr(LiK) // (10.7.21) product rule
= VPR A ANRR)A LA VERR] //(10.7.17) def F*
= <eR N<e"2RN N <e KR //(2.11.c.11) def A'*2
= <e'l] ~ <2 A~ <el¥| // (10.7.6) pullbacks
= <e’| e AF. // recall that AT = <uaT| (10.8.11)

so dF" is just our old friend <e~™|.

As an example of (10.8.9) we write for k=2,

ox't1 px'it
i ) ale aXJZ i i
dF'L " dF'2 = $145. ¢joen det oxiz opiz | dtA ad?. (10.8.12)

aXJ 1 aXJZ

Note that both sides of the above equation are 2-forms in A2, whereas dx''1 " dx"'2 is a 2-form in A'z, SO
we cannot identify dF'1 "~ dF'2 with dx'"* " dx""2 even though x'* = F*(x). But from (10.8.10) 4,
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dF'L " gFi2 = FRQeiia i) = pr( gt t iz (10.8.13)

soin fact dF'1 " dF'2 is just the pullback of dx''1 " dx"'2 . This is just restating the basic fact of (10.7.6)

that <e*| =<e'|R so <e'|is the pullback of <e'*|.

The reader will hopefully appreciate our use of red italic font to distinguish differential form objects from
calculus objects of the same name. Otherwise things can be very confusing, especially in presentations
where all ~ symbols are suppressed and where symmetric and ordered sums are both written as Xz.

Summary all in cosmetic notation for x' = F(x)

dxal = deMIA gt2an gyik e A'FR™
denl = @i gt2a L n dxik e A¥R®) (10.7.7) (10.8.14)
Some Properties of the F* pullback function (10.7.19) (10.8.15)
0 F*0o) =<a'|R = <d'|Rr // definition of F*, (10.7.17)
1 F*(f(x)) = f(x') = f(F(x)) // F* on a 0-form, (10.7.9) fork=0
2 F*(f(x) g(x') ) = F*(f(x")) F*(g(x") // F* on a product of two 0-forms, (10.7.10)
3 F*(f(x') de'a") = F¥(f(x')) F¥(dx'"") // F* on 0-form and basis-vector k-form, (10.7.11)
4 F*(dx’/\') = $s R din’ // F* on a basis-vector k-form, (10.7.8) for k > 1
5 F*(dx'i) =25 Rij dxJ // F* on a basis-vector 1-form, k=1 of the above
6 o0y =2X'7 fr(x) dx'A! // general k-form in A, (10.7.12)
7 F*(ax')= 2’1 f1(F(x)) ;R dx~? // F* pulling back a general k-form from A™, (10.7.13)
8 F*(g(x') ox')=F*(g(x") F*(ax) // F* on a 0-form and general k-form, (10.7.15)

9 [F*(ox')](V1,V2...vx) = dx'(Rv1,Rva...Rvy) // F* pulling back a rank-k tensor function, (10.7.16)

Other Properties of the F* pullback function (10.8.16)

Fact: F* is linear, so F*(s1a' + s2f") = s1F*(a') + soF*(B") where o' and f' are k-forms. (10.7.20)
Fact: F*(a'y " a'2 M. a'y) = F*(a'y) » F*(a'2) ~...~ F*(o'y) where o'; is an arbitrary k;-form. (70.7.21)

Fact: F*(da') = d(F*(a')) where o' € A™ is a k-form in x'-space (10.7.22)
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Corollary: d(F*(da'))=0. (10.7.23)
Fact: F*(G*a)=(GoF)*a where ais ak-form. (10.7.24)

The ordered sum form of a k-form pullback

Ts Ry den? = 25 det(RYy) din” // (A.8.37) (10.8.1) (10.8.17)

4 FHde'a") =35 det(REy) dn’ // F* on a basis-vector k-form (10.8.18)
7 F¥ox) = X'1 fr(F(x)) L'y det(RYs) dxn? )/ F* pulling back a general k-form from A*

=35 g5(x) dx~? where gz(x) =2'1 fr(F(x)) det(R™5) (10.8.2) (10.8.19)

The dF?* form of a k-form pullback

dF-t= S3RY; den? = T 5 det(RYy) den” =F*(dx'a') = <el|  (10.8.9,10,11) (10.8.20)

ox*t oxtt
_ ] _ ] 031 ox32 _ ]
F*(dx"1 7 dx"2 )= dF'"t " dF'? = 21<5,<jp<n det oxi2 oxiz A1 g2
ox31l x32
ax"™L, x*2) i
= Z1<i;<igsn mdleA dxd2 (10.8.12) (10.8.21)
dF' = Ry dy) (10.8.8) (10.8.22)

Fr(de'a") = Fr(ax™ " ax™2 " gy = gF' T grt2 Captk = apdt o (10.8.10) 4 (10.8.23)

F*(axr) = 21 fr(F(X)) dFA" (10.8.10) 7 (10.8.24)

10.9 A Change of Notation and Comparison with Sjamaar and Spivak

To this point we have maintained the notation of Chapter 2 (and Tensor) for transformations x' = F(x). To
compare our results with other sources, we shall now make the following change of notation :
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Picture A’ m
S,

Picture F' //":m

X-space x'-space t-space SR X-space
g V'a = R, Ve g 8 (xV®) = R% (:V?) =5
ﬁ
X-space — t-space
x'-space = — X-space
F — 0} general transformation name
xX=FXx) — X = @(t) general transformation equation
R=(DF) — R = (Do) differential matrix
F* — o* pullback function (10.9.1)

Confusingly, in Picture A' the left-side space has the name x-space, while in Picture F' this happens to be
the name of the right-side space. This is just a coincidental new definition of x-space.

This notation is convenient for presenting results, but it is somewhat clumsy for developing those results
as we have done above. Having primes and no primes is very efficient compared to the other changes one
must make to develop in this new notation. For example one must write At xki and AY — e
Similarly, one has u'* — ,u* for the tangent base vectors which span TyM and u* — cu* are the axis-
aligned basis vectors in t-space ("parameter space"). Just for the record, these changes are all shown in
Appendix E.

Drawings for the new spaces

In terms of the new t-space and x-space, this drawing (a translation of Fig (10.7.5)) shows the push
forward and pull back of the first basis vectors in R® and R™,

R® " R™ x™
t-space x-space
x=¢(t)
b
axis-aligned \\xul
base vector
tul te t2 /’/ XZ
U =R u?l
push forward
i
ul=RT u!
pull back
(10.9.2)
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The next drawing (translation of Fig (10.7.26)) shows the pullback of a differential k-form oy from
AFR™) to k-form B in (ARD),

n o -
R e || pullback x-sRace X
t-space Bt Pt (p*(ax) o
U Pe . . ; 3
te b forward map p )
...................... — e S
L open region U, dim(U) =n x1 open region V. dim(V) = dim(M) = n
BtetAk (UCRn) GKExAk(VCMCRm)
(10.9.3)

Here B¢ is just a made-up name for the pulled back k-form ax. Recall that x on 0, means that the k-form
ox = 2'r f1(x) x?v«I is specific to the point x on manifold M, while the t on B means that the k-form B¢ is
specific to the point t in t-space.

Here is a more practical picture for the special case n =2 and k = 2:

Rm

n=2 t2 pullback Be = ¢* xm
t = 0¥ (0x) x-space . .
R2 ¢* 4— P Outlined patch is region V. M R™
t-space
! ' forward map
U2 Bt Q X= (p(t)
I
Aty )
> tl X
UcRr2 1
(a 2-cube)
torus is Manifold M
xt tangent space at x is 2D

(10.9.3a)

Here the open region U is a unit square [0,1]2 which maps into a patch on a torus. That is, if m = 3 the
object on the right is a torus in R, but we can imagine it to be a torus embedded in R™ for any m > 3.

The space of functionals defined on U « R? is a 2-dimensional dual space (R*?)(U). On this space we
can define either 1-forms or 2-forms. The above picture suggests a 2-form since the region U is an area,
and since we will later associate di* ~ di* with the calculus differential dt*dt? which represents an area
(we are not there yet).

The picture shows the "forward map" x = @(t), suggesting that forward means left to right in the
picture. Then oy is "pulled back" right to left from dual x-space to dual t-space where it becomes .

One could imagine a set of 16x6 = 96 mappings like the one shown above which would "cover the
torus", using one little patch for each mapping (with some small overlap between patches). One would
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then have an atlas of 96 square maps like that on the left which would serve to cover the surface of Planet
Toroid. This is the basic idea of a manifold. In the torus example, one could do the job with only 2 maps.
Doing it with a single map does not fly since then some seam curve on the torus would map back to two
boundaries of the square and the mapping is then not one-to-one and smooth. Manifold mappings have to
be continuous in both mapping directions at every point, and a seam is a place without continuity.

The aspect ratio of the 2-cube on the left is not significant. One could change it to be an arbitrary
rectangle in t-space and select a ¢ to make it map to the same small image patch in x-space. Or one could
construct a mapping @ which maps the unit 2-cube [0,1]? to the entire left half of the torus. See Sjamaar.

The black arrows on the left are the t-space basis vectors tu; (only tuy is labeled). These map
according to xu* = R ¢u® (formerly u'* = R u%) into basis vectors which are tangent to M, and these
vectors then span the tangent space TyM at point x on M. It is clear that the two xu® vary as the point x
on M is varied.

As another example consider this situation withn=1and k=1,

PO Be = 0* (o) Rm (¥
x-space

n=1 s
R1 , fatred curve is region V. M R™
t-space .

0t U 1
UcR?
(a 1-cube)
thin red curve is the Manifold M.

tangent|space at x is 1D

(10.9.3b)

Now the domain in t-space is U = 1-cube [0,1] which maps to a (generally non-planar) red curve which is
embedded in R™ . Here ax and B¢ are 1-forms. The red curve segment V lies on the manifold curve M as
shown, just as the patch of the previous example lay on the torus. There is only one basis vector u in t-
space (not shown) and it maps to the unlabeled black arrow on the right which is xu and is of course
tangent to the curve at x.

We now reproduce the "Summary in all cosmetic notation" given above at the end of Section 10.8 but in
terms of this new notation:

Summary all in cosmetic notation for x = ¢(t)

et = AV A g2 A A gk basis vector € xA*(R™)

dt' = d'iA drt2 s di'k basis vector € £AXR®) (10.8.14) (10.9.4)
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Some Properties of the ¢* pullback function R = (Do) (10.8.15) (10.9.5)
0 o0*(ox) = <ox | R = <ox| Rp // definition of ¢*, (10.7.17)

1 o*(f(x)) = f(x)=1f(e(t)) // * on a 0-form, (10.7.9) fork =0

2 o*(f(x) g(x) ) = 0*(f(x)) 0*(g(x)) // * on a product of two 0-forms, (10.7.10)

3 o*(f(x) dx/\') = 0*(f(x)) (p*(d)m') // ¢* on 0-form and basis-vector k-form, (10.7.11)

4 @*(dxn") =23 R;din’ /I @* on a basis-vector k-form, (10.7.8) fork > 1

5 (p*(dxi) =X Rij df // @* on a basis-vector 1-form, k=1 of item 4

6 ax=3'7 fr(x) den’ // general k-form in xA¥, (10.7.12)

7 o*ox) = 2'1 fr(e(t)) =y RS din’ // ¢* pulling back a general k-form from xA¥, (10.7.13)
8  o*(g(x) ax) = 0*(g(x)) p*(0x) /I ¢* on a O-form and general k-form, (10.7.15)

9 [90*(0x)](V1,V2...vk) = ax(Rv1,Rva...Rvx) // ¢* pulling back a rank-k tensor function, (10.7.16)

Other Properties of the ¢* pullback function (10.8.16) (10.9.6)

These five items are translations of (10.7.20) through (10.7.24) :

Fact: ¢* is linear, so ¢*(s10 + s2f) = s1¢*(a) + s2¢0™(B) where o and f are k-forms. (10.9.7)
Fact: o*(01 "oz ... on) = 0*(a1) " 0*(a2) *..." ¢*(ay) where o is an arbitrary k;-form. (10.9.8)
Fact: ¢*(do) = d(¢*(ar)) where a € xA¥ is a k-form in x-space (10.9.9)
Corollary: d(¢*(da))=0. (10.9.10)
Fact: o*(y*a)=(yoo@)*a where ais ak-form. (10.9.11)

The ordered sum form of a k-form pullback R = (Do)

SsRY; den? = 3 5 det(RYy) din” // (A.8.37) (10.8.17)  (10.9.12)
4 @*den") =3 5 det(RYy) din” // ¢* on a basis-vector k-form  (10.8.18)  (10.9.13)
7 o*(ax) = 2'1 fr(@(t) T' 5 det(RY5) dir’ /I ¢* pulling back a general k-form from <A*

=3 5 gs(t) dir’ where go(t) =X'1 fr(o(t)) det(R*y) (10.8.19)  (10.9.14)
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The do* form of a k-form pullback

dpst= 3R din? = Ty det(Rg) din” = o*(dxn' ) = <geal| (10.8.20)  (10.9.15)
a(pil a(pil
) ) i i atjl atJZ i i
*(dx"1A dx'2 )= dp't " dp'2 = Ti<g,<qp<n det do'2 dpt2 i~ dp?
ol otd2
_ L) o,
= Z1<ji<jo<n Wd[ dt (10.8.21) (10.9.16)
dp* = R*; dd (10.8.22)  (10.9.17)
e*(dxny = @*(dx"t " dx'2 " dx'k) = dp'l " dp'2 " dp'k = dipat (10.8.10)  (10.9.18)
0*(0x) = T'1 F1(Q(t)) dpa* (10.8.24)  (10.9.19)

Comparison with Sjamaar

Our document was strongly motivated by Sjamaar's excellent notes, so it seems useful to make some
connection to those notes. In most of our document we used the transformation x' = F(x) but in Section
10.9 we changed this to be x = @(t) to bring things closer to Sjamaar and other authors.

Sjamaar uses y = @(x) in his Ch 3 on pullbacks, x = ¢(t) in Ch 4 on 1-forms, and x = y(t) in Ch 5 on
integration and Ch 6 on manifolds. He does not stress the notion of an underlying transformation as we
have done because he has many more important details to attend to, but he does show y = ¢(x) in his
figure on page 39. All wedge product symbols * are suppressed with the idea that almost all products are
wedge products, so one sees equations like dxidxz = - dxadx;. His sum Xz is almost always an ordered
sum which we write as X's.

Here then is a sampling of our equations above and how they appear in Sjamaar's 2015 notes :

arBp=(-D*"pra o =k-form, p= k'-form (10.4.1)
Ba = (-1 }-H af Sjap 19, "graded commutivity"
Fact: d%a =0 for any k-form o (differential forms have zero "curvature") . (10.3.10)

2.6. Prorosmion. dida) = 0 for any form e, In short,

. Sjap 22
P
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0=2'"1 f1(X) Aot =2'7 fr(x) dx~® // ak-form (10.1.14)
a=) fidx. a=Y fidy, Sja p 19,39

I I
Q*(f(x) dn') = *(£(x)) @*(cxn") (10.9.5) 2
O (a) = Z O (fre (dyp). Sja p 39, related to the above

I

e*(dxny = @*(dx"t " dx'2 " dx'k) = dp'l " dp'2 " dp'k = dipat (10.9.18)
O (dyr) =" (dy;, dyy, - -dyi ) =depy, dy, - -doy, Sja p 39
Fact: o¢* is linear, so ¢*(s1a + s2f) = s10*(a) + s20*(B) where o and B are k-forms. (10.9.7)
Fact: ¢o*(a1 " az ... oay) = ¢*(a1) » 0*(az) ...N ¢*(ax) where a; is an arbitrary k;-form. (70.9.8)
Fact: o*(v*a)=(yo@)* o where a is a k-form (10.9.11)

3.10. Prorosimion. Let ¢p: U — V be a smooth map, where U is open in R" and V
is open in R™. The pullback operation is
(i) linear: ¢*(aqx + bf) = ad*(a) + b (B) for all scalars a and b and all k-forms
aand fon 'V,
(ii) multiplicative: ™ (af) = ¢"(a)p™(§) for all k-forms a and [-forms fon V;
(iii) natural: " (" (a)) = (Y e @) (a), where yr: V. — W is a second smooth map

with W open in R, and « is a k-form on W. Sja p 40
Fact: ¢*(do) = d(¢*(ar)) where a € xA¥ is a k-form in x-space (10.9.9)
O*(dxn') = dpst = 5 det(Do) 5) di”  for x = @(t) (10.9.18), (10.9.15)
doj, doy, ---do;, = Z_det(!?hp;}f) dx; Sja p 44 fory = @(x)
I
0*(ax) =X' 5 gs(t) dir? where ga(t) = 2'1 fr(o(t)) det(R*y) for x = o(t) (10.9.14)

¢ (a) = 2y gy dxy with

8= Z ¢ (ﬁ) det(Déy ). Sjap 44 fory = @(x)

dx' =2t = <ui| =wH)? ut= axis-aligned basis vectors of R” (10.1.1)

dxi=e/ =(0--010--0) Sjap 92
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(037" 05, oo 033 )(Vig,VigeenVig ) = (1/k!) det [ 054(Viy) (8.2.8a)
(a1 ™ a2 ™ ... Nok) (V1, V2eeeenne vi) = (1/k!) det [ ax(vs) ]

pupa s (v, v, Vi) = det(pi(vi)) 2 e

/I Sja p 94, Spivak normalization so no (1/k!)

The tensor function pullback

For the pullback of a tensor function we have stated
[0*(0x)](V1,V2...Vk) = 0x(Rv1,Rva..Rvy)  for x= @(t) (10.9.5) item 9 (10.9.20)

where recall [@*(0x)](V1,V2...Vk) = <dx | R | v1,va...vi>. If R acts to the left, one gets the left side of
(10.9.20), while if R acts to the right one gets the right side. Here the function ¢*(0y) is the pullback of
the function oy and the pulled-back function is associated with t-space, so we wish to write the right side
expression entirely in t-space variables. To this end we replace ax by o4 () on the right of (10.9.20). The
tensor functional [@*(ay)] is in dual t-space, so we can write it as [@*(0x)]¢ similar to the By appearing in
Fig (10.9.3) above. The vectors v; are in t-space R”. We write R = (Dg) = (D(t) ¢) to show that the
derivatives are with respect to t. Then in more detail we can write the above tensor function pullback
equation as

[0*(0x0)]e(V1,V2- Vi) = gty ([D P @(O)]v, [D @(t)Iv2... [D P o(t)lv)  //x=9(t)  (10.9.21)

where the expression on the right contains only t variables (no x variables), as appropriate for expressing
the t-space tensor function [@*(0x)]e(V1,V2...Vk).

Translating (10.9.21) according to x = @(t) — y = @(x) gives
[0* (o) ]x(V2,V2.-:Vk) = g ) ([D ) 9(0)]va, [D™ 9(x)IV2... [D™ p(x)Ivie) //y=(x). (10.9.22)

It is this equation we then compare to Sjamaar's page 96 equation,

P (ak(vi, va, oo, vi) = appg (DO (x)vy, DO(xX)va, ..., Dd(X)vg). (10.9.23)

He writes [D ¥ ¢(x)] as Do(x) and [@*(ay)]x as ¢*(a)x .

The tensor function pullback equation also appears in Spivak but not quite as we have written it. Spivak
says on the top of page 90 and the bottom of page 89,

frfo@)y, . oo o) = o(fE)N(falv), . . . fxr)).  fu(vp) = (D)) 1(m).
which we interpret to mean

[F*(@)](P)(V1.V2...v) = o(f(p)) ( (D P Hvi, (D® vy, ... (DP Hvy).
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Replacing o—a, f—¢ and p — x gives
[*()](X)(V1,V2...vi) = a(0(x))( (D ® @)v1, (D™ @)vz, ... (D™ o)vi).

We then interpret (x) on the left and (@(x)) on the right as spatial locations in the respective non-dual
spaces, so the above becomes

(10.9.24)
[0*(0)]x(V1,V2-.-Vk) = g x) (D @)v1, (DF @)vz, ... (D™ @)vyc )

in agreement with our (10.9.22) and with Sjamaar's form (10.9.23). Sjamaar 2015 refers to ¢*a as the
pullback of a, but Spivak writing in 1965 does not use the term pullback in his book. Having a name for
something is always helpful.

Spivak's entire presentation is in terms of tensor functions, there are no functionals per se. He uses our
tensor function pullback equation as the definition of a pullback (not calling it by that name). We have
tried to define the pullback more generally in terms of the general transformation x = @(t) so that it has a
meaning for vectors, dual vectors (functionals), and tensor functions.

10.10 Integration of functions over surfaces and curves

In Section 10.11 we are going to make this claim concerning the integration of an arbitrary differential k-
form over a manifold "surface" x' = F(x) embedded in R™ :

o = T fr(x") NaT =37 fr(x") dx* 1A 2 A dxte // the k-form in x'-space
Jeo = =1 25 10,11k f2(F(X)) detRE5(x)) AL  dd2 n n diK R= (DF)
1 1 1 . . .
-3 Yy ( fo ] . | , ) fx(F () det(R¥5(x)) dx31dx32....dx3x . (10.10.1)

The general idea is that the k-form o' in dual x'-space is first pulled back to a different k-form in dual x-
space, and then the wedge product dx!? ~ dx}2 » ..« dx?K of basis functionals appearing in this pulled

back k-form is mysteriously replaced by a product of ordinary calculus differentials dx3tdx32....dx7% .

The end result is that JIF o' is some calculus-computable real number. In this notation, the form o' is

integrated over a surface F in x'-space determined by F = F ([O,I]k). We assume that the manifold M can

be covered by a single mapping x' = F(x), otherwise we create at atlas of mappings as described at the
end of Section 10.2.

Before delving into this subject, it seems useful to have some discussion of integrals of functions over

surfaces and curves in R® without any mention of differential forms. This discussion takes the form of a
set of seemingly simple examples.
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INTEGRATION OF FUNCTIONS OVER SURFACES

Example 1: Compute the average temperature on a flat plate S' in the z' = 0 plane in R3 (x'-space).
(10.10.2)

What is the meaning of "average temperature"? We partition the plate into a large array of N x N tiny
squares of equal area dA'; = Ax'Ay', and measure the temperatures T; simultaneously in all N? locations.

The average temperature is then <T> = (1/A") limy_. [Z:TidA's] where A' = ab is the area of the plate.
So this is an area-weighted average temperature which is cast into a standard-issue 2D Riemann integral,

b
<T>=(1/A") [ dA' T(x') = (1/ab) foa dx' [ ) 4 T(.y.0). dA' = dx'dy’ (10.10.3)

This same kind of integral would be used to compute the average mass density of a flat plate which has
areal mass density p(x',y'),

<p>=(I/A) ['s1dA" p(xy) . (10.10.4)
One could compute the center of mass location of a plate of mass m with similar integrals,

<x>= (I/m) J s+ dA' X' p(xy")
<y™>= (1/m) JIS'dA' y' p(xy")

m=J g dA p(xy) . (10.10.5)

In this Example we put primes on the variables because they exist in x'-space. There is no need to do any
"pulling back" of the area element dA' = dx'dy' to some x-space. The integral is done directly in x'-space.

Example 2: Compute the average normal component of a magnetic field B on the same flat plate.

(10.10.6)
We are still in x'-space. This problem is similar to the temperature problem with T — By and the result is

<Bn'>: (I/A') fsldA'Bn'(X') — (1/A') J‘S'dA' B(X').ﬁ'

—(1/AY [ s dAT e BGr'),  dA' =dA'fi’ (10.10.7)

where in this problem it happens that

fi' = unit normal vector, normal to the surface of the plate at (x',y',0) = 2' = constant .

Then
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b
<Bp>=<B,> = (l/ab) [ oa dx' [ ) ¥ Ba(xy0). (10.10.8)

For both these examples, one could consider a round plate instead of a square plate, and then one would
use dA' = dx'dy' — (r)drd® where the Jacobian J = r appears. One could show that such differential area
patches dA' cover the plate surface perfectly with no overlaps and no missed regions.

Example 1a: Compute the average temperature on a spherical shell of radius R in R3.
Example 2a: Compute the average normal component of a magnetic field B on this shell. (10.10.9)

Treating this smooth surface as behaving locally like a flat plate, we use the general expressions
(10.10.3) and (10.10.7) obtained for Examples 1 and 2 above,

<T> =(/A) s dA T(x)

<Bgn:>= (1/A") fs,dA' B(x") e fi' . (10.10.10)

In spherical coordinates, A' = 47R2, fi' = £ and dA' = stineded(p. This area measure can be deduced by
looking at a picture of spherical coordinates where dA' = (Rd6)(Rsinfdo) is a surface patch. Then,

2
<T>=(1/4m) fﬂ 8 do fﬂn d0 sinf T(RsinBcosp, RsinBsing, Rcosh)

2
<Bp'>= <B>=(1/4n) fo 8 do _f: do sin0 By (RsinOcosg, Rsinfsing, Rcosh) . (10.10.11)

In the language of our earlier sections, we can think of this surface being defined by an underlying
transformation

x'=F(0,0) : x' = Rsinfcoso
y' = RsinBsing
7' = RcosO (10.10.12)

where we would draw "parameter space" = R™ = R? on the left (with coordinates 0 and ¢) and R™ = R3 on
the right. So one has (,p)-space on the left, and x'-space on the right. In writing dA' = R%sin0d0d¢, we
are "pulling back" an area patch on the sphere in x'-space to a rectangular area d9do in (8,¢)-space, and
we pick up an area conversion factor RZsin. Similarly, the functions T and B are "pulled back" so they
are written in the form T(F(0,9p) and B (F(0,¢p). Although nothing has been said about "differential
forms", one suspects that this example can somehow be cast into a 2-form scenario.

Comment: We hope the reader will overlook the fact that if B really is a magnetic field, then <Bp > =0
when integrated over any closed surface S' (like a spherical shell) due to the divergence theorem and the
non-existence of magnetic monopoles, div B = 0. The concerned reader can think of B as some other
vector field.
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Example 1b: Compute the average temperature on an arbitrary smooth surface S' in x'-space.
Example 2b: Compute the average normal component of a magnetic field B on such a surface.

(10.10.13)
Start again with (10.10.10),
<T> =(/A) [ dA' T(x)
<Ba> = (1/A) [ s dA' B(x") e fi' = (1/A) [ s dA' ¢ B(x") , dA' =dA'fi' . (10.10.10)

The meaning of these integrals is clear: dA'is a local area element at point x' on the surface, fi' is a local
unit normal at a point x' on the surface, and A' is the total area of the surface. One just has to figure out

what these quantities are for a given surface. Notice that fsv dA' e B(x") is the classic "surface integral

of a vector field" as one might encounter in an electrostatic flux calculation (B = E) or in a fluid flow
situation (B =v).

At point x' on the surface there is a tangent space Tx'M (Section 10.2) which is spanned by the tangent
base vectors u'; and u'; which appear in the kinematics package (10.6.a.1). Recall that these vectors are
generally not orthogonal. The magnitude of the area of the 2-piped subtended by these vectors is [u'y x
u';|. But we want a differential 2-piped at point x' with some small extents d&; and d&, in these two
directions, so then dA' =| (d€™u'y) x (d€%u'2) | = dEYdE? |u'y x u'y| .

Meanwhile, we know from (10.6.¢.2) that u'; = Ruy and u's = Ruy, these being vector transformations
under x' = F(x). Therefore,

R(dx*uq) = dx'u'y

R(dx?uz) = dx’u'; . (10.10.14)
Thus, the small rectangle spanned by (dxlul,dxzuz) in x-space is mapped into a small 2-piped spanned
by (dx'u'y ,dx’zuz) in x'-space. We can take this 2-piped to be the 2-piped discussed above by setting d&;

= dx; and d&; = dx; and then we have dA' = | u'y x u'z | dx*dx®.

Recall from (10.6.¢.3) that u's is constructed "as needed" so as to form a complete basis for R? at point x'
on the surface S'. We can take u's = u'; x u'2 and then u's can be identified with n', a normal vector at
point x' on the surface. We then need to know that magnitude of this vector to know dA'. Since R™ = R3is
a Cartesian space, up and down vector component indices are the same, so (implied sums)

| u'g;|2 =|n' |2 = |u'1xu'2 \2 =(u'1xu'y) e (u'1xu'2) = (u'1xu’2)i(u'sxu'2);

= [e1ab (U'2)2(u'2)"] [E1ca (u'1)%(u'2)?]

= giabtica(u'1)?(u'2)°(u')%(u'2)"
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= (8acdbd - 8addbe) (1'1)3(u'2)(u'1)%(u'2)®  //see e.g. Tensor (D.10.22)

= (u'1)%(u'2)°(u'1)?(u'2)° — (u'1)*(u'2)°(u'1)>(u'2)?

=R?R? R*R®, - R*R®, RP;R?; // kin. package (10.6.a.1) item (e)
=%a (R*)? Zp (R%)% — (ZaR*1R%) (ZuR°1R®2)

= [Za (R*1)?] [Za (R*2)’] - [ZaR*1R%)?

=[ K(x) ]2 // since Rij = Rij(x) in general
or

[u's] = [0 =K®X) =1/ [Za (R*)?] [Za (R*2)*] - [ZaR*1R%;]%. (10.10.15)
We could have used the vector identity (A x B) ¢ (A x B) = A%B? - (AOB)2 in place of the gg product
method, but g products are good to know about and we give a reasonable source above for the reader
interested in their generalizations. Finally then we have an expression for differential area dA',

dA'=|u'y xu'z | dxtdx? =|u's|dx'dx® =|n'|dx'dx® = K(x) dx"dx?. (10.10.16)

The vector n' = u'; has the following components.

(m); = (W'1xUu'2); = &iap (U'1)*(U'2)° = 125 R*R, //R*y = (ox*/oxT)
% 2 2 2 3
()1 =12 R*1R®, = R%R3, - R3R?, = det@si 1;322 ) - %(—();;1:%'2%
(n")2 = &2ap R*1R%, = R* R - R} R, = det(iii 1;122) = %31:—?217
(n")3 = £3ap R*R®, = RR%; - R% R, = det@;i 1;1222) - %(_éiz_i;? . (10.10.17)

On the far right we use a common Jacobian-like notation for the 2x2 determinants, where recall from
(2.1.2) that R*5 = (0x*/0x¥). We thus obtain this alternate expression for K2,

R?; R?, R3; R3, RY; RY,
2 _ 2 _ 2 2 2

a(xvz, X|3 ) a(X|3’ le) ) a(xvl, X|2 )
o et N Gt T (10.10.18)
From (10.10.17) the vector n' and the unit normal vector fi' =n'/ |n'| = n'/ K may then be written,
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o a(X|2’ Xv3) a(X|3’ le) a(xvl, X|2 ~ (Rzl RzZ) (R31 R32) (Rll Rlz)
n'=( a(xl, x2) , a(xl, x2) , a(xl, x2) ) = (det R3, R3, , det R, RY, , det R2, R%, )

A 1 8(x’2, X'3) 6(x‘3, x'l) a(x'l, x'?
n K(x) 6(x1, x2) ’ a(xl, x2) ’ 8(x1, X2) )

(10.10.19)
Using (10.10.18) for dA' the solutions to our problems are,

<T>=/A) [s dA'T(x") = (1/A) [ s T(F)) K(x) dx*dx?
<Bp> =(1/A) [ s+ dA' B(x') e fi' = (1/AY ] s BF(x)) o ' K(x) dx dx?

= (1/A) ] s BIF()) o ' dx*dx? (10.10.20)

where fi' and K(x) are as shown above. Notice that the resulting integral is over the region S in x-space
which maps into the surface S' in x'-space under x' = F(x). The area A' is given by

A=Js da = s Kx) dxtdx?. (10.10.21)

The scalar integral shown in (10.10.20) appears on Buck page 368 (7-3) where T =1, S'=ZX, S =D, and
where x*,x? = u,v. The vector integral appears on p 403 where B=F .

The reader will no doubt notice that in writing dA' = K(x) dx*dx? we are in fact "pulling back" some
tilted non-rectangular 2-piped patch dA' on the surface S' in x'-space to a rectangular patch dx*dx? in x-
space and in doing so we pick up a Jacobian-like factor K(x). We are also "pulling back" the integrand
functions T(x'") and B(x") by writing them as T(F(x)) and B(F(x)). Again we arrive at this "pulling back"
concept without ever mentioning "differential forms". The pullback integrals shown above are completely
well-defined and it is then just a matter of doing the integrals analytically or numerically.

Recall that the square of the area transformation factor K is given by either

K2 = [ Zaz1® (R1)?] [Za=1® (R®2)%] - [Za=1°R*1R%:1%. (10.10.15)
or
R?%; Rzz) (Rll Rlz) (Rll Rlz)
2 _ 2 2 2
K= det (R31 R3, + det R3, R3, + det R2, R%,) - (10.10.18)

In the second form K? is the sum of the squares of the three 2 x 2 minors of the 3 x 2 "tall" R matrix. See
for example Buck page 299 where K = k and Rij = ajj. The two expressions above for K? look totally
unrelated and it seems strange that they are equal. It turns out that K2 can be written in yet another way,

K2 = det(R"R) (10.10.22)

where RT is the "matrix transpose" of R and not the "covariant transpose” discussed in Section 2.11 (f).
Recall from Fig (10.6.c.1) that R™R is a square n x n matrix and therefore Aas a determinant.
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Lest one have doubts, we have Maple compute K2 in all three ways and show that the three results are the
same:

Create a general 3 x 3 R matrix:
E := matrix(3,2): print(R},
1 Ryg

Ry R4

Rz 1 £3 4

Compute K? using (10.10.15) and call it K2a:
EZ2a := sum{R[a,1]1"2,a=1..3}*sum(B[a,2]1"2,a=1..3) - (sum(R[a,l]1*BE[a,2],a=1..3))"2;
Kla=(Ry 12+ Ry 12+ Ry 12)(Ry 52+ Ry 52+ Ry 92) = (Ry 1 Ry g+ By Ry 5+ R3 Ry )2

Extract the three 2x2 submatrices from R and call them A,B,C:

A = submatrix(r, [1,2]1,[1,2]).
f11 &2
A=
B2 1 R 2
B := submatrix(kR,[1,3]1,[1,2]1),
R0 By
£=
%31 B0
¢ = submatrix(r, [2,3]1,[1,2]1).
£1 o2
o=
1531 &3

Compute K2 using (10.10.18), call it K2b:
K2b := (det(R))"2 + (det(B))"2 + (det(C))"2,

K2b=(Ry Ry 5= Ry o Ry ()24 (R Ry o= Ry 5 Ry ()24 (Ry B3 5= Ry 5 Ry )2

Compute the matrix R*R:

ETR. := evalm(transpose(R) &* R),
Ry 1248y 12+R3 42 Ry Ry gt 8y 8y o+ 83 185
RTR=
Ry By gt Ry By gt 8y 183 5 Ry 92+ Ry 92+R3 52
Compute K2 using (10.10.22), call it K2c:
> K2o = det (RTR) ,

Ko =Ry 2Ry 92+ Ry (2R3 924 Ry 2R o2+ Ry 2Ry 024 R 2R) 924 Ry 2Ry 92-2R) 1Ry o Ry 1Ry 5

2Ry Ry gRy 1 Rg 92 Ry 1Ry 5 Rg 1 Fs

Show that all three K2 expressions are the same:
simplify(K2a-K2b) ,

simplify(K2a-K2c),
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Appendix F shows why K? = det(R™R) in more generality and then Appendix G shows why K? may
always be written as the sum of the squares of the full-width minors of R as in (10.10.18).

INTEGRATION OF FUNCTIONS OVER CURVES
As much as possible, this section mimics the previous section on integration of surfaces.

Example 3: Compute the average temperature on a piece of straight wire C' of length a in R3in x'-space.
(10.10.23)

Let t' be a unit vector which is tangent to the wire at some point x' on the wire. Let dx' be an arbitrary
differential distance vector whose tail is located at position x' on the wire. Then ds' = dx' e ' is a small

distance along the wire. In analogy with the flat plate of Example 1, the length-weighted average
temperature of a straight wire is

<T>= (1L) [ ¢ds' Tx") ds'=dx'e §' . (10.10.24)
In this particular example, the wire is placed on the x' axis so L' = a, t'=1%",ds'=dx' e t'=dx'. Then,
a
<T>= (1/a) f o dx' T(x',0,0) . (10.10.25)

Example 4: Compute the average tangential magnetic field B on this same straight wire C'.  (10.10.26)

This problem is similar to Example 2 (but fi' — %') and the solution is

<Be:>=(1/L) Jerds' Ber(x') = (1) Jerds' Bx') o 8", ds'=dx' e £' = dx'

(L) Jedx' o B(x", ds' t'=dx' . (10.10.27)
SO

<Be+> = (1/a) j: dx' By (x') . (10.10.28)

Example 3a: Compute the average temperature on a ring of wire C' of radius R in the x',y' plane of R>.

Example 4a: Compute the average normal component of a magnetic field B on this ring.
(10.10.29)

Treating this smooth curve as behaving locally like a straight wire, we use the general expressions
(10.10.24) and (10.10.27) obtained for Example 3 and 4 above,

<T>= (/L) ¢ ds' T(x')

<Be>=(1L) Jcidx' e Bx') . (10.10.30)
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The ring is assumed centered at the origin of the x',y' plane so we use cylindrical coordinates with z' = 0,
which then is just polar coordinates, so ' = 6, dx' =Rd6 6, ds'=dx' e £'=Rd0, and L' = 2xR. Then,

2
<> = (1/21) O”de T(Rcosd,Rsind,0)

2
<B¢> =(1/27) ‘[0 i dO Bg(Rcos0,Rsind,0) (10.10.31)

where the last argument of the integrand functions indicates z' = 0 for our placement of the ring in R3.

Again, the differential distance element ds' = Rd0 is being "pulled back" from x'-space = R> to 0-space =
R, and the integrand functions are pulled back according to T(F(0)) and Be(F(6)) where

x'=F(): x'=Rcos0
y' = Rsinf
z'=0 . (10.10.32)

Example 3b: Compute the average temperature on an arbitrary smooth wire C' in R3.
Example 4b: Compute the average normal component of a magnetic field B on this wire. (10.10.33)

Start again with (10.10.30),

<T>= (L) [ e ds' T(x") = (L) [ crdx' o £ T(x)

<Be>= (L) Jerds' B o ' =(1/L) Jcidx' o B(x'), ds'=dx'e %'. (10.10.34)

The curve C' exists in x'-space R™ = R® and we take x-space to be R™ = RY. Then curve C in X-space is
just the line segment there from x* = 0 to a and this maps into curve C' under x' = F(x). In other words,
the curve C' in x'-space is being pulled back to a straight line segment C of x-space. To be consistent, we
should be calling the x'-space curve F instead of C', and in Example 2b we should call the surface F
instead of S', since in both cases the curve and surface are generated by x' = F(x), but we shall sacrifice
consistency for clarity.

The most pressing issue now is how to compute the unit tangent vector £'. Reaching into our
kinematics package (10.6.a.1) and nearby discussion, we realize that

t'=uy, T =u1/|uy. (10.10.35)
This is because the tangent space Tx'M is spanned by the single tangent base vector u'y, while the other
two vectors u'z and u's are selected "as needed" to span the perp space to Tx'M in R3. We invent some

differential distance d§ so that dx' = d§ u'y = d& t' points along the curve C' at point x'.

We know from (10.6.e.2) that u'y = Ruj, this being a vector transformation under x' = F(x). Therefore
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R(dx'uy) = dx'u'y . (10.10.36)
Thus, the small differential vector dx = dx'u; in x-space (tangent to C) is mapped into a small

differential vector dx' = dx*u'y in x'-space, tangent to C' at point x' on C'. Thus we select d§ = dx* and
conclude that

dx'=dx" u'y S0 ds'=|dx| =|dx' u'y|= |u'y|dxt= |t'|dx’. (10.10.37)
The distance ds' in x'-space is thus being pulled back to distance dx” in x-space with scaling factor | ¢'| .
The components of the vector t' =u'; are, from (10.6.a.1) item (e),

(t)* =Ry (x)

t'=(R' R?% R3) = ((xYoxb), (0x%/oxh), (0x>/oxh)) (10.10.38)
and then

112 = RY)? + (R%)? + (R3)? = (xMoxh)? + (0x'/oxh)? + (0x>/oxh)?

= Kz(x) // a new and different K from that of Example 2b

or

lu'g] = [t'] =K(x) =4/(R*1)* + (R®)® + (R*1)’ (10.10.39)
and then

ds' = | t'| dx! =K(x)dx". //x=xt (10.10.40)

Just as in (10.10.15), (10.10.18) and (10.10.22), the factor Kz(x) can be written three ways,

K%x)= (R'1)? + (R®1)® + (R%1)? = Za=’(R*)?

K%(x) = det?(RYy) + det?(R?%1) + det’(R3)) // minors of R are all 1 x 1
RY;
K?(x)= det[R'R] =R"R = (R', R*;, R®) (RzlJ = R')? + (R?)? + (R?)?
R3;
or
K%(x) = detlR™R] = (R™R)*1 = Zaz1® RH)TaR?1 = Tacr® R*MR? =303 (R3)%. (10.10.41)

Here we don't need a Maple program to verify that all three forms give the same result. Note that the
"tall" R matrix is the 3x1 matrix shown on the second last line above.

The solutions to our two exercise problems are then (we write <B¢:> in many equivalent ways),
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<T> = (L) [eds' T(x") = (L) [ Oa dx K(x) T(F(x))
<Be>= (L) Jerds Bx') o ' = (1/L) [ ¢ dx' o B(x")

= (IIL) [ ¢ dx e B(FR)) = (1/L)) f: dx* B(F(x)) euy = (1/L) [ Oa dx! B(F(x)) o t

a. .1 i a. .1 i
=any [ , %" Ba(FCO) (£)* = (1) ] , 9% Ba(F(0) R*1(x) (10.10.42)
where
dx = dx*us // below (10.10.36)
dx'= dx*u'y =dx* ¢’ //(10.10.37) and (10.10.35)
ds'=|t"|dx* =K(x)dx* // (10.10.40)
L' = fcvds' = foa dx* K(x) = arc length of the curve C' in x'-space . (10.10.43)

Notice that fcv dx' e B(x') is the classic "line integral of a vector field".

If the variable x* = x were time t, then the above K?(t) = (8x'*/ot)? + (6x'/6t)* + (6x/t)? could be
interpreted as the square of the velocity of a particle moving along the curve C',

K2t =vi?+ vi2 + via2 =(v)2 = K =|v'|=|0x'| =] 0cF(1) . (10.10.44)
The scalar integral in (10.10.42) appears on Buck page 367 (7-1) where

T=1fC=v,x=t,[0,a] — [a,b] and K = |0y
o)

b
) Oa dx* Kx) T(F(x) — [ dt [0ey] (o)) // Buck 367 (7-1)
a
The vector integral in (10.10.42) appears for R? on Buck page 376 (7-7) where

B = (A,B), (x'%, x%) = (¢,y), t' = ((6x'*/1), (6x'%/0t) ) = (8¢0,de ), and [0,a] — [a,b]
SO

<By>= | Oa G BEFE) ot — [ dt[AG®) @eo) +BE®) ey 1.  // Buck 376 (7-7)
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Comments on the above examples

As will be seen formally in the next section, the surface and curve integrations discussed above fall into
the realm of 2-form and I1-form integrations. In the above examples, there was no mention of
"functionals" or "dual spaces" or "wedge products" or "cosmetic notation" or even of "differential forms".
No mention was made of "surface orientation". The calculations were performed on an ad hoc basis as
any journeyman might approach these problems. There was, however, some discussion of "pulling back"
integrand functions and differential areas and differential lengths from R™ to R, but there was no mention
of pulling back functionals between the corresponding dual spaces.

The method of differential forms provides a systematic method for doing integrations over "surfaces"
(manifolds) of any dimension embedded in a space of any same or larger dimension, where the spaces can
have arbitrary metric tensors, and where orientation is tracked.

10.11 Integration of differential k-forms over Surfaces
Using our cosmetic notation for k-form functionals, we write

Uy = 2'7 fr(x') dx's! // original k-form in A *(R™) (10.8.15) 6

F¥(ox') = X'1 fr(F(x)) £'y det(Rs) dx~? J/ k-form pulled back into Ak(Rn) . (10.8.19)
The pulled back k-form can be rewritten compactly as

Bx= F*(0x) = Tyga(x)dra’  where ga(x) = X' fr(F(x)) det(R%) . (10.11.1)

Besides grouping terms into gz(x) we have assigned the name By to the pulled-back k-form. This pulled-
back k-form is written out in detail in (10.8.3) with a display of the R*s matrix in (10.8.4)

The point x' lies on a "surface" in x'-space which is generated by a defining transformation x' = F(x). A
region we shall call S in x-space maps into a region S' on the manifold as shown in Fig (10.2.1) with S=U

and S'=V. The letter S suggests the word "Surface".

The integral of the original k-form oy over surface S' is then set equal to the integral of the pulled-back
k-form F*(a4-) over the pulled-back surface S,

fsvaxv = fs Bx - (10.11.2)

Below we shall refer to this as our first definition, as if the right side defines the meaning of the left side.
That is to say, the integral of a k-form o, over some complicated surface (manifold) in x'-space is
reduced to an integral of a different k-form By over a relatively simple surface in x-space. This is
reminiscent of our examples in Section 10.10 where we had, for example,

[s dA' Bx) e fi' = [s B(F()) o ' K(x) dx*dx? (10.10.20)
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where J.sv is over an arbitrary surface in x'-space while J.s is a straightforward integral in Cartesian x-

space. The big difference however is that in Section 10.10 we were dealing with calculus integrals,
whereas here we are dealing with k-forms which are functionals in certain dual spaces. In the case of the
calculus integral examples, one can regard the shift from x'-space to x-space as nothing more than a
"change of variables" and there is no "first definition" of anything.

We then come to our second definition which is this:

JsBe = Js[Zogs@ar’] = [s 5 gs(x) dcitdxd2 .. dxx (10.11.3)

and one ends up the a well-defined multivariable calculus integral.
One must ask: how is it that the functional

dind =0T =pdragden Ak = gdiagd2e A oA g dk

disappears and is replaced by dxI1dx32 ... dx3%? This transition is not so easy to detect in some sources

because the wedge product hats are suppressed and dxd and dx? are typeset identically.

One answer to this question is the following. One writes

Bx(S) = J's Bx = [ =5 ga(x) dxITdxI2 . dxIx (10.11.4)

In this point of view, one regards the k-form By as a functional which acts on regions of R™ to produce a
real number so there is a mapping (a "functional” is any mapping to the reals),

Bx: SCR® - R. (10.11.5)

This is a different kind of functional from the functional dxr” = A7 € A¥(R™) which is a vector in the
dual space shown. Whereas dx~? is a linear functional, Bx(S) is not a linear functional, for example, since
doubling the region S is not likely to double the resulting real number Bx(S).

This seems to be the approach taken by Loring Tu, where we quote from his p 263,

Definition 23.8. Let @ = f(x)dx! /-~ Adx" be a C* n-form on an open subset
U < B", with standard coordinates x'... ... . Its inregral over a subset A C U is
defined to be the Riemann integral of f{x):

/ W= / Flx)dx' A ndx = /,f'-i:.r]d.\" R A
A Ja Ja (10.11.6)
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Here he is stating our "second definition". Buck also takes this approach, referring in his Definition on
page 381 to a k-form o as a "region-functional". He writes as a 3-form example,

o = A(x,y,z) dxdydz // meaning ® = A(x,y,z) dx"dy”"dz
o(Q) = f I J.Q A(x,y,z) dxdydz Q = aregion in the definition domain of ®

Arm-waving comment: We know that an exterior derivative increases the rank of a k-form by one unit. It
is not unreasonable then to say that a k-fold integration of a k-form reduces the rank of that k-form by k
units down to rank 0, which is a scalar function and in the above situation just a number, the value of the
integral.

In any event, the end result for the integral of a k-form over a manifold region S' in x'-space is this:

[orow = [o[Erfx)d"trae®2 A A K] gy =g fr(X) di'a"

fs [ ga(x) AL A dxd2 A A gk ] // first definition (pullback)

fs [ 25 ga(x) dxItdxI2 .. dxI¥] // second definition

where
gs5(x) =2'1 fr(F(x)) det(R*y) and  x'=F(x), R = (DF). (10.11.7)

As we shall see in Section 10.12, this specification reproduces the "journeyman" integration results shown
in the examples of Section 10.10. Recall that 'y and X'; are ordered sums.

An Alternate Approach

In this thread we take a narrower view of the functional sense of the k-form integral. We treat fsv Ox' as

if it were a discrete sum over the points x' on the surface S'. Since oy is a certain functional, the integral

fsv Ox' is then also a functional, being a sum of functionals. In some sense the analysis below is a

microscale interpretation of the region-functional approach noted above. The development below is done
in Dirac notation, but it could be restated using the pullback function F* .

In a first step, we write the pullback of the original k-form "sum" as,

[J.s' o] R = fs Bx (10.11.8)

where R is the Dirac pullback operator used in Section 10.7. Recall that the pulled-back k-form is,
Bx = 2'y [g5(X)] dxn? =25 [g3(x)] Aa? //(10.11.1) and definition (10.1.9) that dxr” = A7

=37 [2'1 f2(F(x)) det(RT5)] An? // insert gz(x) from (10.11.1)
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=31 fri(F(x)) [Z'5 det(R%7) A7) // reorder
=3'1 fr(F(x)) [ZgR5A~7] // (10.8.1) to get symmetric J sum and no det
=3'1 fr(F(x)) [Zy Ry AM] . // rename dummy multiindex J-M (10.11.9)

Since AM = <ua™| from (2.11.c.2), we rewrite (10.11.8) in Dirac notation,

S | R = [s<Bd = Js =1 fr(Fx)) Zu R%w <u| (10.11.10)

which is interpreted as a functional in A¥(R™) (see fiber comment below).
In a second step we close this functional with a certain "measure ket" |u> defined as
lp>= 25 dx™> = 2y [dxI>® [dxI2>Q .. ® | dxk>
= ¥y dx?, dx32 ... dxIk > (10.11.11)
where the differential vectors are aligned with the axes of x-space R”,
dx? = dx? uy // no sum on j or | dx3>= dx3 |us> . (10.11.12)
Here dx? is a vector in R™ and | dx”> is a vector in (Rn)k called V¥ in Chapter 5. Thus,
|p>= ¥5dxItdx32 ... dxx | U3y, Uj, .. Uy >
= ¥5dx? | ug> // multiindex notation, dx” = dx31dx32 ... dxk. (10.11.13)

For example, for k = 1,2,3 in R™ =R the vector | p> would be

lp> =|dx*> + [dx®>> + |dx>> /k=1
lu> =|dxb, dx®> + |dxt, dx3> + | dx?, dx>> / k=2
|p> =|dx', dx?, dx>> . k=3 (10.11.14)

We then define "the integral of the k-form oy in x'-space" as follows,

ot = <Jsim | RIu>= < [sBel > = Js <pul n> (10.11.15)

where we end up with the integral of a certain tensor function over S. Next, write
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[s <pain> = [s T fr(F(x)) T R% <uM|p> // (10.11.10)
= [ 2 fr(F(x) SuR%w ' <u | dx’> //(10.11.11)
= [ 21 fx(F(x) SuR% Ty dx® <uM|uy> .  //(10.11.13) (10.11.16)

In our Chapter 8 normalization for wedge products, we write
<uug>= (MTANZA L ANTK) (5,84, U4y //(211.c2) At =<u?
= (1/k!) det(8"y) . /1 (8.3.9.b) (10.11.17)

In the Spivak normalization of the wedge product (see below (8.1.3) the (1/k!) is replaced by 1, and we
shall now continue in the Spivak normalization, so

<uM|uz> = det(d%y). // using Spivak wedge product normalization (10.11.18)

Inserting this into (10.11.16) gives
Js <Baln>= o= fr(F0) 5 dx” [Zu Ry det(@™)] (10.11.19)

where we have shifted the M sum to the right. Now consider,

Zu Ry [det(8"7)]

=%y Ry [Zp -D°® % (5 ] // (A.1.21)

=>p (-1)S ® >u Ry % (7) // reorder

=3p(-1)*® R 5 // 'k matrix multiplications

=det(R*) . /1 (A.1.21) (10.11.20)

Inserting this result into (10.11.19) gives

Js <Belu>= J s fr(Fx) 5 dx” det(R%5)]

= [ ¢ ¥ f2(F)) =5 det(RE,) dx” . (10.11.21)
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The final result then is
ot = <Jsio | RIu>= < [s Bl > =[5 <Puln>
= [ ¥ f(F)) =5 det(RE,) dxItdxI2 .. dx3x

= s ga(x) dxI1dxI2 . dxIx | (10.11.22)

This result then is the same as (10.11.7) obtained by making the "two definitions". Our resulting tensor
function turns out to be just a constant function which is a real number which is the result of doing the
above regular calculus multivariable integration.

Our alternate approach lacks rigor since the integration is treated as a sum over points x' on a
manifold and this really means that the Dirac space used above is some kind of fiber bundle space (the
tangent bundle of Section 10.2). Moreover, the measure ket |u> = X'y | dx”> seems arbitrary, but it does
manage to "sweep up" all contributions to the integration and we do get the correct result. The method
does at least provide an alternative explanation of how the functional dx~? wedge product is replaced by
the calculus product dx”.

10.12 Integration of 1-forms

General Review of k-form integration

This section is presented in the x = @(t) notation introduced in Section 10.9 and illustrated in hybrid Fig
(10.9.3) which we replicate here,

n R®™ m
R® t pullback x-space x
Fopace Be= 0*(0x) i
....... — ™
------------- »” [~ ax .»':
U Pe ‘ /'."
te Y forward map i 5
e L ' 2 X : o(t) V _________ W X
tt open region U, dim(U) =n x1 open region V, dim(V) = dim(M) =n
B € £A¥ (U cRR) Oy € xA¥(V =M c R™)
(10.9.3)

The main result of Section 10.11 is this description of the integration of a k-form over a surface,
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J‘sv Olye ! = J‘SV[ZVI fI(X') dx,il/\dX'iZ A Adx’ik] // Olye ! :Z'I fI(X') dx’/\l

[ 125 gs0) ddtrad2 ~ A gdk] // first definition (pull back)

f s [ 25 ga(x) dxI1dx32 ... dxI¥] // second definition

where
g3(x) = X' fr(F(x)) det(R*';) and x'=F(x),R=(DF). (10.11.7)

Using the x = @(t) notation we rewrite the above (with some specialization) as,

Joox = [o Zrfux)dx'lrac'2 A raxik 1/ o = £'g fr(x) doxn’
= [ 1011k T go(t) dALAdA2 A A gk // first definition (pull back)
1 1 1 . . .
=(J . ] ) - ] , ) Zo galt) dVdeI2 . di // second definition
where
gs(t) =21 fr(@(t) det(R’y)  and  x=g(t),R=(Dg). (10.12.1)

Here the pulled-back integration region formerly called S is taken to be the unit cube in k dimensions,
written above as [0,1]* and referred to as a k-cube. The pre-pullback integration region formerly called S'
is here called ¢, with the idea that this region is @([0,1]%).

Note: A k-chain is a linear combination of k-cubes and is used by both Sjamaar (p 65) and Spivak (p 97)
in their derivations of Stokes' Theorem. In fact, Spivak's entire Chapter 4 which includes his discussion of
tensor products, wedge products and tensor functions is entitled Integration on Chains.

Integration of 1-forms

We wish now to look in more detail at the integration of 1-forms. There is much repetition of statements
below because the meaning of objects tends to quietly diffuse away as one proceeds.

Consider this general 1-form in x-space R™,
ox = Zi fi(x) AP = Ti fi(x) dx' . (10.12.2)

We wish to define a meaning for the integration of this 1-form oy over a piece of the curve x = @(t),

fq, Ox = fq, %5 fi(x) dx' = integral of a 1-form over a piece of the curve ¢ in R™ . (10.12.3)

The transformation x = @(t) is a mapping @: t — R™. Variable t is often called "the parameter".

239



Chapter 10: Differential Forms

Comment: Officially it is the mapping ¢ which is "the curve", but one loosely refers to the image (trace)
of this mapping in R™ as "the curve". The distinction is necessary because many mappings can have the
same image curve, such as @(t) and (p(tz), where the parameter is "re-speeded" (reparametrized). This

picture shows the general respeeding idea :
f'(t) > 0 for tin [c,d]

fi(t
/ \ flc)=a fid)=b
b c

> t

w(t) = o(f(t))

two "curves" have the same trace

ra

(10.12.4)
Here the same red curve is the image of two different transformations x = @(t) and x = y(t) with different

domain intervals, and y(t) = @(f(t)) where f(t) is a monotonic respeeding function. A special case would
be [a,b] = [¢,d] = [0,1] to which our example ¢(t) and y(t) = ¢(t?) would apply. Mappings ¢ and y are

called smoothly equivalent curves and J‘q, 0x 1s the same for any two such curves (Buck p 386 Theorem 2

(1)) A similar but generalized reparametrization comment applies to integration of 2-forms and k-forms.

So imagine that we have a curved line hanging in R™ space and as t varies perhaps from 0 to 1 in t-space,
we move along the image curve in R™. The problem is how to integrate a 1-form along this curve.

We can define the calculational meaning of the above integral in two steps, each being a definition, as
outlined in Section 10.11.

First definition:

Joox =1 10,21 0*(0)
= the integral in t-space of the pullback of ay over the 1-cube [0,1] (10.12.5)
On the left is an integral of the 1-form ay over a curve ¢ in R™
On the right is an integral of a different 1-form ¢*(ox) (the pullback of o) over a 1-cube [0,1] in R™.
Note that oy lies in xA(R™) while ¢*(ay) lies in A (R).

Since our usual 1-form pullback mapping is ¢* : AMR™) — A (R™), we haven=1 (see (10.7.18)).

The "tall" m x n R-matrix for this problem is then an m x 1 matrix which is just a column vector of m
elements O™,

R = (D (t) 0)*1 = do*(t)/ot. //t+ = t, the only coordinate in t-space (10.12.6)
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We then compute the pullback of @*(0x) of 0y :

ax = Z5 fi(X) AP = Sy () dx' = f(x) e dx,  dx=(dxh, di?, ... dx™)

0*(0x) = T3 ¢*(fi(x)) *(dx") //(10.9.5) 3
= %; fi((t) Zs=1® RYy A //(10.9.5) 1 and 5
= 3; fi(p(t)) Ry di* // n=1
= 3; fi(o(t) [Be*(t)/ot] di //(10.12.6) and t* =t
= g(t)dt (10.12.7)
where
g(t) = Zi fi(@) [007(0)/0t] = 1 fi(@(1) 8e0™ (1) = f(@() ® (Oc0) . (10.12.8)

The object ¢*(ax) = g(t) d is a 1-form in dual t-space tA*(R).

Using the definition given above, one then has,

I(p Ox = f(p Ox = J‘[O,l] 0*(0x) = f[o,u g(t) dr . (10.12.9)

Thus the integral of the 1-form oy over the curve ¢ in x-space is defined to be equal to the integral of the
1-form g(t) dt over a 1-cube in t-space. So far no regular calculus integrals have appeared.

Second definition:

[rome0 e =f o evd = [ st (10.12.10)

On the left is the integral of a 1-form on a 1-cube, on the right is an ordinary calculus integral of a
function over the interval [0,1] of the real axis. It is this second definition that motivates giving the dual
space basis vector ¢A the cosmetic name d.

If one flips the "orientation" of the integration domain, so that [0,1] becomes [1,0], the result changes
0 1
sign, and of course this fact agrees with the usual notion that fl g(t) dt =- fO g(t) dt.

We have then shown that the integral of a 1-form is described by,
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Joox = Jo 0 odx = [ 0,17 gv) di

This result appears in Sjamaar Ch 4 Eq (4.1) with ¢ = ¢ and m =n.
Notice that the only locations where f(x) is "sensed" in this integral

Since dx = (O@(t)) dt, the above can be written concisely as

I : f(o(t) » (Geo(v) dt = [ 1fi((l)(t)) [00™(ty/t] dt .
0 0
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(10.12.11)

are points on the curve x = @(t).

1
Joox = Jo fedx = [ , fom)edx  where dx= (deo() dt. (10.12.12)
We redisplay the earlier Fig (10.9.3b) to illustrate the above discussion, where By = g(t) d7 :
pullbick Bt _ (P*(U-x) Rm xm
P x-space
n=1 s
R1 . fatred curve 1s region V. M R™
t-space ,f'f \
) 2
0 ‘ / X
U —R1 ?‘"-*--—M/\

(a 1-cube)

tangent

thin red curve is the Manifold M.

space at x is 1D

(10.12.13)

Recall now our "no differential forms" integration done in (10.10.42),

, a 3 i
L'<B> = ‘[0 dx Zy=1" Bi(F(x)) R™1(x) .

// B¢ means Btangent

(10.12.14)

In the x = @(t) notation this reads, setting a = 1 and replacing 3 by m,

L<Be>= [ | dt 3™ Ba(o®) (Do)'s(0)

[ 01 dt Z321™ Bi(o(t) O¥o(t)

[ Bow) « oo at

(10.12.15)
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which is the same integral appearing in (10.12.11) with f = B. Therefore, we can interpret (10.12.15) as
being the integral of the 1-form,

0x = 23 Bi(x) At = 23 Bi(x) dx' = B(x) e dx (10.12.16)

and one then has

Joux = [o By dx = fol B(o(t) » dp(t) dt = | 01 B(¢(t)) * dx (10.12.17)

where dx = (0r@(t)) dt. This integral is normally written _[q, B(x) e dx showing again the motivation for

the cosmetic functional notation dx. This is the "line integral of a vector field B over a curve ¢ ".

Now return to (10.12.11),
J px = | 01 f(o(t) » (Cro(v)) dt . (10.12.11)

Suppose the vector field f(@(t)) happens to be tangent to the curve ¢ for all values of t. In this case

f(@(V) * (Oeo(V) = f(o(1) | [ (Oeo(V)) | (10.12.18)

since Ox@(t) is tangent to the curve at t. Note that
| (0e@()) 2 =Zi1™ (Be0™()? = g™ R 2 . (10.12.19)

which we recognize as the K? object of (10.10.41). Setting | f(@(t)) | = T(@(t)), we find that

| plx = | 01 T(o(t) K(t) dt (10.12.20)

and this shows how the temperature integral of (10.10.42) can be fitted into the 1-form framework.

Example for R™ =R?: The "angle form" problem mentioned in (10.5.10). (10.12.21)

In this problem we have specific functions f; and f>, a specific range [0,2n] for the t-space domain, and a
specific curve (a circle) x = (t) = (x*,x?).

ox = Zici2 fi(x) AF = f(x) dt + fa(x) di?

= - (x¥%) dxt + (xl/rz) dx? where 1% = (x1)? + (x%)?
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xt =(t) =cos t de@(t) = -sin t t=[0,27]
x? = ¢3(t) =sint de%(t) = cos t t is the polar angle of the vector x = (x*,x?)
2= (xl)2 + (xz)2 =cos? t+sin? t=1 vector x lies on the unit circle in x-space

fi(o(t)) = - (x*/r%)=-sint
f2(p(t)) = + (x*/r?) = cos t

Ox= -sint dxt + costdx’
0*(ayx) = g(t) dt pullback of 0, (10.12.7)

2(t) = f3(0() [00™(1)/t] = [ f1(@(1)ep™ (1) + f2(@(1))Oe0*(H)] = [ (-sin t)(-sin t) + (cos t)(cos 1) ]

SO
0*(ax) =1 dr

fq) Ox = J.[O,Zn] (P*(a) = J.[O,Zrl] g(t) dt = f[O,Zn] dt = fozn dt

=2m.
So the integral of this particular 1-form o around the unit circle gives the number 2x. In this example we
are trying to "cover" a full circle with a single mapping x = ¢(t) and the circle has a "seam" which maps

back to both t = 0 and t = 2=« resulting in the 27 above. See comments below (10.5.9) concerning how this
1-form example provides a counterexample to the Poincaré Lemma and shows that oy is not exact.

Integration of 1-forms over more general regions of t-space
In the general mapping picture where ¢ : R™ — R™ one is allowed to have k-forms with k < n but we are
usually interested in the case that k = n since this makes the most "efficient" use of t-space on the left. But

there is no reason not to consider k <n.

Consider then this 1-form situation in the context ¢: RZ5R3:
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At llback x*
PUDETE B = * (o) R™
¢ x-space
n=2 forward map _ ) s )
R2 (0} X =¢(0) . fat red curve is region V. M < R™
t- .r'f
space Be
U ¢ O vV A / x?
UcR? X 3 M <
> (1 thin red curve 1s the Manifold M.
x1
0 tangent|space at x is 1D

(10.12.22)

Now the simple 1-cube in R? t-space is replaced by a general curve U in R2, but we are still mapping a
curve U to a curve V. We go through the steps above:

ox = Zi fi(x) AP = Ti fi(x) dx' . (10.12.2)

pr Ox = fv %; fi(x) dx' = integral of a 1-form over a piece of the curve V in R™ . (10.12.3)

First definition:

fv Ox = fu ©*(0x)
= the integral in t-space of the pullback of ax over the curve U in R? (10.12.23)
We then compute the pullback of ¢*(0x) of oy :

ox = I3 fi(X) AF = Zi fi(x) ' = f(x) e dx, dx = (dxt, &P, ... dx™)
0*(ax) = Tiza™ @*(fi(X)) 0*(dx") //(10.9.5) 3

= Zic™fi(Q(t) 4e1” RYy dA //(10.9.5) 1 and 5

= % 35 fi(() [0e*(t)/or] df

= Iy gy(t) aF

= g(t)e dt (10.12.24)
where

g5() = 21 fi(e() [0 (/o] = Zs fi(@(1) 8391 = (1)) » (35¢) . (10.12.25)
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Second definition:

fu g5(t) A = fu gt)ye dt = fu g(t)edt . (10.12.26)

Assembling the pieces,

[vax = Jv ) e dx=Jgo*(ae) = o g®)e at = [y gt)eadt. (10.12.27)

When one curve is mapped into another by x = @(t), this result shows how to reduce the integral of the 1-

form ok to a calculus line integral in t-space. In effect, the line integral le f(x) o dx in x-space is

replaced by the line integral IU g(t) e dt in t-space.

10.13 Integration of 2-forms
We wish now to look in more detail at the integration of 2-forms. The general k-form integration result is
stated in (10.12.1). Once again, there is much repetition below intended to reinforce the meaning of

various objects.

For the moment we set m = 3 and consider this 2-form in x-space R3,
O = 7 f1(x) ko = X1 fr(0) din' = Tagigcipes figa,(x) dx't  dx'?
= fi2(x) dxt Ndx® + fi3(x) det A dxd + fag(x) dx® A dx (10.13.1)

We wish to define a meaning for the integration of this 2-form o over a piece of the surface x = ¢(t),
J‘q, Ox = fq, T'1 fi(x) dx'l « dx'2 = integral of a 2-form over the surface ¢ in R* . (10.13.2)

The transformation x = ¢(t) is a mapping ¢: (t1,tz) — R3 where t; and t; are "parameters".

Comment: Officially it is the mapping ¢ which is the "surface", but we loosely refer to the image (trace)
of this mapping in R* as "the surface". The distinction is necessary because many mappings can have the
same image surface, such as @(t1,tz) and (p(tlz,tzz) where the parameters are "respeeded"
(reparametrized). If the integral of the 2-form oy is the same over surfaces ¢ and y which have the same
image surface, the two surfaces are called smoothly equivalent surfaces, see Buck p 386 Theorem 2 (ii).

So imagine that we have a 2D surface hanging in R and as t; and t; vary (each perhaps from 0 to 1 in t-
space), we move around on the image surface in R3. The problem is how to integrate a 2-form over this
surface.
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We can define the calculational meaning of the above integral in two steps, each being a definition, as
outlined in Section 10.11.

First definition:

Jo0x=J 10,112 0%(0)
= the integral in t-space of the pullback of ay over the 2-cube [0,17]? (10.13.3)
On the left is an integral of the 2-form oy over a surface ¢ in R3.
On the right is an integral of a different 2-form ¢*(ay) (the pullback of o) over a 2-cube [0,1]% in RZ.
Note that oy lies in xA%(R®) while ¢*(ax) lies in ¢AZ(R?).

Since our usual mapping is ¢* : xA*(R™) — ¢AY(R™) we have m =3 and n =2 (see (10.7.18)).

The "tall" m x n R-matrix for this problem is then a 3 x 2 matrix,

81(p1 82(p1
Ry = (Do)'y = dp¥/od =a59°  i=123 j=12  R=| 010> 8207 |. (10.13.4)
3 3
019~ 020
We then compute the pullback ¢*(oy) of oy :
O = Z1<iy<ipes Figip(X) wha’ = Tici<ipes figip(x) dr't o dx'2
0*(0x) = Tasig<ipes @*(fig1,(0) @*(dx'T » dx'?) //(10.9.5)3
6(pi1 a(pil
o3l o2 i )
= Y1<iq<ip<3 filiz((p(t)) Y1<i1<j0<2 det 6(Pi2 8(p12 dsinr gp2 //(10.9.16)
atfll atJZ
8(pi1 8(pi1
ot of? . 5 .
= Z1<iq<ip<3 fi,1,(@(t)) det a(piz a(piz dr " dt /" only one term in X1<j;<j,<2
ot of?
019" 0201 1 .
= Z1<iq<in<3 fiqi,(@(t) det alq)iz azq)iz dr " dt // more compact notation

// these determinants are the 2x2 minors of the matrix R shown above
A(oiL. o2

= Zi1<iq<iy<3 fi11,(0(t) W dit ~ d? // Jacobian notation for determinants

2
= Z::l-Si:|.<i2§3 giliz(t) dtl N dt

247



Chapter 10: Differential Forms

where . .
9™, 0*2)
8i1i2(t) = f115(90(0) 3T 7 - (10.13.5)

Since in this example there are so few terms (three) in the sum Xj<;<i,<3 , we just write them out
) ) (9% 9°)
(P*(ax) = [flz((P(t)) a(tI, tz) + f13(([)(t)) a(tI, tz) + f23((|)(t)) 6(tI, tz) ] dll N dtz

= G(t) di*» di

where
8 1, 2 0 1, 3 P 2’ 3
G = [Fia(0(0) FIT 7+ Fus(0) R + Foa0) 30r 571 (10.13.6)

The pullback ¢*(ax) = G(t) d* ~ di* is a 2-form in dual t-space +A2(R?).
Using the definition given above, one then has,
Joox = J 10,0205 = [ 10,102 GOy ai* » ai®. (10.13.7)

Thus the integral of the 2-form oy over the surface ¢ in x-space is defined to be equal to the integral of
the 2-form G(t) di* ~ di* over a 2-cube in t-space. So far no regular calculus integrals have appeared.

Second definition:

f[o,112 G(t) At A = f[o,”z G(t) di* ~ di

1 1
| , ] . G(t,2) dt*de? . (10.13.8)

On the left is the integral of a 2-form on a 2-cube, on the right is an ordinary calculus integral of a
function over the 2-cube. It is this second definition that motivates giving the dual space basis vectors ¢A*
and tkz the cosmetic names d#* and d#° .

Notice that the only locations where the functions f;,;,(x) are "sensed" in this integral are points on the

surface x = @(t) .

Combining the two definitions gives
Ll 1.2y 412
Joox = fo fo G(t4,2) detdt (10.13.9)

with G as in (10.13.6).
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We redisplay the earlier Fig (10.9.3a) to illustrate the above discussion, where B+ = G(t) dit ~ di?

Rm

x-space

Xm
Outlined patch 1s region V. M R™

n=2 |2 liback -
R? Vor PeZ M)

-«

t-space
! » forward map
U2 Bt ¢ X= (P(t)
> ——1
Aty )

> tl X

UcRr2 1

(a 2-cube)

torus is Manifold M

tangent space at x is 2D

(10.13.10)
Here R™=R? and the torus is just a sample surface to illustrate the general surface x = @(t).

Comment on orientation

Orientation of the domain surface is a tricky business in a k-form integral but can at worst cause
confusion about the sign of the result. To make things more "visible", suppose [a,b] = [c,d] =[1,0]. In t-

space R?, if [a,b] = (b-a)t1 = 1 and [c,d] = (d-c)T2= T2, then the 2-cube (unit square) integration domain

[0,1]% can be regarded as being over region £1 x 2, a vector area with two "sides" (orientations)

fgl x £2 dtdt? 1 area of the front side of a unit square is 1 area unit

fez x f1 dttdt® = -1 area of the back side of a unit square is -1 area unit . (10.13.11)

This is analogous to the 1D situation where [0,1] and [0,1] have opposite orientations.
1
[ at1 =1
0
0
[Tatr=-1.
1

The integral appearing in (10.13.8) is this

1 1
[ 0112 GOy dt~ d? = 81 x 82 G(t)di*» a = fo J"O G(t4,2) dtde . (10.13.12)

Now consider

[e1 200 GO a2 ] = - [81 x t2 G(t)dP~ di*
(10.13.13)

6 x t2] GO AP dit = — [« 22 Gt)dP ™ di*.

Jt1 % 02 Gyart» a?

[t2 x 1 GOyt~ ar?
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In both these equations a minus sign is generated. In the first the minus sign arises because the 2-form
called G(t) di® ~ dit s the negative of the different 2-form called G(t) di® ~ di*. In the second equation

the integration domain t1~ 1, refers to the front side of the unit square, while £, N 11 refers to the back

side of the unit square, and these domains differ by a minus sign. If both changes are made at once one
gets

Je1x 02 Gyart» a? = + [0 01 GO d?~ ar* (10.13.14)
If the integration domain is written simply as [0,1]2, one ends up with
[ 10212 Gy dit» a? = + [ 0.192 G(t) d ~ di* (10.13.15)

and this seems to be a contradiction since everyone knows that di* ~ di* = - di* ~ di® . The issue here is
that the two [0,1]? domains are not the same, they just look the same. See Sjamaar's page 64 Remark 5.3

where he treats the domain £, x f1 as a reparametrization of the domain t1 x 1, which reverses the
orientation of that domain.

Further processing:

Using the Hodge correspondence suggested in (4.3.17) we define three new function names F;

fi12=F3
f23=F;
fi3=-F, (10.13.16)

with a minus in the last line since fi3 is in anticyclic order compared to (4.3.17). Then (10.13.9) with
(10.13.6) for G(t) becomes,

Jow= [ [ (Fsto) S (2’; 2 )) F2(<P(t))%1_;%)_) + Fl(cp(t))a(—((ii—i'é)—)] dtde®
C ) o9’, 9°) 9% 97 1o
= [T e Sy - Faem) Sy + Fate) S ) it

IR ) e 2%+ pe 228 acar

- 01 J 01 F(o(t) * n(t) dt*dt? (10.13.17)

where n below is a vector normal to the surface in R® at point x = @(t),

250



Chapter 10: Differential Forms

_ 0%9) 3% ) A9l ¢°)
n® = (3T 3 > D) o, o) ) // Buck p 335, 403

R?; R%, R3; R3, RY; RY,
= (det R3; R3, , +det R, RY, , det R2, R%, ). (10.13.18)

That n really is a normal vector can be verified by showing that n e yuj = 0 for any tangent base vector
«Uj3 in the tangent space TxM, where from (E.2) (xu3)* = R*j = ;0" , see Buck p 336. But we know
that n(t) is a normal vector because the expression for n in (10.13.18) is the same as n' in (10.10.19)
(apart from change of notation) and that n' was constructed as a cross product of two vectors on the
surface so it was a normal.

The vector n(t) is not in general a unit vector, so we define

fi(t) =n(t) /| n(t) | (10.13.19)

where

5 2, 3 P 3, 1 P 1, 2
In(t) =] (;2?[1, ig)) P+ [ égl’ j;)) P+ égl, :PZ)) I

= det? (Eii };2322) + det? Gﬁi };:122) + det? G:li };1222)
= K(t)? (10.13.20)
which we recognize as the same object K? appearing in (10.10.18). Then with
n(t) = K(t) f(t) (10.13.21)
equation (10.13.17) may now be written,

Joox = 01 fol F(p(t)) » fi(t) K(t) dt*de? . (10.13.22)

Going back to the original 2-form oy (10.13.1) one can write,
Ok = Z1ciqj<ip<s figi(X) dx'L a dx'2
=f1o(x) dxt & dx® + fi3(x) dxt ~ dx> + fa3(x) dx? & dx®
=F1(X) dx? ~ dx° +Fa(x)dx> ~ dxt +Fa(x) dxt ~ di?
=F1(x) dA* + Fa(x) dA? + F3(x) d4>

=F(x) » dA /1 dAY  =*dx etc, so can say dA = *dx (10.13.23)
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where in cyclic order we define the following differential area 2-forms
dA* = dx® ~ dx® dA? = dx> ~ dxt dA® = dxt ~ d® . (10.13.24)

Then our result (10.13.22) can be concisely written,

Jome=LoFean= [ [ Fom) e+ h0 1K ddc

] 01 fOI [F(p(t) o A()] dA  dA = K(t) dt*de?

1 1 A 12 A
] , | , Flow)eda dA =dA fi = K(t) dt*d fi(t) . (10.13.25)

Normally this is written fq, F(x) o dA showing the motivation for the cosmetic functional notation dA as

defined above. This is the "integral of a vector field F over a surface ¢ ".

Recall now our "no differential forms" surface integration done in (10.10.20)

A'<By> = | ¢ dA' Bx) e fi' = ['s BF(x)) o A" K(x) dxtdx? . (10.10.17)
In the x = @(t) notation this reads

A<Bn> = Js dA Bx)ofi = [ s B(o(t)) o f K(t) dtdt? (10.13.26)

which is the same integral appearing in (10.13.25) with F = B. Therefore, we can interpret (10.13.26) as
being the integral of the 2-form,

ax = B(x) o dA (10.13.27)

and one then has

Joux = [oBean = [ [ Bow« h01K® ate?

= fol fol B(o(t)) ® dA . (10.13.28)

Now return to (10.13.25),

Joox = o Fx)oda = [ 01 ] 01 F(o(t) » () K(t) dt*de® . (10.13.25)
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Suppose the vector field F(@(t)) happens to be normal to the surface ¢ for all values of t. In this case,

[F(o(t) e fi(t)] = |F(o(t) . (10.13.29)

Then setting | F(@(t)) | = T(p(t)) we find that
Jooe = f 01 J 01 T(o(t) K(t) dt*dt® (10.13.30)

and this shows how the temperature integral of (10.10.20) can be fitted into the 2-form framework.

Generalization from ¢: R*— R> to ¢: R*>—> R™

If the 2D surface lies in R™ instead of R3, the above results are easily generalized. The 2-form oy is then,
Ox = Z1<iq<ipem fi11p(X) xha’ = T1<i<ipem Fiq15(X) dx'l s dx'? = ¥'g fr(x) doxn! (10.13.31)

where there are (m,2) = m(m-1)/2 terms in the ordered sum X';. The pullback also has (m,2) terms, being

G i P R¥y Rz )
0*(0x) = Z1<iq<ipem f171,(Q(1) 70172)— dr-™ dt© =%'1 fr(@(t)) det Ri2, Riz, dr= " dt
L (9™, ¢*?)
= Z1<iq<ip<m Ziqip(t) di- " dt giq1i,(H) = fij1,(0(t)) o, )
L (™2, ¢*2)
=G(t) dr ™ dt G(t):2155_1<5_25m filiz((p(t))T(t1—tz)—. (10.13.32)

The pullback ¢*(0x) = G(t) di* ~ di is still a 2-form in dual t-space tAz(Rz). Then
1 1
Joox = 10,112 9%o) = J 10,172 Gty di* » a? = [, J, Goate (10.13.33)

Here G(t) is a sum of (m,2) terms each of which is a 2x2 Jacobian weighted by a function fi;;,.

Example: o: R?>> R4

ox = f12x) dxt & dx® + f13(x) dxt ~ d® + fig(x) dit o~ dx? // 2-form in xA%(R?)
+ fo3(X) dx® ~ di® + f24(X) dx® ~ dx? + faa(x) dx° & dx?

0*(ax) = G(t) di* » di // 2-form in A%(R?)
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where
a 1, 2 a 1, 3 a 1, 4
G) = [ a0 AT 5y, + a0 5Ty + Fra() S
8(e%, ¢°) 8(9%, ¢*) 89>, ¢*)

+ f23(x)_1_2_8(t NG + f24(x)a—(t172)— + f34(x)W]
and the integrated 2-form is
. 1 |
Joox =l wmzer@= [ [ atetGa.

Generalization to : R*—> R™ withk=n
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(10.13.34)

(10.13.35)

This generalization is discussed in Appendix G.2 where the x' = F(x) context is used. It turns out that

there is still a unit vector M having binomial (n,m) components which is similar to the fi discussed above.
The Appendix G.2 discussion relies on a theorem, proven in Appendix G.1, showing that det(R*R) is the

sum of the squares of the full-width minors of R. The significance of det(RTR) as a volume measure is

presented in Appendix F.
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Appendix A: Permutation Support
This is a very long and detailed appendix, so a summary is in order:

Section A.1 describes our Xp permutation notation and comments on the permutation group. It then
proves three different "rearrangement theorems" and states various determinant expansions using Xp
notation. It is shown that det(M) = det(M™) = det(MT) for any index positions of a rank-2 tensor M.

Section A.2 describes the action of a permutation operator on a generic function f(1,2...k), and states
several theorems concerning multiple permutation operators. At the same time, the Alt operator is defined
and various facts are proven concerning this operator. The notion of a totally antisymmetric generic
function is directly related to the Alt operator.

Section A.3 mimics Section A.2 for the Sym operator in place of the Alt operator. The notion of a totally
symmetric generic function is directly related to the Sym operator.

Section A.4 states some facts which concern both the Alt and the Sym operators together.

Up to this point, the various facts and theorems have taken place in a "generic permutation space" which
consists of functions of k arguments which are a permutation of 1,2...k, such as f(2,1,3...k).

Section A.5 applies all the previous facts and theorems to the permutation space whose elements are the
component indices of a rank-k tensor, so f(1,2,3..k) = T*1*2---*k The results of Sections A.2, A.3 and

A .4 are adapted to the tensor world in subsections (a), (b) and (c).

Section A.6 deals with the permutation tensor €;,3,. . .1, and shows how it can provide an alternative to

the permutation notation in some situations associated with the Alt operator.

Section A.7 adapts the above generic results to the case f(1,2,....k) = (v5; ® v3, ® ... ® vj,) which is

the tensor product of k vectors. Then the wedge product of k vectors is defined in terms of this application
of the Alt operator, so that (vy; " vy, * ... 0 v ) = Al(vy; vy, @ ... .Ovy).

Section A.8 is similar to Section A.5, but the facts and theorems are applied not to tensors, but to "tensor
functions", so here f(1,2...k) = J(vi;,Vi,....vi, ). The permutation space is now the set of label subscripts

on the k vector arguments of a tensor function. The results of Sections A.2, A.3 and A.4 are adapted to the
tensor function world in subsections (a), (b) and (c). Subsection (d) then derives special-purpose theorems
that apply to objects with two multiindices, and then to objects which have a factored form.

Section A.9 proves an obscure ordered permutation sum theorem that is used in (7.4.12).

Section A.10 defines the generic function space tensor product and then relates it to the tensor product of
tensors and then to the tensor product of tensor functions.
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A.1 Rearrangement Theorems and Determinants

Definition: A permutation P (of order k) reorders the list of integers [1,2,3...k] in some manner to give
[i1,i2,13...1k] . (A.1.1)

Including the initial ordering [1,2,3...k], there are k! possible permutations.
Fact: Xp(1)=k!. // there are k! equal terms in this sum (A.1.2)
The permutation group rearrangement theorem states the following:

Yp f(QP) = Xp f(PQ) =Zp f(P) . (A.1.3)

Here Xp is a sum over all k! permutations of [1,2...k], and Q is any one of these permutations.
The first two sums are just reorderings or rearrangements of the third sum and so equal the third sum.

Proof: This theorem is true because the permutations P of [1,2...k] form a group G :

eP;P,=P3eG // closure

o (P1P2)P3 = P1(P2P3) // associative

eP=] // identity exists, permutation that does nothing to [1,2...k]

o P71 exists for any P // just the inverse permutation. (A.1.4)

It is a fact that, for any group G with k elements g;,

8a [81, 82, ..-8k] = [ 8a81, 8a82, ---8ak] = [&'1, &2, ....8"] = reordering of [g1, g2, ....gk]
(g1, 82, --..2k]8a = [ 218a, 8284, -.--EkLa] = [2"1, &"2, ....&"k] = reordering of [g1, g2, ....8k] -
(A.1.5)

To show that [g'1, g'2, ....g'k] is a reordering of [g1, g2, ....g2k], we have to show that no two elements of
[g'1, '2, ....g'] are the same. Suppose for example g'1 = g'2 . That would imply gag: = gaga. Since ga™*
exists in a group for any ga, apply ga~* to both sides to get ga 'gag1 = ga "gag2 Or g1 = g2. But that
contradicts the basic starting point that [g1, g2, ....gx] enumerates the distinct group elements. Therefore

Z; f(gagi) = Zif(giga) = Zif(gs) . (A.1.6)

This is valid only if the sum is over all elements of the group, which in the rearrangement theorem (A.1.3)
means the sum Xp must be over all permutations P.

In any group, if g exists, so does g™*, and it is just some element of the group. For the permutation
group P! exists and is in fact the permutation which reverses the permutation of P :

P[1,2..K] = [is,iz...ix] = [1,2..X] =P Yiy,iz...ix] ppl=plp=1 . (A.1.7)
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In the above, since [i1,i2...ix] is a permutation of [1,2..k], one can get from [1,2..k] to [i1,i2...1x] by
making some number of swaps of the integers in [1,2...k].

Comment: We are following a Maple convention that [a,b,c...] is a "list" where order is significant,
whereas {a,b,c...} is a "set" where order is not significant.

The swap count S(P)

Any two permutations of [1,2,..k] can be linked by a number of pairwise swaps of the integers. For
example, if we have P[1,2,...k] = [i1,i2,...ix], one can get from the first integer sequence to the second by
doing some number S(P) of pairwise swaps. The integer S(P) is not unique, but whether it is an even or an
odd integer is unique, so the factor (-1)°‘®) is unique to a particular P (we leave it to the reader to prove

this fact) . Sometimes (-1)° ‘¥ is called the parity of permutation P.

Example: [1,2,3] — [2,1,3] S(P) =1 -H)S® =1
[1,2,3] = [1,3,2] = [2,3,1] = [2,1,3] S(P)=3 -1)5® =1 (A.1.8)

It seems clear that the number of position swaps to get from [1,2...k] to [i1,12...ix] is the same as it is going
the other direction, so

S(P™Y) =S(P) . (A.1.9)
Finally, consider

P1Py[1,2..k] = P[1,2..k] = [i1,i2...1k] - P="P;P;
If P, causes Sz position swaps and then P; causes S1 more, then P does S,+S; total swaps. Thus

S(P) = S(P1P2) = S(P1) + S(P2)
” (-1)S(B1P2) = ((1)S(P1) ((1)S(F2) — (_1)S(P2P1) (A.1.10)

From the above these trivial corollaries follow :

(_I)S(PP) —1, (_1)S(PQ) :(_I)S(QP)‘
(_I)S(P) (-I)S(P) =1 (_I)S(P) :(_I)S(Q) (_I)S(PQ) (A.l‘ll)
Fact: Zp(-1)°® = 0. (A.1.12)

Proof : By the rearrangement theorem (A.1.3) and then (A.1.11) we know that, for any permutation Q,
Ep(-l)s (P) _ Zp(-l)s (QP) _ (_l)s (Q)Ep(-l)s (P) ‘

Select a Q which has (-1)%(? =-1. Then Zp(-1)°® = - 35(-1)5®) = zp(-1)5® =0. QED
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Another Rearrangement Theorem

Another version of the rearrangement theorem is the following,
%o f(Q) =Zo Q™) . (A.1.13)

Again, this is just a reordering of the sum. Consider,

1

{gl_l, g2, ....gk_l} ={gi1, g2', ....gx'} =reordering of {g1, g2, ....Ek} -

To show that {g1', g2', ....gx'} is a reordering of {gi1, g2, ....2x} we have to show that no two elements are
the same. Suppose for example that g1' = g5'. That would say g1 ™' = g~ which in turn says g = g», but
that contradicts the basic starting point that {gi, g2, ....2x} enumerates the distinct group elements.
Therefore,

s fgs) = Zaf(gs ™). (A.1.14)

Comment: For continuous groups (like the rotation group SO(3)) , the rearrangement theorems become

J de figag) = [ de flega) = [ dg fg)

Jdg fe) = Jdg fig™ (A.1.15)

where dg is called the invariant Haar measure. For SO(3) it is dg = dpd(cos0)dy (Euler angles).

Determinants of a rank-2 tensor

It is well known that the determinant of a kxk matrix M can be written two equivalent ways in which the
rows and columns are swapped (this is the statement that det(M) = det(M™) ),

detMsx)  =Ziji,.. .4y €igip...ixMij1Miy2 .Mix
=Xiqip. . .ix igip...ixgM1i1M2iy .. Miiy (A.1.16)

where the permutation tensor ¢ is described below in Section A.6.
In permutation notation the above equations are written,

det(Mus)  =2p (-1)°® Mp(1)1Mp(2)2 -.-Mp () x
=% (-1)°® M1p(1)M2p(2) --Mkp (k) - (A.1.17)

If we start over with the "up-tilt" matrix M." (mixed rank-2 tensor) then (A.1.16) becomes.
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det(M**) = 2i:|_i2 c..ip €iqig. .. ikl\/Iilll\/Iiz2 ---Mikk
=Xi1ip.. . ix Bigip. .. M1 M2 2 L MK (A.1.18)
which in permutation notation becomes

det(M**) =2p (—I)S(P) Mp(l)lMp(z)z ...Mp(k)k
=% (DSE M FBMFR M F R (A.1.19)

Statements for det(M™™) and det(M**) are similar,

detM™) =3p (-1)S® MEMIIVE@IZ VP EIK
=3p (-1)S® MIBMINV2R2) VKR () (A.1.20)

detM™s) =3Zp (-1)SE MEM M2,  MPH)
=% (-1 My (1yM?p(2) .M (k) - (A.1.21)

Notice that in all the equation pairs above, the second line involves the matrix transposes of elements in
the first line. For example (MT)ap = Mpa and (M7),® = Mp? where the two indices are just swapped,

corresponding to a swap of rows and columns. So in all these cases we have det(M) = det(M?) for any
position of the asterisk index position markers, for example, det(M**) = det((M™]"+).

This conclusion is also true for the covariant transpose, so for example det(M”x) = det([MT]**), but this
fact is less obvious. In the covariant transpose defined in (2.11.f.1) one has Map = (MT)ba and Mp° =
(MT)ba. The covariant transpose is formed not by swapping indices but by reflecting the indices in a
vertical line between the indices. We shall now show that

Fact: det([MT]**) = det(M"+) and similarly for all other index positions. (A.1.22)
Proof: Consider that
Ti3gaiMb3e” =Ma® =M’

where we use the raising and lowering functionality of the metric tensor shown in (2.2.1). In order to get
all indices "down", define these three indices-down matrices,

(Can)ab=gab  (Zupab=g>" Nap=M%
so that

(M")Pa =i (gan)as Nij (2up)ib = (Zan N Zup)ab -
Then

det([MT]**) =det [ (8an N gup)**] = det(gan) det(Nxx) det(gup) -
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As shown in (2.2.2), gangup = | s0 det(gan)det(gup) = 1, and therefore
det(IM]"+) = det(Nxs) = det(M™+) .

A similar argument shows that det([MT]**) = det(M«"). For both asterisks up or both down, there is no
difference between M' and M” and we already know that det(M™) = det(M).

The final conclusion is this:
Fact: det(M) = det(M") = det(MT) for any index positions. (A.1.23)

Symmetric Sum Rearrangement Theorem

For any particular permutation P of [1,2...k],

ziliz...ik fi1i2...ik = 2i]_iz...ik fip(l)ip(z)...ip(k)
or
Xrfr =21 fp(r) . // multiindex notation (A.1.24)

Proof: Since Xz is a symmetric sum, one is free to shuffle the dummy summation index names at will,
and this shuffle is indicated by permutation P. For example

it = Ziqip. . cigfiqip. . ix = Zigiqg...dip lipig...ix = Zdgip...ixligip...dik
:Ziliz---ik fiP(l)iP(Z) ...ip (k) = ZI fp(I) where P[1,2k]= [2,11(]

A.2 The Alt Operator in Generic Notation

The generic Alt operator acts on a function f of the integers [1,2....k] to create a new function, g = Alt(f),
as follows:

g(1,2..k) = [Alt(D](1,2..k) = (1/k!) Zp (-DS® P(1),P2)...P(k) ) (A.2.1)

where f is any function and P are the k! permutations of the set of integers [1,2....k]. Informally we write
the above as

g(1,2..k) = (1/k") [ f(1,2...k) - f(2,1...k) + other signed permutations ] .

Examples:
g(1,2) =[Alt(H)](1,2) = (1/2) [ f(1,2) - f(2,1) ] (A2.2)

g(1,2,3) = [Alt(D](1,2,3) =(1/6) [ f(1,2,3) - f(1,3,2) + 1(3,1,2) - f(3,2,1) + f(2,3,1) - f(2,1,3) ] .
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Now, let R be some permutation of [1,2....k]. We write
R[1,2...k] = [R(1),R(2).....R(k)] (A.2.3)

where for example R(1) gives the integer into which 1 is converted by the permutation R. We can apply
the operator R to a function of 1,2..k in this manner,

R f(1,2,...k) = f{( R(1),R(2).....R(k) ) . (A2.4)
Fact: Any permutation R is a linear operator, so R( X;a;fi) =Zia;(Rf;) (A.2.5)

Proof: Leth(1,2,..k) =Z;a;fi(1,2,...k). Then

R h(1,2,...k) = h( R(1),R(2)....R(k)) /l (A.2.4) applied to h
=2X;a;:fi( R(1),R(2)....R(k) ) // definition of h
=2ja; Rfi(1,2,..k). // (A.2.4) applied to 3 QED

Now suppose R = QP, the product of two permutations Q and P. Then starting with (A.2.3),
(QP) f(1,2,..k) = f( (QP)(1),(QP)(2).....(QP)(k) )
= (. Q(P(1), Q(P(2)).... Q(P(k) )
= f( QP(1), QP(2)... .QP(k)) . (A.2.6)
But from (A.2.4),
(QP) f(1,2,..k) =Q { Pf(1,2,..k)} =Q f( P(1),PQ2).....P(K)) (A.2.7)

Therefore we have shown that

Q f(P(1),P(2).....P(k) ) = f( QP(1), QP(2)... .QP(k) ) . (A.2.8)
Definition: A function f(1,2..k) is totally antisymmetric if it changes sign when any two arguments are
swapped. (A.2.9)
Examples: f(1,2) =-f(2,1) = f is totally antisymmetric

(1,2,3) =-f(2,1,3)
(1,2,3) =-1(3,2,1) = f is totally antisymmetric
f(1,2,3) =-f(1,3,1)
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Fact: f(1,2..k) totally antisymmetric < P £(1,2,3..k) = (-1)5® £(1,2,3..k) (A.2.10)
Proof: [=] S(P) is the number of pairwise swaps going from [1,2,3...k] to P[1,2,3..k] = [i1,i2,i3...1n]. If T
is totally antisymmetric by the definition above, each such swap causes a minus sign, and the product of
these minus signs is then (-1)3®). [«<] If P = any pairwise swap, (-1)°®) =-1, so f(1,2..k) is then totally
antisymmettric.

Fact: The function g(1,2..k) = [Alt(f)](1,2...k) is totally antisymmetric in its arguments. (A2.11)

Proof: Let Q be some permutation of [1,2....k]. Then apply Q to the function g(1,2..k),

Q g(1,2.k) = Q { (1/k!) =p (-1)3 BV {(P(1),P(2)...P(k)) } // definition of g
= (1/k!) Zp (-1)5® Q f(P(1),P(2)...P(K)) // (A.2.5), Q is linear
= (1/k!) Zp (-D%® f(QP(1),QP(2)...QP(k)) // (A.2.8)

= (-D%Q (1K) Zp (-D%) {QP(1),QP(2)...QP(Kk)) // (A.1.11)

= -D3Q (k) Zp -D3B fP(1),PQ2)...PK)) // (A.1.3), rearrangement thm.
= (-1)5@ g(1,2.k) . // definition of g
By (A.2.10<) it follows that g(1,2,..k) is totally antisymmetric. QED
Fact: Altis a linear operator, so Alt(X;a;f;) =X;a; Alt(fy) . (A.2.12)

Proof: Leth(1,2,..k) =ZX;a;fi(1,2,..k). Then

[Alt(h)](1,2,..k) = (1/k!) Zp (-1)*® h( P(1),P(2)...P(k) ) // (A.2.1) def of Alt(h)
= (1/k) Zp (-1)3BV{ Z;a:f5:(P(1),P(2)...P(K)) } // definition of h
=sa; [ (1/k!) Zp (-1)5® £3(P(1),P2)...P(K)) ] // reorder sums
=Tsa; Alt(fy) // (A.2.1) def of Alt(f;)
Fact: Alt is a projection operator, so Alt(Alt(f)) = Alt(f) . (A.2.13)

Comment: This is why (1/k!) is included in the definition of Alt.
Proof: By (A.2.11) we know that Alt(f) is a totally antisymmetric function, and therefore from (A.2.10),

P [Alt(D](1,2..K)] = (-1)S ® [Al(H)](1,2..K)] . (A.2.14)
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Next, consider that

[Alt(D](P(1),P(2)...P(k) ) = P [Alt(H)](1,2...k) // (A.2.4) applied with f— Alt(f), R—P
= -DP[AI(D](1,2..k) . /1 (A.2.14) (A.2.15)
Now examine Alt(Alt(f)) :

[AIt(AL(D)](1,2..k) = (1/k!) Zp (-1)S P [ALD]( P(1),P2)...P(K) )

= (1/k!) Zp (DB (DS BALD](1,2.. K]} // (A.2.15)

= (1/k!) Zp[Alt(H)](1,2..K)]} [ EDSEYCDEE =
= [Alt(D](1,2..k)] {(1/kDZe(1)} // reorder factors
= [Alt(H](1,2..K)] {1} . //(A.1.2) QED
Fact: If f is a totally antisymmetric function, then Alt(f) = f . (A.2.16)
Proof:
Alt(H)(1,2..k) = (1/k!) Zp (-1)5 B f( P(1),P(2)...P(k) ) // definition of Alt(f) (A.2.1)
= (/) Zp -1)3® P (1,2,..k) // (A.2.4) with R—P
= (kD) Zp DB -1)*® £(1.2,..k) // (A.2.10)
= (1/k!) Zp f(1,2,...k) //(A.1.11)
= (1! f(1,2,.%) {Ze (1) } // reorder
=1(1,2,..k) 1 (A.1.2)

Fact: If f is totally antisymmetric, then

f(1,2,3..k) =(-D* f(2,3,...k-1,k 1) forward cyclic (A.2.17)
f(1,2,3..k) = (-1 1k 1,2,3,..k-1) backward cyclic

Proof: Let B be the particular permutation which does this: B[1,2,3..k-1,k] = [2,3,...k-1,k,1] (Backward
cyclic). One then has S(B) = k-1 because it takes k-1 swaps to move the 1 from one end to the other. If f
is totally antisymmetric, then according to (A.2.10) one has B f(1,2,3.k) = (-1)°*® £(1,2,3..k) so then

f2,3,... k,1) = Bf(1,2,3.k) = (-D3® £(1,2,3.k) = (-1)* * f(1,2,3..k) .
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On the other hand, if F[1,2,3..k-1,k] =k, 1, 2, 3,... k-1] (Forward cyclic), S(F) = k-1 for the same reason,
and then

fik, 1,2,3,...k-1)= F(1,2,3.k) = (-3 £(1,2,3.k) = (-1)* T (1,2,3..K) .
Example: A very commonly used fact is that, for k =3, -kt = (—1)2 =1 and so

(1,2,3) =1(2,3,1) =1(3,1,2) f totally antisymmetric (A.2.18)
A.3 The Sym Operator in Generic Notation
This section is an obvious copy, paste and edit job on the previous section. We omit what would be
(A.3.3) through (A.3.8) since they would be the same as (A.2.3) through (A.2.8). The changes are mainly
these:

antisymmetric — symmetric -1)S® -1 Alt —» Sym .

The Sym operator acts on a function of the integers [1,2....k] to create a new function, g = Sym(f), as
follows:

g(1,2..k) = [Sym(D](1,2..k) = (1/k!) Zpf( P(1),P(2)...P(k)) (A.3.1)

where f is any function and P are the k! permutations of the set of integers [1,2....k]. Informally we write
the above as

g(1,2..k) = (1/kN) [ g(1,2...k) + g(2,1...k) + other permutations ]

Examples:
2(1,2) = [Sym(DH](1,2) = (1/2) [ f(1,2) + {(2,1) ] (A3.2)
2(1,2,3)= [Sym(D](1,2,3) =(1/6) [ f(1,2,3) +1(1,3,2) + f(3,1,2) + {(3,2,1) + £(2,3,1) + f(2,1,3) ]

Definition: A function f(1,2..k) is totally symmetric if it is unchanged when any two arguments are
swapped. (A.3.9)

Examples: f(1,2) = f(2,1) = f is totally symmetric
(1,2,3) =1(2,1,3)

f(1,2,3) =1(3,2,1) = f is totally symmetric
f(1,2,3) =1(1,3,1)
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Fact: f(1,2..k) totally symmetric < P f(1,2,3..k) = (1,2,3..k) (A.3.10)
Proof: [=] S(P) is the number of pairwise swaps going from [1,2,3...k] to P[1,2,3..k] = [i1,i2,i3...1n]. If T
is totally symmetric by the definition above, each such swap causes a plus sign, and the product of these
plus signs is then 1. [<] If P = any pairwise swap, (-1)°®) =1, so f(1,2..k) is then totally symmetric.

Fact: The function g(1,2..k) = [Sym(f)](1,2...k) is totally symmetric in its arguments. (A3.11)

Proof: Let Q be some permutation of [1,2....k]. Then apply Q to the function g(1,2..k),

Qg(1,2.k) = Q { (I/k!) Zp f(P(1),P(2)...P(k)) } // definition of g
=(1/k!) 2p Q f(P(1),P(2)...P(k)) /I (A.2.5), Q is linear
= (I/k!) Zp f(QP(1),QP(2)...QP(k)) /1 (A.2.8)
= (1/k!) Zp f(P(1),P(2)...P(k)) // (A.1.3), rearrangement thm.
= g(1,2..k) // definition of g
By (A.3.10<) it follows that g(1,2,..k) is totally symmetric. QED
Fact: Sym is a linear operator, so Sym(Z;a;f;) = Xja; Sym(f;) (A.3.12)

Proof: Leth(1,2,...k) =Z;a;fi(1,2,...k). Then

[Sym(h)](1,2,..k) = (1/k!) Zp h( P(1),P(2)...P(k) ) // (A.3.1) def of Sym(h)
= (1K) { Z3a:f5(P(1),P(2)..P(K)) } // definition of h
=¥sa; [ (1K) fi(P(1),P(2)...P(K)) ] // reorder sums
= ¥;a; Sym(fy) // (A.3.1) def of Sym(f;)
Fact: Sym is a projection operator, so Sym(Sym(f)) = Sym({) . (A.3.13)

Comment: This is why (1/k!) is included in the definition of Sym.

Proof: By (A.3.11) we know that Sym is a totally symmetric function, and therefore from (A.3.10),

P [Sym(D)](1,2...k)] = [Sym(H](1,2..k)] . (A.3.14)

Next, consider that
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[Sym(£)](P(1),P(2)...P(k) ) =P [Sym()](1,2..k)]  //(A.2.4) applied with f— Sym(f), R—P
= [Sym(§)](1,2..k)] . /1 (A.3.14) (A.3.15)
Now examine Sym(Sym(¥)) :

[Sym(Sym(f))](1,2...k) = (1/k!) Zp [Sym(f)]( P(1),P(2)...P(k))

= (1/k1) Zp {[Sym(D](1,2..%)]} // (A.3.15)
= [Sym(D)](1,2..%)] {(1/k))Zg(1)} // reorder
= [Sym(D](1,2..k)] {1} // (A.12) QED
Fact: If f is a totally symmetric function, then Sym(f) = f . (A.3.16)

Proof:

Sym(f)(1,2..k) = (1/k!) Zp f P(1),P(2)...P(k) ) // definition of Sym(f) (A.3.1)

= (I/k!)Zp P1(1,2,.k) // (A.2.4) with R—P
= (1/k!) Zp f(1,2,..k) /1 (A.3.10)
=(l/k! f(1,2,..%) {Zp (1) } // reorder
=1(1,2,...k) /1 (A.1.2)
Fact: If f is totally symmetric, then
f(1,2,3..k) =12, 3,...k-1,k, 1) forward cyclic (A.3.17)
f(1,2,3..k) = f(k, 1, 2, 3,... k-1) backward cyclic

This is just a special case of (A.3.10) which says Q f(1,2,3..k) = 1(1,2,3..k) for any Q, so it certainly true
for F = forward cyclic or B = backward cyclic permutations.

Example:
(1,2,3) = 1(2,3,1) = f(3,1,2) f totally symmetric (A.3.18)
For comparison, recall (A.2.18) which said

f(1,2,3) =1(2,3,1) = (3,1,2) f totally antisymmetric (4.2.18)
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A.4 Alt, Sym and decomposition of functions
Fact: The projection operators Alt and Sym are orthogonal, so Alt(Sym(f)) = Sym(Alt(f))=0. (A.4.1)

Proof left: Alt(Sym(f)) = Alt( {(1/k!) Zef( P(1),P(2)..P(k)) }

= (1/k!) Zp [Alt(D]( P(1),P(2)..P(K) ) ] // (A.2.12), Alt is linear
= (1/k!) Zp (-DE B [ALt(D](1,2..k) /1 (A.2.15)

= {(1/k) [Alt(H](1,2..K)} {Zp (-1)3®} // reorder

= {(1/k!) [Alt(H](1,2..k)} {0} //(A1.12)

=0

Proof right: Sym(Alt(f)) = Sym( {(1/k!) Zp (-1)* B f( P(1),P(2)...P(k) ) }

= (1/k!) Zp (-D)S B [Sym(H]( P(1),P(2)...P(k) ) ] // (A.3.12), Sym is linear

= (1/k!) Zp (- [Sym(H](1,2...k) // (A.3.15)
= {(1/k!) [Sym(D](1,2..k)} {Zp (-1)S®} // reorder
= {(1/k) [Sym(D](1,2..k)} {0} /1 (A.1.12)
=0

We can define a third projection operator this way,

Else() =1 - Alt() - Sym() // projection operator

Else(f) = f - Alt(f) - Sym(f) . // applied to f(1,2,3...k) (A.4.2)
One can then decompose an arbitrary function f into three pieces,

f= Alt(f) + Sym(f) + Else(f)
= a + s + e /l'a=a(l,2...k) etc (A4.3)

where the "else" piece is whatever is left over, which is to say, e =f - a - s. Then consider,
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Alt(f) = Alt(a + s + e) = Alt(a) + Alt(s) + Alt(e) // (A.2.12), Alt is linear
= Alt(Alt(f)) + Alt(Sym(f)) + Alt(Else(f)) /I (A.43)
—Alt)  + 0 + Alt(Else(f)) // (A.2.13) and (A.4.1)
= Alt(Else(f)) =0 . (A.4.4)
Sym(f) = Sym(a + s + ¢) = Sym(a) + Sym(s) + Sym(e) // (A.2.12), Alt is linear
= Sym(Alt(f)) + Sym(Sym(f)) + Sym(Else(f)) /I (A.4.3)
= 0 + Sym(f)  + Sym(Else(f) // (A.3.13) and (A.4.1)
= Sym(Else(f)) =0 . (A.4.5)

This verifies that the "else" piece e of a function has neither a totally antisymmetric nor a totally
symmetric component.

Example 1: For a function f(1,2) one has from (A.2.2) and (A.3.2),

a(1,2)= (1/2) [f(1,2) - f(2,1)]
s(1,2) = (1/2) [ f(1,2) + £(2,1) ] = e(1,2)=f(1,2)-a(1,2) - 5(1,2) =0 (A.4.6)

so the leftover else piece e(1,2) is null.
Example 2: On the other hand, for a function (1,2,3) one has from (A.2.2) and (A.3.2)

a(1,2,3) = (1/6) [ f(1,2,3) - f(1,3,2) +(3,1,2) - f(3,2,1) + f(2,3,1) -(2,1,3) ] //(A2.2)
s(1,2,3) = (1/6) [ £(1,2,3) + £(1,3,2) + f(3,1,2) + f(3,2,1) + f(2,3,1) + £(2,1,3) ] //(A3.2)

e(1,2,3) =1(1,2,3) - (1/6) [ f(1,2,3) - (1,3,2) + f(3,1,2) - (3,2,1) +1(2,3,1) - £(2,1,3) ]
- (1/6) [ (1,2,3) + 1(1,3,2) + £(3,1,2) + {(3,2,1) + f(2,3,1) + f(2,1,3) ]

=1(1,2,3) - (1/3) [ f(1,2,3) +f(3,1,2) +1(2,3,1) ]
=(2/3) f(1,2,3) - (1/3) [ 1(3,1,2) + f(2,3,1) ] (A4.7)
so in this case the leftover piece e(1,2,3) is not null. In the case that f is either totally antisymmetric or

totally symmetric, we know from (A.2.18) and (A.3.18) that all cyclic permutations of f are the same (for
k = odd). In these cases, we can see explicitly from (A.4.7) that e(1,2,3) = 0, as expected.
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A.5 Application to Tensors
We now restate the "generic" results of Sections A.2, A.3 and A.4 for this special case:

f(1,2..k) = T*1*2- -k // a "tensor" TeVk. (A.5.1)

Here T is any rank-k tensor (either in the weak or strong sense mentioned below (4.1.8)). This f seems
perhaps an odd looking "function", but one can consider it to be just an evaluation of this more
respectable mapping,

f(a,b,c,...q) = T*a'ble---iq abc. e {1,2.k}

f: {1,2.k}* - V& . (A.5.2)

This technical mapping issue is not important because we are just regarding T*1*2- - -*k a5 a "carrier" of
the labels 1,2,3.k, from the point of view of doing permutations. The actual indices like i; could be
arbitrary objects (labeled pancakes) as far as the permutation theorems are concerned, but in our
applications we have in mind that i; is an integer in the range 1,2....n where n = dim(V) and n is unrelated
to the tensor rank k.

In Section A.8 we shall instead apply our results to "tensor functions",

f(1,2,3k) = T(Vil, Viy, ....Vj_k) .

Again, from a permutation point of view, T(vi;, Vi,, ....viy) 1s just a carrier of the labels 1,2...k. The
permutation theorems don't care whether or not vj; happens to be a vector in V labeled by i3, or even

whether or not v, happens to be an argument of a function T.

Here then are some Section A.2, A.3, A.4 results translated according to f(1,2,3..k) = Ti1i2---ik  por

some of the translations, we show the actual equation from above, then its translation. For others we just
state the translated result.

In all the results below, one can always specialize to the case i1,i2...ix — 1,2,...k. The resulting equations
are then as if our mapping were f(1,2...k) = T2---* Note then that ip (r) — 1(r) in a superscript.

(a) Alt Equations (translated from Section A.2)

The basic Alt definition of (A.2.1)
g(1,2..k) = [Alt(D](1,2..k) = (1/k!) Zp (-1 B P(1),P(2)...P(k)) (A.2.1)

becomes,
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Giliz. i [Alt(F)]iliz. Coip (l/k') ZP (_I)S(P) FiP(l)iP(Z) ...ip(x)
or

G=AluF) . // definition of Alt acting on a tensor (A.5.3a)

We can define the object Altz[F*1*2- - -*k] in the following obvious manner

Alt[F*122---3k] = (1/k!) Zp (-1)°®) FrR()1R(2) - 2R (K)

In multiindex notation :

[AI(F)]* = Altz[F*] = (1/k!) Zp (-1)SB) F B (A.5.3¢)
Examples:

G132 = [Alt(F)]*1*2 = (1/2) [ F*1*2 - Fi231 ] = Alt; [F*1%2]

G11213 = [AY(F)]*14243 = (1/6) [ F*1*2%3 - F*2%1%3 4 the other four terms | . (A.5.4)
In practice, we might more easily write

G = [Al{(F)]*P = (1/6) (F3P° - Fach 4 poab_ peba , pbea  pbacy
but when it comes time to prove permutation-related theorems, we use indices like *1+2%3 .
Continuing on, R[1,2....k] =[R(1),R(2).....R(k)] of (A.2.3) becomes, with R— P,

P T*1%2-- ik = Tir(1)1p(2) - IR (K) (4.2.3) (A.5.5)

Fact: Any permutation P is a linear operator, so P( y;a;T; 142 ’ik) = Ziai(PTiiliz‘ : ‘ik) )
(A.2.5) (A.5.6)

Definition: A tensor T*1*2-- -k jg totally antisymmetric if it changes sign when any two superscripts

are swapped. (4.2.9) (A.5.7)
Exam le: T1112 o .lk - _ T1211 o .lk or Tabc — _Tbac

Fact: T*1*2-- -k totally antisymmetric < P T*1*2---3k = ()8 Ti1i2---ik  where P is any
permutation of [1,2..k]. (4.2.10) (A.5.8)

Fact: The function T*1*2- - -tk = [Alt(F)]*1*2" - - *k is totally antisymmetric in its indices.
(4.2.11) (A.5.9)

Fact: Alt is a linear operator, so Alt (ZjajTjiliz’ k) = Zja5 [Alt(Tj)]iliz‘ ik
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(4.2.12) (A.5.10)

Fact: Altis a projection operator, so Alt(Alt(T)) = Alt(T) . (4.2.13) (A.5.11)
Fact: If T is a totally antisymmetric rank-k tensor, then Alt(T) =T . (4.2.16) (A.5.12)
(b) Sym Equations (translated from Section A.3)
The basic Sym definition of (A.3.1)

g(1,2..k) =[Sym (H](1,2...k) = (I/k!) Zp f( P(1),P(2)...P(k) ) (A.3.1)
becomes,

G1i2---ik = [Qym (F)]*1%2 -1k = (1/k!) Zp FRRMiR(2)---ir(k) (A.5.13)

G =Sym (F). // definition of Sym acting on a tensor
Examples:

G*1'2 = [Sym(F)["1*2 = (1/2) [F*1*2 + F211 ]

G*11213 = [Sym(F)]*1*2*3 = (1/6) [ F*1*2%3 4+ F*2%113 1 the other four terms ] (A.5.14)

Gabc _ [Sym(F)]abc — (1/6) (Fabc + Facb + Fcab+ Fcba + Fbca + Fbac)

Definition: A tensor T*1%2-- -k jg totally symmetric if it is unchanged when any two superscripts are

swapped. (4.3.9) (A.5.15)
Example: TiliZ colip Tizil. LLip or Tabc _ Tbac — Tacb

Fact: T*1%2---*k totally symmetric < P T*1*2---*k = T*1%2---3k where P is any permutation of
[1,2.k]. (A.3.10) (A.5.16)

Fact: The function T*1*2- - -*k = [Sym(F)]*1*2" - - *k 5 totally symmetric in its indices.
(4.3.11) (A.5.17)

Fact: Sym is a linear operator, so Sym (EjajTjiliz' i) = Zja3 [Sym(Tj)]iliz' ik

(4.3.12) (A.5.18)
Fact: Sym is a projection operator, so Sym (Sym (T)) = Sym (T) . (4.3.13) (A.5.19)
Fact: If T is a totally symmetric rank-k tensor, then Sym(T) =T . (A4.3.16) (A.5.20)
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(c) Alt, Sym and decomposition of tensors (translated from Section A.4)

Fact: The projection operators Alt and Sym are orthogonal, so Alt(Sym(f)) = Sym(Alt(f)) =0 .

(4.4.1) (A.5.21)

Fact: A tensor T*1*2---*k can be decomposed in the following manner: (A.5.22)
TiliZ---ik — AiliZ---ik + SiliZ---ik + EiliZ---ik (A43)
Alt(A)=A Sym(A)=0  Al(E)=0 (4.4.4)
Alt(S)=0 Sym(S)=S Sym(E)=0 (4.4.5)

where A is totally antisymmetric, S is totally symmetric, and E is whatever is left over.
A.6 The permutation tensor

The permutation tensor € of rank k is written €;,3,...i, Where each subscript must be an element of

{1,2..k}. The values of the tensor are these:

eg1p, k=71

® £i,i,. .. changes sign if any two indices are swapped .
e Therefore, if two or more indices are the same, €373,...1, = 0.

o gi1iz.. ik = €igig. . .ix (A.6.1)

k .
The tensor €;,31,...1, has k™ components, but only k! of those components are non-zero. One arrives at

k! by allowing k values for i1, then only (k-1) values for iz, and so on.

The tensor €343,. .., is totally antisymmetric by (A.5.7) since any index swap causes a minus sign.

Fact: Apart from scale, the €5,1,. . .1, tensor is the only totally antisymmetric tensor one can construct.
(A.6.2)

Proof: From the definition of €5,3,...1,, We see that if Al1i2-- ik g g arbitrary totally antisymmetric

tensor, then one can write

Here 132" - -k does the bookkeeping for swaps of index pairs. The scale factor is then A2+~ -* |

Use of the ¢ tensor

We noted already that all our permutation results can be specialized to i, — r. For example,
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[AI(T)]}2%2- - -2k = (1/k!) Zp (-1)3B) TR 2P (2) - - 1P (k) (4.5.3b)

then becomes

Now we make the following claim,

Tp (-DSEY TEMIBR) B g ik Bigip. i T2 =120k . (A.6.5)

Each of the i, sums runs from 1 to k. Notice that each side has k! non-vanishing terms in its sum.
Suppose P[1,2,3...k] = [i1, i2, i3 ...ix]. Then we claim that the parity of the permutation is given by
CDS® =ei5,0 1y (A.6.6)

To see why this is so, start off with the identity permutation P = 1 which has (-1)3 (®) = (-1)° = 1. In this
case P[1,2..k] = [1,2...k] and conveniently €123. . .x = 1, so both sides of (A.6.6) agree. Now swap 1«2
and then the left side is (—1)1 = -1 and the right side is €213. ..k = - €123...x = - 1 and again both sides
agree. Now swap 2<-3. The left side is (-1)2 and the right side is - €132, . .x = €123...x = 1, and again
both sides agree. In this way one can exhaust all permutations P and the equation is always true.

On the left side of (A.6.5) the permutations are enumerated by P, while on the right they are enumerated
by i1, i, i3 ...ix Which is restricted by the € tensor to be a permutation of 1,2,3...k.

Basically the notation on each side of (A.6.5) is describing the same instructions for forming the sum.

Example with k =3 (A.6.7)

ZP (-I)S(P) TP(l)P(2)P(3)
— T123 _ T213 + T231 _ T321 + T312 _ T132 )

The only simple way to form this sum is to keep doing swaps. We show in red the pair that will be
swapped to make the next term on the right. Compare then to
1913 Eigigig T1H2YE

To enumerate the terms, we use the 3! = 6 non-zero values of €;,3,i4 in the same order as above
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iqigi
Ti1i0i3 €igigig I 120K

123 213 231 321 312 132
€123 T""" + €213 T +e231 T +€321T7°" + €312 T +e132 T

= ()T 4T3 + (DT + (T3 + (1) T2+ ()T

T123 213 231 321 1312 1132

Here the signs of the ¢ factors alternate as shown because each one is obtained by an index pair swap on
the preceding term.

Application Consider,
Ti1i2 Loaip T (Vil ® Vip ® ... ® Vj_k) .
We can specialize this to say

Ti2.. x =(V1 ®va® ... ® v3)

Teyp2)...px) =(Ve(1) ®Vp(2) ® ..... ® Ve (x)) -
Then (A.6.5)
e (DS Teayeq2)...p) = Zigip. .. i Eigig...ix Tigip...ip ir=12.k (4.6.5)
becomes
e (D5 (ve(1) ®Vp(2) ® .oo. ® V(i)
= Ziqip...ig Eigip...ix (Vi ® Vi, ® ... ®viy), 1xr=12.k (A.6.8)

which appears as part of (7.1.3).
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A.7 The wedge-product-of-vectors Alt equation
Here we consider a new application for our generic function ] 1,2...k], namely,

1,2, K] = (V3; ® Vi, ® ...®V3,) . (A.7.1)

Here the js label the generic objects v, and ® is for the moment some generic operator. Then, consider

the generic Alt definition,
[Alt()](1,2..k) = (1/k!) Zp (-1)3 B f( P(1),P(2)..P(K) ) . (A.2.1)
Formally speaking, the left side would have to be written something like this,
[Alt(D)](1,2..k) = [AIt((Vie ® Vi @ ....® v34,))](1,2..k)
=Alt(vy; O vy, ® ..Ovy) . (A.7.2)

On the first line the asterisks are place holders which will get the arguments in the argument list. This lets
us make a formal association f — (v, ® vj, ® ....® vj,) for a function without arguments.

On the right side of (A.2.1) just above we have

f( P(1),PQ2)..P(K) ) = (Vip(1) ®Vipz) ® «®Vipg) - (A.7.3)

Alt(vs; ® vy ® .®vi) = (KD Zp (-D¥® (vip 1) ®Vipa) ® n® Vip ) (A.7.4)

If it happens that ® means the tensor product, and if the v, happen to be vectors in V, then the above

expression happens to be our definition (7.1.2) for the wedge product of k vectors:

(le Ay, N A ij) :Alt(le ®Vj2 ® .. ® ij) . (A.7.5)

Alt(vi ®va ® ...®vi) =(1/kDZp 1) ® (vpa) ®vpz) @ ....® Ve i) (A.7.6)

(vi Mva N Avk) =Alt(vi @ vy ® ... ® vk) . (A.7.7)
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A.8 Application to Tensor Functions
We now restate the "generic" results of Sections A.2, A.3 and A.4 for this special case:

f(1,2..k) = I (Viq,Vig....Viy) // a "tensor function" FevV™. (A.8.1)
We apologize for copy, paste and edit, but things really are exactly parallel to the tensor discussion above.

Here 5 is any rank-k tensor function. This f seems perhaps an odd looking "function", but one can
consider it to be just an evaluation of this more respectable mapping,

f(a,b,c,...q) =5(Via,vib....viq) ab,c... e {1,2..k}
f: {1,2.. .k} — Verk | (A.8.2)

This technical mapping issue is not important because we are just regarding J(viy,Vi,....Viy) as a

"carrier" of the labels 1,2,3..k, from the point of view of doing permutations. The actual indices like i1
could be arbitrary objects (labeled cupcakes) as far as the permutation theorems are concerned, but in our
applications we have in mind that i; is an integer in the range 1,2....n where n = dim(V) and n is unrelated
to the tensor rank k.

Here then are some Section A.2, A.3 ,A.4 results translated according to f(1,2,3..k) = J(viq,Viy....Viy) -

For some of the translations, we show the actual equation from above, then its translation. For others we
just state the translated result.

In all the results below, one can always specialize to the case i1,i2...ix — 1,2,...k. The resulting equations
are then as if our mapping were f(1,2...k) = (v1,v2....vx). Note then that ip (ry — i(r) in a subscript.

(a) Alt Equations (translated from Section A.2)
The basic Alt definition of (A.2.1)

g(1,2..k) = [Alt(D](1,2..k) = (1/k!) Zp (-1 B P(1),P(2)..P(k)) (A.2.1)
becomes,

G(VigVig Vi) = [A(P]I(Vig.Vig...vay) = (k) Zp (1) BV F(vip 1) Vip 2y Vi) (A83)

G=Al(%) . // definition of Alt acting on a tensor function
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Examples:
G(Viy.Vip) = [AIF)(Viq,viy) = (12) F(Viq,Vip) - F(Viy,Viq) | (A.8.4)
G(Viq,Viy,Vig) = [AI(F)(Vig,VigVig) = (1/6)[F(Viy,Vin,Vis) - F(Viy,Vig,Vig)t the other four terms ]
In practice, we might more easily write
C(Va,vb,Ve) = [AI(F)](Va,Vb,Ve) = (1/6) [ F(Va,Vb,Ve) - F(Vb,Va,Ve) + the other four terms ]
but when it comes time to prove permutation-related theorems, we use subscripts like iz.
Continuing on, R[1,2....k]=[R(1),R(2).....R(k)] of (A.2.3) becomes, with R— P,
P I(Viy,Vige Vi) = I(Vip 1)-Vip(2y--Vip k) - (4.2.3) (A.8.5)

Fact: Any permutation P is a linear operator, so P( ZrarT r(Vig,Vig-.--Viy)) = Zrdr(PIr(Viq,Viy....Viy))
(A4.2.5) (A.8.6)

Definition: A tensor function J(vi,Vi,....vi,) is totally antisymmetric if it changes sign when any two

arguments are swapped. (4.2.9) (A.8.7)
Example: I(VigsVigeViy) = - I(Viy,Viq...Viy)  OF J(Va,Vp....Vq) = - T (Vb,Va....Vq)

Fact: 5(viq,Vi,....vi,) totally antisymmetric <

PI(Vig,VigeViy) = (-1)S® J(Viq,Vip....Viy) , where P is any permutation of [1,2..k].
(4.2.10) (A.8.8)

Fact: The function G(viq,vi,....viy) = [Al(F)](Viq,Vi,....viy) s totally antisymmetric in its labels.
(4.2.11) (A.8.9)

Fact: Altis a linear operator, so Alt (Z5a393(Viq,Vig....Viy)) = 2385 [AI(T3)1(Vig,Vig-.-Viy)-

(A.2.12) (A.8.10)
Fact: Alt is a projection operator, so Alt(Alt(9)) = Alt(J) . (A.2.13) (A.8.11)
Fact: If J is a totally antisymmetric rank-k tensor, then Alt(9) =9 . (4.2.16) (A.8.12)
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(b) Sym Equations (translated from Section A.3)

The basic Sym definition of (A.3.1)

g(1,2..k) = [Sym (H)](1,2...k) = (1/k!) Zp f( P(1),P(2)...P(k) ) (A.3.1)
becomes,
G(Vig,Vig..Viy) = [Sym(F)](Viy,Viy...Viy) = (1/k!) Ep F(Vip (1):Vip 2)-Vip (k) (A.8.13)
¢ =Sym(%). // definition of Alt acting on a tensor
Examples:
G(viy,Vip) = [Sym(P)](Vig,vip) = (V2)[ F(viy,Vip) + F(Vip,Viyg) ] (A.8.14)

G(Viq,Viy,Vig) = [Sym(F)(Viq,Vig,Vig) = (1/6)[F(Viy,Vin,Vig)tF(Viy,Viy,Vigt the other four terms ]
In practice, we might more easily write

C(Va,vb,Ve) = [Sym(¥)](Va,ve,Ve) = (1/6) [ F(Va,Vb,Ve) + F(Vb,Va,Ve) + the other four terms ]
but when it comes time to prove permutation-related theorems, we use subscripts like i;.

Definition: A tensor function J(viq,Vi,....viy) is totally symmetric if it is unchanged when any two

arguments are swapped. (4.3.9) (A.8.15)
Example: F(VigsVigeVig) = T (Vig,Vig .o Viy) or I(Va,Vp....Vq) = I (Vb,Va....Vq)

Fact: 5(viq,Vi,....vi,) totally symmetric < P J(viy,Vip....Vi,) = I(Viq,Vip....Viy), Where P is any
permutation of [1,2..k]. (4.3.10) (A.8.16)

Fact: The function G(vi,Vi,....vi,) = [Sym(F)](Viq,Vi,....vi,) is totally symmetric in its labels.
(4.3.11) (A.8.17)

Fact: Sym is a linear operator, so Sym(Z35a39§(Viq,Viy.-..Viy)) = 325 [Sym(T3)(Vig,Vig-.--Viy)-

(4.3.12) (A.8.18)
Fact: Sym is a projection operator, so Sym (Sym (J)) = Sym (9) . (A.3.13) (A.8.19)
Fact: If J is a totally symmetric rank-k tensor, then Sym(9) =3 . (4.2.16) (A.8.20)
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(c) Alt/Sym and Other Equations (translated from Section A.4, A.6 and A.7)

Fact: The projection operators Alt and Sym are orthogonal, so Alt(Sym(J)) = Sym(Alt(9))=0.

(A.4.1) (A.8.21)

Fact: A tensor function J(viq,Vi,....vi,) can be decomposed in the following manner: (A.8.22)

T(VigsVigeVip) =A(Vig,Vig..Viy) + S(Vig,VigeViy) + E(Viq,Vip....Viy) (4.4.3)
Al =a Sym(@)=0  Al(&)=0 (A.4.4)
Alt(§) =0 Sym(§)=S$§ Sym(€) =0 (A.4.5)

where ( is totally antisymmetric, § is totally symmetric, and € is whatever is left over.
The following are based on Section A.6 and concern use of the € tensor with tensor functions.
If d is totally antisymmetric, then
A(Viy,Vig...Vip) = [ A(V1,V2...VK)] €igiy. . iy - (A.6.3) (A.8.23)
The tensor function [Alt(9)](V1,V2....vx) can be expressed as,

s(p
e (D3P F(ve(1),Ve(2) VR () = Zigis...ix Eigig...ix T(VigVigeVig)

(4.6.5) (A.8.24)

Let

5(V11,V12....Vik) = (Otj_l ® (112 ® ..... ® aik)(Vil,Viz....Vik)
SO

J(v1,va...vx) =(11 ®ax® ..... ® ox)(V1,V2....Vk) .
Then (A.8.24) gives this way to write (a3, "0y, " ... 05y)

Se (-1D*® (0p1) ®ap(z) ® ... ®dpx)) (4.6.8) (A.8.25)

= iy, . .ip £V k(0 ®03, ® . ®oy,), ir=1,2.Kk

The following is based on Section A.7,

(a3, Moy, N nMagy) = Alt(ag; ®ay, @ .0 og,) (4.7.5) (A.8.26)
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(d) Alt/Sym when there are two sets of indices
It is not uncommon to encounter objects like the following

i1in.. .1 I
(Xj139...95) 112 7k X

where the j, are labels and the i, are tensor component indices. An example would be the components of
a wedge product of k vectors

In this situation, we have to clarify which of the two sets of indices is being acted upon by the Alt
operator. We might do this as follows, using Alt; and Alty,

Altr[(X5y55. .50 242 ] = (1K) Zp ((D¥F (X535, .5 BRI - 20D
Alta[(X313... 30 2 K] = (KD Ze (D Xspay3pqa) .- 3p ) 22777
In general, the above two objects are different.
Now recall Fact (A.5.12) from above,
Fact: If T is a totally antisymmetric rank-k tensor, then Alt(T) =T . (4.2.16) (4.5.12)
If it happens that (X3, 5,. . ,jk)iliz' -3k ig totally antisymmetric in the iy , then
Altr[(Xs13... 30 12 K] = (Xyp3p...900 22 7%
If it happens that (X3 5,. . ,jk)iliz' -+1k is totally antisymmetric in the j, , then
Alta[(X313,. .30 112 K] = (Xyp35.. .50 22 7 %

If it happens that (Xj,5,. . ,jk)iliz' -3k ig totally antisymmetric separately in the iz and the jr, then we

have
AltI[(lejz N 'jk)iliz. . -ik] — AltJ[(lejz. y jk)iliz .. -ik]
since both are equal to (X3, 55,.. .jk)iliZ- ik

Recalling Fact (A.5.20),

Fact: If T is a totally symmetric rank-k tensor, then Sym(T) =T , (4.3.16) (4.5.20)
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we conclude a similar fact for Symz and Syms . We then summarize these results
Fact: If (Xj;5,.. ,jk)iliz' --*k g totally antisymmetric in both sets of indices, then

Altr[(X3135. .30 227 K] = Alta[ (X35 . 30 1277 7K] (A.8.27)
Fact: If (Xj;5,.. ,jk)iliz' ik g totally symmetric in both sets of indices, then

Symz[(Xyy3,. . .30 142 K] = Symy[(X3y35. .. 350+ 2 K] (A.8.28)

Example: According to (7.2.9) the object (v4;" V3, ... A ij)iliz' -3k ig totally antisymmetric in both

sets of indices. Therefore,

Altz (V3,7 V3" A V) 1820k = Altg (V4,0 v, Mg ) 2tk (A.8.29)
Another case of interest is when (X545, . ,jk)iliz' -1k ig an outer product of identical rank-2 tensors,

(lejz.“jk)iliz...ik Tl il iz . ik
Then

Altz[(X4155. . .30 1127 ] = (k) Zp(-1)5 ®) T3, 20 Ty B2) Ty *R(K)

= (1/k!) det(T3+** ) .
According to (A.1.19) we can move the P(..) operators from the i subscripts to the j subscripts to get
= (UKD Zp(-D* P Typ ) Tap ) "2 e Tip gy * = Altal(X3y35...30"2 %],

We are just swapping the rows and columns in the determinant shown above. Thus,
Fact: Altg [ T3, T5,*2 .. T3 "% ] = Altg [ Ty, ™ T3,*2 o T3, 1 = (1k!) det(T5«™ ). (A.8.30)
Either form gives the same expression (1/k!) [leil sziz ..... Tjkik + all signed permutations].

In multiindex notation, we rewrite this last Fact as
Fact: If Ty has factored form, then Alty [T5'] = Alty [To™] = (1/k!) det(T%). (A.8.31)

The above is of course true for T*; or any other index positions. Next,
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Fact: If T;' has factored form, then Tt =Tp (3 P(I) where P = any permutation of the index subscripts .
(A.8.32)

Proof: Reordering the index subscripts this way just reorders the factors in the product of factors. For
example if Tg" = Ty, T3,"2 then if P[1,2] = [2,1] one gets Te =1 = T3, 2Ty, =Ts"

Fact : If Ts" has factored form, then, X7 det(TIJ) x? = Tz k! Ty xa7. (A.8.33)

Here x7 = x31 ® x32 .. ®@ x¥% | xa7 =x31 A x32 A xIk and each x? is a vector labeled by j . That is to

say, x7 is not the jth component of vector x.

Proof: LHS=2X; det(T's)x”’

=¥ [k! Altz(T%5)] x7 /1 (A.8.31)

= 3o k! [(1/k!) Zp (-1)SE) TRE ;1 %I // (A.2.1) for Alty

=2p (-l)s(P) [Z5 TP(I)J xJ] // reorder

=3%p -1)5® [2; TP® 55 xFO] // (A.1.24) that 25 f5 =25 fp gy

=%p (-1)3® 37T, xFD // (A.8.32)

= k! 5T [ (1/k!) Zp (1)) xP()] // reorder

= k! 24T Alty(x7) // (A.2.1) for Alts

= k! 25T s x+7 =RHS . /1 (7.4.3) [
Fact: X1 TTusr =31 k! Altg(TY) us; for any tensor T* (A.8.34)

Y Trusf=37k! Altz(Tr) ust  for any tensor Tz .

This theorem (first line) says that if the symmetric sum X is replaced by the ordered sum X'z , then the
coefficients TT get replaced by k! Altz(TT) .

Example: T*1%2 gets replaced by 2! Altg(T*1*2) =21 ((1/2!)[T*1*2 -T*2*1] )= [T*1%2 T%2%1] Thep
r T usg =355, T 205 Nuy, = Bgq, [THH2-TH29) gy Mg,

Proof: This theorem (first line) was proved in (7.4.4) through (7.4.16). Here we just review that proof
using multiindex notation:
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Ta= 21 TN uag Ung = U5, Ug " M Uy (7.4.4)
Ta= Z'1 Alusg. (7.4.7)
Ta = Xijpisst. . #ig T uag (7.4.9)
Tr = % Zipqy<ip(z)<...<ipggy 1 U (7.4.12)
Ta = Zijcip<.. . <ip 2o T- ) uap(q) // using (A.9.1) below (7.4.13)
urp(ry = (-1)°Bluag (7.4.14)
Ta= Zijciye...<ip [Zo (D TF®]ua = =1 [k AI(T) ] ung (7.4.15)
AT =k! [AI(T)]* by comparing (7.4.7) and (7.4.15) (7.4.16)

The theorem goes through with the I-tilt the other way, which is the second line of (A.8.34).
Alternatively, we can take the first result and apply the "tilt reversal rule" (2.9.1) to get the second line
from the first line. [ |

Fact: X1 TE xa7 = X'1 k! AltI(TI) x~1 for any tensor T! (A.8.35)
Y Tr xAT=2'1 k! Altz(Ty) x~T  for any tensor Tt

Proof: In the proof of the previous Fact, the basis vectors u; played a placeholder role and the same proof
works with any set of vectors x; where X+ is the wedge product of those vectors. [ |

Fact: X;T'yx~r=371k! AltI(TIJ) x~1 for any tensor T (A.8.36)
Y T x~ =21 k! AltI(TJI) x+T  for any tensor T;

Proof: The first line is the first line of the previous Fact where a bystander J multiindex has been added.
The same idea for the second line.

Fact : If T'; has factored form, then 1 T g X7 = X' det(TIJ) XAt . (A.8.37)
If TJI has factored form, then X1 T xa1= 31 det(TJI) XAI,

Proof: X1 T'yxa1 =2'7 k! Altz(T 5) X1 // (A.8.36)
= 3'7det(T y) xa1 /1 (A.8.31)
Y1 T9r xaT =20 k! Altr(T71) xaT // (A.8.36)

= 3'7 det(T77) xaT // (A.8.31) [
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A.9 The Ordered Sum Theorem

The ordered sum theorem states that,

(Zp [Zp(ig)<p(ig)<...<P(ip)]) fijins...ixp = Zij<ip<...<iy [Zp Tp(i1)P(ip)...P(ix)]-  (A9.1)
Rather than present a formal proof, we look at the two simplest cases and the general case is then obvious.
k = 2: First, consider

Q=2 2, fiqi, = [Zig<in T Zig>ip] fiqip

= [Big<ip T Zig<iq] figi,= (Ep[Zp(iq)<pin]) fiqiy - (A.9.2)
On the other hand,
Q= [Bij<ip T Zig<iq] fiqin = Ziq<ip Tiqip T Xig<iy figip
= Xiq<ip fi1i2 +Xi<i, fi2i1 //dummy swap i1 «>i» in 2nd term
= Ziq<ip [Tiqip T Higiq] = Ziq<is [Zefpip ey ] - (A.9.3)
Thus we have proven the Theorem for k =2,

(Ce [Zpippin D) figip = Zig<ip [Zpfe(ig)p(in] (A.9.4)
k = 3: First, consider

Q=2 i 715 fiqinig

(Ziq<ip<iz T Zig<ig<ip T Tip<ig<iz T Zip<ig<iy T Zig<ig<ip T Zig<ip<iq) fijisis
=(Zp [Zp(ig)<p(ip)<p(iz)]) fijijis- (A.9.5)
On the other hand we can rename the summation indices in all but the first sum to get
Q= (Big<ip<iz T Tij<ig<ip T Zis<iq<iy T Lip<ig<iy T Zig<ig<ip T Zig<ip<iq) fiqijpig

asis 243 13

=Xjq<ip<ig fijipig T Zij<ip<igfijigip T Zij<ip<igfizisi; T+ 3 more sums

Tig<ig<ig [ figiziz T fijigi, + figizsy + 3 more terms ]
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Ziqg<ig<iz [Zpfp(i1)P(iz)P(ig)]- (A.9.6)

Thus we have proven the Theorem for k =3,

(Zp [Zp(ig)<p(in)<p(iz)]) fijiziz = Zij<ip<iz [Zpfe(ig)p(inp(iz)] - (A9.7)
The argument for a k-fold sum proceeds in the same manner, and we end up with

(Zp [Zp(ig)<p(ig)<...<p(ig)]) figip...ixp = Zig<ip<...<iy [Zp fp(i1)P(in)...PG)]. (4.9.1)
A.10 Tensor Products in Generic Notation
In Section A.2 above we use a set of generic function arguments (1,2..k) and their permutations to define
the Alt and Sym operators, detached from the world of tensors and tensor functions. In this same generic
vein one can define a generic tensor product as follows,

Definition: Tensor product: (f®g)(1,2,...k+k") = f(1,2...k) g(k+1,k+2...k+k"). (A.10.1)

If we translate this definition in the same way we translated everything else, we arrive at this
corresponding statement in the tensor world,

Definition: Tensor product: (T®S)*132- - -iktk' = 71132 - -1k Qhk+1ik+2: - -Thtk'

where the ranks of tensors T,S are k,k'. (A.10.2)
Since (A.10.2) is already defined to be true using the "outer product definition" of the ® symbol in
Section 2.8, it seems that here we are just lucky to obtain a consistent result. We put this issue on hold for

a moment, and consider next the way (A.10.1) translates into the tensor function world,

Definition: Tensor product: (F®S8)(Viy,Vigew Vi) = T (VigsVigeVig) S(Vigy1-Vigyo-Vigsx )
where the ranks of dual tensors J,§ are k,k'. (A.10.3)

In Section 6.6 it seemed that we had to do quite a bit of work to obtain (A.10.3) as stated in (6.6.13), and
here suddenly this same result just drops out as some kind of definition.

Both these issues can be clarified by use of the Dirac notation which reveals the underlying "tensor
product of vector spaces" structure. First, we can write (A.10.1) in the generic world as

(f®g)(1,2,... k+k') = £(1,2...k) g(k+1,k+2... k+k') (4.10.1)
k+k'<f®g| 1,2,....ktk'™>p4x = k<f| 1,2,.... k> * k‘<g| k+1,k+2.... . ktk"™>y» (A104)

where for example

285



Appendix A: Permutation Support

| 12, dx = (151 ® 251 ® ..® k>, (A.10.5)
k+kv<f®g| = k<ﬂ ® kv<g| . (A106)

The subscript k labels a ket in V¥ and a bra in V**, for example. Suddenly we are interpreting the generic
argument set (1,2,...k) as if it were a tensor product of "generic kets" in their own vector spaces. By itself,
this does not really make much sense, but when we think of the generic description as being a stand-in for
our tensor and tensor-function cases, then it does make sense. We show in Appendix D (D.1.2) and
(D.1.3), and also in the main text (2.11.e.7) and (2.11.¢.9), that

& _
J(Vil,Viz, Vik) =<T | Viq,Vig, - Vig =

where [ Viq, Vi, . Vi > = [Vi > ® |vi,> @ L ® |vi > (A.10.7)
Tijig....ix = <T|Uij Uiy, ..Uz >
where [uj; Uiy, Uiy > = [Ui> @ Juz,> ® L ® |ug,> (A.10.8)

and here we see the real meanings of the generic stand-in tensor product |1>® 2> ® ...® |k>.
For the tensor case we then write

(TQS) 142 Ttk = < TS| Uiq,Uip, oo Uigpyr >
_ [ k<T| ® k'<s| ] [ ‘ Ui, Uig, oo Uiy > ® \ Uigyg, Biggos oo Uigqpr >kt ]
_ k< T | uil,uiz’ uik >k k|< S | u;‘_k+1,uik+29 uik+k' >k|

= Ti1i2...ik gik+1ik+2---ik+k’ (A.10.9)

and the Dirac tensor product space structure then directly implies the tensor "outer product" rule defined
in Chapter 2.

In the tensor-function case we do exactly the same thing but with u—v,
(5®S)(Vil’vi2““vik+k') =< T®S | Vil’ViZ““Vik+k'>
=[x<T[®x'<S| T [ | Vig,Vigs - Vig “k ® | Vippq, Vigsor - Viggrr k' J
=x<T] Viq,Vigs «oe Vig 7k k'< S| Viga1,Vigsos - Vigak' k'
= 5(Vi1,Vi2----Vik) S(Vik+1’vik+2""vik+k') (AIOIO)

and again the vector space structure forces this tensor function result. In fact, this is exactly how we
derived this result in (6.6.12) for a more general case.
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Appendix B: Direct Sum of Vector Spaces
There are nine short numbered sections below. Here are the headings:

. Axioms for @

. Direct Sum Space VOW

. Basis for VOW

. Z=V@®W is a vector space

. v@®w does not commute

. Visualization of the Direct Sum

. Extension to multiple © products

. Application: adding tensor products

. Direct sum of operators (matrices): Block Diagonal Form

O 0 3 N L A W N —

1. Axioms for @

Letvi € Vand wiy € W where V and W are vector spaces, and o € K is a scalar. The direct sum operator

@ can be defined by these rules (axioms) for any k > 1,

Vi®wi + vo®wa + ... + vi®wi = (Vitva ..+ vk) @ (Witwa + ...+ Wx) (B.1)
(av)@(aw) = a(vew) . (B.2)
In slightly more concise notation (B.1) can be written Zi=1k (Vvi®w;i) = (Zi=1kvi) @ (Zi=1kwi).
For k=2 (B.1) becomes,
V1i®wi + vo@wy = (v1+va) @ (Witwa) . (B.3)

Since V and W are vector spaces, each has a 0 element and one can write

v1®0 + 0®wz = (0+vy) @ (0+wz) =vi®wy // (B.3) withwy =0and v =0 (B.4)
(av)®0 = a(veD0) /lw=0
0D(aw) = a(0Dw) //v=0 (B.5)

2. Direct Sum Space VOW

Define space Z by

Z=Voew (B.6)
and let

7; =vi®w; € Z. (B.7)
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One might write
®@:(V,W) > Vew @ : (v,w) = (VW)
Lemma: Given some z;, we can find v; and w; such that z; = vi®w; . (B.8)

Proof: When we say Z = V®W, we mean these spaces are the same, so there is a 1-to-1 correspondence
between elements of z; € Z and elements vi®w; € VOW.

3. Basis for VOW

Let us assume that:
e; form a basis of dimension n for V
e'y form a basis of dimension n' for W
Fact: A basis for Z can be written as
{e190, e2®0 ........ en@0, 0De'y, 0De',, ....0De'y 1 } (B.9)
Proof: Let v be components of vector v, and w* the components of vector w. Consider:
{vi(e1®0) + v3(e2D0) + ... + v*(ea®0)} + {wi(0®e'1) + w2 (0®De'z) + ... + W™ (0®e'y:)}
={ (v'e1)®0 + (v2e2)®0 + ..+ (vVPen)®0} + {0®(w'e'1) + 0D (w3e'2) + ... + 0D(W™ e'nr)} // (B.5)
= { (Vier+ v2ey + ..+ Vien )D(0+0+..+0)} + {(0+0+.+0)® (wle's+ we's + ..+ whe'n )} // (B.1)
=(vlert vZea + ..+ vP%n ) ® 0 + 0@ (whe's+ wie's + ..+ wie'n )
= (viert vZea + ..+ vl ) @ (wWle'i+ wie's + ..+ whe'n ) // (B.4)
=vO®w

This z = v @ w is an arbitrary element of Z, and we have therefore shown that an arbitrary element of Z
can be expanded on the basis shown in (B.9) and that no smaller basis will do the job. QED

Fact: If dim(V)=n and dim(W) =n'". then dim(V®&W) =n + n' (B.10)
Proof: Count the basis elements shown in (B.9).
Compare this Fact with that shown in (4.1.1) :

Fact: If dim(V) =n and dim(W) =n', then dim(V®W) =n *n'. (4.1.1)
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4.7 = VO®W is a vector space

Fact: If V and W are vector spaces, then Z = VW is a vector space. (B.11)

Proof: We just run down the required axioms listed for example on the wiki vector space page. The
conclusion one reaches is that the vector space properties are "induced" from V and W into Z.

o The fact that + is commutative within V and W causes + to be commutative within Z :
71+ 72 = vi®wy + vo@wy = (v11+v2) @ (W1twa) = (Vat1vi) @ (Watwi) = vo®wy + vi®w;
=72t+771.
¢ Addition in Z is associative because it is associative in V and W:
(z1t 2z2) + 23 =(ViOPW1 +V2®wW2) + v3®ws = (v1+tva)D(witwz) + va®ws
= (V11tvatv3)® (Witwatws) = vi®wi + (vat+v3)®D(watws)
=v1®wi + (v2@®wy +v3®Pws) =21 + (z2 +23).
e The zero element in Z is 0 = 00 since
vOW + 0 =v®w + 080 = (v+0)®(w+0) = v®w .
o The additive inverse of z = v®w is -z = (-v)®(-w) since
z+(-z)= vOw + (-v)B(-w) = (v-v)B(w-w) =080 =0.
e For scalars a,b we have a(bz) = (ab)z compatibility since
a(bz) = a(b[v®w]) = a[ (bv)@(bw) | = (abv)®(abw) = (ab)(v®w) = (ab)z .
e Identity for scalar multiplication requires that 1(z) =z :
1(z) = 1(v®w) = (1v)®(1w) =v®w =z .
e Distributive requirement #1: a(z1+zy) = az;+ azp (a = scalar)
a(z1tz2) = azz = a(v3®ws) = (av3)®(aws) = (avit+avy)®(awi+awyz)

= (av1)®(aw1) T (av2)D(awz) = a(vi®wa) + a(v2@w2) =azit azp
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e Distributive requirement #2 : (a+b)z =az + bz (a,b =scalars)
(atb)z = (at+b)(v®w) = [(at+b)v]@[(at+b)w] = [avtbv]®[aw+bw] = (av)D(aw) + (bv)D(bw)
= a(v®w) + b(v®w) =az+bz QED

5. vdw does not commute

Fact: vOw # w®v unless V=W and v=w. (B.12)
Proof:

V£W: If VW, the object wv makes no sense since it would require w € Vand v € W.

V=W: v@®w- wdv = v®w + (-w)®(-v) =(v-w)®(w-v) # 0 unless v=w.

Compare (B.12) to the Fact stated in and below (4.1.1),

Fact: vOw #w®v unless V=W and v=w. (4.1.1)

However, there is certainly an isomorphism between VOW and W®V. Writing VOW ~ W@V one could
certainly then say that véw ~ w®v . The same could be said for the ® operator.

6. Visualization of the Direct Sum

Consider this example

e R°. (B.13)

<
|
7\
o ®
N—
m
=
£
Il
7\
C =+ »n
N—
m
=
w
N
|
<
S
£
|
77\
g <
N—
Il
C =+ »n oo

Here we visualize the direct sum vector z as a tall column vector which is the stacking of the two smaller
column vectors v and w. In the tall column vector, v and w each occupy a private region.

Here then are the rules (B.3) and (B.2) :

Vi®wi + vo®wy = (VVVIJ + (:fz ) - (;i:jz ) = (vitva) ® (Watwa) (B.14)
(av1)®(avy) = (3\:;11 ) =q (:/11 ) =w(vi®va) . (B.15)

The fact (B.10) that dim(VOW) = dim(V) + dim(W) is demonstrated by 5 = 2+3.

The fact (B.12) that v®w # w®v is demonstrated since (a,b,s,t,u)T * (s,t,u,a,b)T.
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7. Extension to multiple @ products

The axioms for a triple direct sum are these,
V1®OwW1Dx1 + vo@wo®xo + ... + vi®@w®xy
=(Vitva + ..+ vE) @ (Witwa + ...+ wi) @ (X1+X2 + ... + Xk) (B.16)
(av)@(aw)D(ox) = U(vEWDX) (B.17)

and from this one can imagine an arbitrary number of @ involved in a direct sum. One can derive these
two equations from (B.1) and (B.2) by assuming associativity and then grouping things for example as

V1®OwW1Dx1 + vo@wo®xo + ... + vi®@w®xy

= (V1®w1)®x1 + (V2@W2)Px5 + ... + (Vik®wWx)Pxxk
=[(vi®wy) + (v2a®w2) + ... + (vk®@wyg)] @ (X1 + X2 + ... + Xk)
=[ (Vvitvat .. +vg) @ (Witwat .. +wy)] @ (X1 + X2 + ... + Xx)
=(Vitva + ..+ Vi) @ (Witwa + ...+ W) @ (X1+X2 + ... + Xk)

and
(av)@(aw)D(ox) =[(av)D(aw)] @ (0x) = [a(vEW)] D (ax) = o [ (VEW @X] = a[veEwWDX] .

One can define
Z=VOeWDX 7 =EVi®wi®x, € Z (B.6)'
®: (V,W,X) > VEWDX @ : (V,w,X) — (VOWDX)

We leave it to the reader to prove the following extended claims:

Lemma: Given some z;, we can find v;, wi and x; such that z; = v;®w; ®x; . (B.8)'
Fact: If dim(V) =n, dim(W) =n' and dim(X) =n". then dim(VOW®X) =n+n'+n". (B.10)
Fact: If V.W and X are vector spaces, then Z = VOW®@X is a vector space. (B.11y

The extension of the "tall vector" visualization to the triple @ sum seems fairly obvious where one ends
up stacking three vectors to make a single tall vector.
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8. Application: adding tensor products

Define the vector product space V¥ as in (5.1).
o If T = V2®V? one can write
t =23 T u®uy @ Zig T 0;Qu@u, € T //t=v@w
o If T=V®V2®V? one can write
t = ZiTiui @ Zij T3 ui®uy @ Xijk T3k Ui ®ui®ux €T I/ t= vOwdx
and in this manner we eventually arrive at (5.4.1) for T(V)
V)=Vl evevievie.... (5.4.1)
t=s@ ;T u; @ Ti5 TH us®uy @ Tisu T 0;Qu@u @ ... e T(V), seK (5.4.2)

For the space V** the objects being direct-summed are functionals instead of tensors, but the formalism is
exactly the same,

T(VH) =V @ vie v e va o ... = 3% v (6.4.1)
T=5 ® LTy A @ Tj5 Tag VOW @ ZTjgx Tage MOV + .. seK (6.4.2)

9. Direct sum of operators (matrices): Block Diagonal Form

Let vector spaces V and W have dimension n and n'.
Let S, S; and S, be n x n matrices which we can regard as linear operators in V.
Let T, T1 and T2 be n' x n' matrices which we can regard as linear operators in W.
Then in the direct product space VOW we can write these operator equations,
(S11S2)®(T1+T2) = S1@T1 + S,@T>
o(S®T) =aS @ aoT
(S18T1)(S20T2) =(S1S2)D(T1T2) (B.18)

and the action of operator S @ T of V®W on a vector of V®W is given by

(S® T) (v&W) = (SV)®(Tw) . (B.19)
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Just as we visualized the direct sum of two vectors in (B.13), it is helpful to visualize the above three
matrix equations graphically:

SitS2| 0 S1:1 0 S2| 0
nxn mxn nxn
- +
0 T1+T2 0 T1 0 Tz
N n'xn' L n'xn' L n'xn'

(51 + S )+(T1 +Ts)= :‘;1+T1 + 32+T2

S 0 aS 0 S 0 —‘ [v—| [Sv—‘
nxn nxn nxn
o = =
o T o| oF ol T w Tw
L n'xn’ L n'xn’ e
WSET) =aSPaT (SET) (vEw) = (Sv)E(Tw)
S: 0 Sz 0 S1S21 0
nxn nxn nxn
0 B 0 Tz 0| LTz
n'xn’ n'xn' L n'xn'

( SII+T1 )( SZ%}TZ ) = (Sl S2 )+(T1T2 ) (BZO)

The direct sum operator S®T is represented as an (n+n")x(n+n') matrix that is in "block diagonal form"
where the matrix outside the blocks is filled with zeros. A triple direct sum has this visualization,

wir 0
T = S®TPER
n'xn'
0 R
n"xn"

N (B.21)
In all cases, the entire area outside the diagonal blocks is set to 0. The rules for such operators are,
(S1+S2)®(T1 + T2)®(R1 + R2) =S1@T1©OR; + S2@T2@R»
W(SETSR) =aS @ oaT @ aR
(S1@T1®R1)(S20T20R2) =(S1S2)@(T1T2) ®(R1R2)

(S®TAR) (VOWDX) = (SV)D(Tw)D(RX) . (B.22)
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Appendix C: Theorems on Pre-Symmetrization

The Rearrangement Theorem (A.1.3) is used to prove three other theorems (One, Two and Three) where
we have attempted to abstract as much as possible the "permutational nature”" of the objects involved by
using a generic permutation space with elements |1,2...k>. Then in Section C.4 the theorems are
summarized and are generalized to apply to arbitrary tensor products. Finally, the generic theorems are
applied to tensors and tensor functions. The reader uninterested in the theorem details would do well to
skip right to the summary presented in Section C.4.

It is assumed that the reader is familiar with Appendix A.1-3 and A.10.

C.1 Theorem One

Consider the following list of k+k' integers,

[1,2...k k+1k+2.. k+k'] =[1,2...k+k']. (C.1.1)

Partition this list into a low and high group by defining

z=[1,2...k] Z = [k+1,k+2... k+k"] . (C.1.2)
Then
[1,2...ktK'1=[zZ] . (C.1.3)

Now let Q be a permutation of the lower integers [1,2...k] = z. There are k! possible permutations, so we
know that

%o (1) =k!. (C.1.4)

We can extend the meaning of Q so it applies to the entire list of integers [1,2....k+k'] merely by stating
that this extended Q' does not alter the higher integers. Then

Q'[z] = Q[z] =z' = some permutation of the lower integers (C.1.52)
Q'[Z]=Z // since Q has no effect on the higher integers (C.1.5b)
Qfz, Z]=[Q'(2), Q)] =[Q(2), Z] . (C.1.5¢)

Now imagine we have a function f of the lower integers and a function F of the higher ones,
flz] =1[1,2...k] F[Z] = F[k+1,k+2...k+k'] . (C.1.6)

Here are two applications we shall consider later on,
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flz] = f[1,2... k] = T*1*2- - -k = components of a rank-k tensor
flz] = f[1,2...k] = 9(vi;, Vip, -... Vi, ) = arank-k tensor function . (C.1.7)

Now let P be a general permutation of [1,2...k+k'] = [z,Z].
P[z,Z] =[P(z), P(2)] . (C.1.8)

Notice that QP and PQ are undefined since P and Q operate in different spaces, but Q'P and PQ' are both
defined since both permutations Q' and P operate in the space of [1,2....k+k'].

Recall now the meaning of S(Q) as the number of swaps required to go from z to Q(z) . This is the same
as the number of swaps required to go from [z,Z] to Q'[z,Z] = [Q(z),Z]. Therefore

S(Q)=S(Q") . (C.1.9)
We shall now prove the following theorem :
Theorem One
e (-1 {[P(2)] FP(Z)] = Zp (-1)°° ) £[P(2)] F[P(2)] (C.1.10)
where
fa[z] = (1/k!) Zo (-1 @ flQ(2)] c=1or0

The purpose of 6 is to state the theorem with and without the (-1)%‘®? factor.

We shall use the notation f» in most of this section to apply for both values of o, but at the end, we shall
distinguish these two cases by writing:

falz] = (1/k!) Zo (-1 fQ(2)] // = Alt(f), see (A.2.1)
filz] = (1K) 2o IQ(2)] . // = Sym(f), see (A.3.1) (C.1.11)

At the end of this section we will show that the above Theorem One with 6 = 1 and ¢ = 0 is equivalent to
the statements:

AIt(fOF) = Alt(f®F) fa = Alt(f) o=1
Sym(f®F) = Sym(fs®F)  fs = Sym(f) c=0 . (C.1.12)

Proof of Theorem One: Our first task is to process the second line of (C.1.10),

fa[z] = (Ik!) Zq (-1)°* @ f1Q(2)]
= (1/k!) Zg (-1)°%9") fIQ'(2)]. //(C.1.9) and (C.1.5a) (C.1.13)

Apply permutation P to the above equation and use (A.2.8) to get
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P fa[z] = f+[P(z)] = (1/k!)Zq (-1)°°©@7 f[PQ(2)] . (C.1.14)
Then,
RHS (C.1.10) = Zp (-1)°5®) £A[P(2)] F[P(2)]
=3p (-1)°5® { (1) Zg (-1)75@) f[PQ'(2)] } FIP(Z)]  //(C.1.14) for fA[P(2)]
= (1/k!) Zg Zp (-1)°° 2" fIPQ'(2)] F[P(2)] // reorder and use (A.1.10)
= (1/k!) Zg Zp (-1)7° 2 fIPQ'(2)] F[PQ'(2)] // Q'(Z) = Z from (C.1.5b)
= (1/k!) Zg Zp(-1)°5® f[P(2)] F[P(2)] // rearrangement theorem (A.1.3)
=2p(-1)°*® f[P(2)] F[P(Z)] {(1/k!)Zo (1)} // reorder
=3p(-1)°5® f[P(2)] F[P(Z)] {1} /| Zg (1) =k! from (C.1.4)
=LHS (C.1.10) . QED (C.1.15)
Recall now definitions of the generic Alt and Sym operators,
[Alt()](1,2..k) = (1/k!) Zp -DS®( P(1),PQ)...P(K) ) (4.2.1) (C.1.16)
[Sym(D)](1,2..k) = (1/k!) Zp f( P(1),P(2)...P(k)) (4.3.1) (C.1.17)
Using (C.1.16) and (C.1.17) , the second line of (C.1.10) can be restated
fa = Alt(f) o=1 totally antisymmetric
fs = Sym(f) =0 totally symmetric . (C.1.18)
Recall next the definition of a tensor product ® in our generic function space,
(fRg)(1,2,... k+k") = f(1,2..k) g(k+1,k+2... k+K') . (4.10.1) (C.1.19)
Then we can write
(fRF)(1,2,... k+k") = f(1,2.K)F(k+1k+2..k+k') =f(z) F(Z)
(FA®F)(1,2,...k+k') = fa(1,2. K)F(k+1,k+2.. k+k') = fx(z) F(Z) . (C.1.20)
Theorem One (with 6 = 1) can then be stated in this manner,
Tp (-1)5 BV (fRF)(P(1),P(2)....P(k+k')) = Zp (-1)3 B (£.®F)(P(1),P(2),...P(k+k")) (C.1.10) =1

Add a factor 1/(k+k")! to both sides and use the Alt definition (C.1.16) with k— k+k' to get,
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[AIt(fOF)](1,2..k+k") = [AIt(fa®F)](1,2...k+k")
or

Alt(fOF) = Alt(fA®F) fa = Alt(f) . (C.1.21)
Taking 6 =0 in (C.1.10) gives ( f~ — f5 as noted above),

Yp (f®F)(P(1),P(2),...P(k+k")) =Zp (fs®F)(P(1),P(2),...P(ktk")) (C.1.10)6=0
Use this with the Sym definition (C.1.17) with k— k+k' to get

Sym(f®F) = Sym(fs®F) fs = Sym(f) . (C.1.22)
C.2 Theorem Two

This section is a copy, paste and edit version of Section C.1. Equations that are the same have italicized
equation numbers.

Consider the following set of k+k' integers,
[1,2...k, k+1,k+2...k+k'] =[1,2...k+k']. (C.1.1)

Partition this list into a low and high half by defining

z=1,2...k Z = k+1 k+2... k+k' (C.1.2)
Then
[1,2..ktk'1=[z2Z]. (C.1.3)

Now let R be a permutation of the upper integers {k+1,k+2...k+k't = Z. There are k'! possible
permutations, so we know that

sr (1) =K. (C.2.4)

We can extend the meaning of R so it applies to the entire set of integers [1,2....k+k'] merely by stating
that this extended R' does not alter the lower integers. Then

R'[Z]=R[Z] =Z' = some permutation of the upper integers (C.2.52)
R'[z]=z //since R has no effect on the lower integers (C.2.5b)
R'[z, Z] = [R'(z), R'(Z)] = [z, R(Z)] . (C2.5¢)

Now imagine we have a function f of the lower integers and a function F of the higher ones,
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flz] =1[1,2...k] F[Z] = F[k+1,k+2...k+k'] . (C.1.6)
Here are two applications we shall consider later on,

F[Z] =F [k+1k+2... k+k'] = S*k+1ik+2- - -1k+k' = components of a rank-k' tensor
F[Z] =F [k+1,k+2... kKT = 8(Viy 1, Vigsps -+ Vigsxr) — @ rank-k' tensor function . (C.2.7)

Now let P be a general permutation of [1,2...k+k'] = [z,Z].
P[z,Z] = [P(2), P(Z)] (C.1.8)

Notice that RP and PR are undefined since P and R operate in different spaces, but R'P and PR' are both
defined since both permutations R' and P operate in the space of [1,2....k+k'].

Recall now the meaning of S(R) as the number of swaps required to go from Z to R(Z) . This is the same
as the number of swaps required to go from [z,Z] to R'[z,Z] = [z,R(Z)]. Therefore

S(R)=S(R") . (C.2.9)
We shall now prove the following theorem :
Theorem Two
Ze (-1 {[P(2)] FP(Z)] = Zp (-1)°° ) [P(2)] F-[P(2)] (C.2.10)
where
FA[Z] = (1/k") Zg (-1)°5 ®) F[R(Z)] c=1or0

The purpose of 6 is to state the theorem with and without the (-1)° ®) factor.

We shall use the notation F~ in most of this section to apply for both values of &, but at the end, we shall
distinguish these two cases by writing:

Fa[z] = (1/k!) 2o (-1)*9 F[Q(2)] // = Alt(F), see (A.2.1)
F.[z] = (1/k!) 2o F[Q(2)] // = Sym(F), see (A.3.1) (C.2.11)

At the end of this section we will show that the above Theorem Two with 6 = 1 and ¢ = 0 is equivalent to
the statements:

Alt(fOF) = Alt(f®F~) Fa = Alt(F) c=1
Sym(f®F) = Sym(f®Fs)  Fs = Sym(F) c=0 . (C.2.12)
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Proof of Theorem Two: Our first task is to process the second line of (C.2.10),

FA[Z] = (UK 2R (-1)*°® FRZ)]
= (LK) =g (-1)°5®") F[R'(Z)]. /(C.2.9) and (C.2.5a) (C.2.13)

Apply permutation P to the above equation and use (A.2.8) to get

P FA[Z] =FA[P(Z)] = (1/k'") Zg (-1)°5®®") F [PR'(Z)] . (C.2.14)
Then,

RHS (C.2.10) = Zp (-1)°5®) {[P(2)] FA[P(2)]

=%p (- ® P@){(1/K") Zx (-1)°S®) F[PR(Z)]}  //(C.2.14) for FA[P(Z)]

= (1/k')Zx Zp(-1)°SBR") {[P(2)] F [PR'(Z)] // reorder and (A.1.10)

= (1/k')Zg Zp(-1)°SBR") f[PR'(2)] F [PR'(Z)] // R'(z) = z from (C.2.5b)

= (1/k')Zx Zp(-1)°5®) f[P(2)] F [P(2)] // rearrangement theorem (A.1.3)
=3p(-1)°5® fIP(2)] F [P(Z)] { (1/k') Zg (1) } // reorder

=3p(-1)°5®) f[P(2)] F [P(Z)] {1} // Egr (1) =K'l from (C.2.4)

= LHS (C.2.10) . QED (C.2.15)

Using (C.1.15) and (C.1.16) , the second line of (C.2.10) can be restated

F~ = Alt(F) c=1 totally antisymmetric
Fs = Sym(F) c=0 totally symmetric . (C.2.18)

Following the same arguments used the end of Section C.1, one obtains the following equivalent
restatement of Theorem Two (just move the subscript from f to F)

AIt(fOF) = Alt(fOF~) Fa = Alt(F) (C.1.21)
Sym(f®F) = Sym(f®Fs) Fs = Sym(F). (C.1.22)

Alternate Proof of Theorem 2

An alternate proof of Theorem Two is two start with Theorem One and just make these changes
z 7 foF  kek' Q—R

Here is Theorem One
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e (-1)°%® {[P(2)] F[P(Z)] = Zp (-1)°*® £u[P(z)] F[P(Z)]
where
fa[z] = (1/k!) Zo (-1 @ flQ(2)] c=1or0 (C.1.10)

and here is Theorem One with the above changes applied,
Ze (-1)°* ) FIP@)] IP(2)] = Ze (-1)** ) FA[P(Z)] f[P(2)]
where
FA[z] = (1K) Zr (-1)°5®®) F[R(Z)] c=1or0. (C.1.10) swap
This is the same as Theorem Two which we quote from above,
Zp (-1)°°® fIP@)] F[P2)] = Zp (-1)7°® f[P(2)] F7[P(2)]
where

FA[Z] = (1/k") Zx (-1)°5®) F[R(Z)] c=1or0. (C.2.10)

We went ahead with the detailed proof for two reasons. First, the swap proof might not be convincing to
the reader. Second, the detailed proof provides steps which are crucial to proving Theorem Three below.

C.3 Theorem Three
Now both functions have a ” subscript :

Zp (-1)°S®) P2)] FP(Z)] = Zp (-1)°*®) £2[P(2)] FA[P(Z)] (C3.1)
where

fa[z] = (1k!) Zo (-1)°@ f]Q(2)]

FA[Z] = (1/K") Zg (-1)°5®) F[R(Z)] o=1or0

The purpose of 6 is to state the theorem with and without the (-1)3‘®) factor.

At the end of this section we will show that the above Theorem Three with 6 = 1 and ¢ = 0 is equivalent
to the statements,

AIt(fOF) = Alt(f~®F4) . fa = Alt(f)  Fa = Alt(F) (C.3.5)
Sym(f®F) = Sym(fs®Fs) . f, =Sym(f) Fs =Sym(F) . (C.3.6)

This theorem will involve both R and Q, as well as R' and Q' from earlier sections. Note that
R'Q'=QR' (C3.3)

because Q' acts only on the lower integers in (1,2...k+k') while R' acts only on the upper integers.
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Proof of Theorem Three: Recall these results from previous sections,

fA[P(z2)] = (1/k!) Zg (-1)°°9) £[PQ'(2)] (C.1.13)
FA[P(Z)] = (1/k") Zx (-1)°*®) F[PR'(Z)] . (C.2.13)
Then,

RHS (C.3.1) = Zp (-1)°5®) £u[P(2)] FA[P(Z)]

2p (1) ® L (1K) g (D@D £PQ(2)]}{ (1K) 2 (-1)°5®) F [PRY(Z)]}

(/KD(/KNZER Zp (-1)°5 R’ £[PQ'(2)] F [PR(Z)] // reorder and (A.1.10)

= (I/K)(1/k'NZZr Zp (-1)°5FR') £[PQR'(2)] F[PR'Q'(Z)]  // Q'(Z)=Z from (C.1.5b)
/I R'(z) =z from (C.2.5b)

= (I/KD(1/KNEEr Zp (-1)°S R’ £[PR'Q'(2)] F [PR'Q'(2)] //(C.3.3)R'Q'= QR

= (I/KD(I/KNDZSr Tp (-1)°SFE2D £[P[R'Q(z)] F [P[R'Q(Z)]

= (I/KD(1/KNZER Zp (-1)°5® £[P(2)] F [P(2)] // rearrangement theorem (A.1.3)

= 3p (-1)°5® f[P@2)]F [P(Z)] {(1/kD)Zg(1) }{ (1/kD)Zx(1) } // reorder

=3 (-)°® fIP@)]F[P@)]{1}{1} // (C.1.4) and (C.2.4)

=LHS (C.3.1). QED (C.3.4)

The endgame steps of Section C.1 are identical here with the change F—Fa, giving

Alt(f®F) = Alt(f~®Fa) . fa =Alt(f)  Fa = Alt(F) (C.3.5)
Sym(f®F) = Sym(fs®F) . f, =Sym(f) Fs =Sym(F). (C.3.6)

C.4 Summary and Generalization

Summary of the Three Theorems

Theorems One, Two and Three have shown that, in our generic function space,

AI[T®S] = AIt[TA®S] = AIt[T®S~] = Alt[TA®S+]
where Tr=Al(T) S =Alt(S) (C4.1

Sym[T®S] = Sym[Ts®S] = Sym[T®Ss] = Sym[Ts®Ss]
where Ts = Sym(T) Ss=Sym(S) . (C.4.2)
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One can of course rewrite these statements as
Al[T®S] = AIt{AI(T)®S] = AI[TRAIt(S)] = AI[AI(T)RAIL(S)] (CA4.3)
Sym[T®S] = Sym[Sym(T)®S] = Sym[T®Sym(S)] = Sym[Sym(T)®Sym(S)] . (C4.4)

Intuitively these equations are easily interpreted:

If one is going to totally antisymmetrize a tensor product, the act of pre-antisymmetrizing one or
more of the tensors makes no difference. So adding any ~ subscripts to objects inside an Alt makes no
difference.

If one is going to totally symmetrize a tensor product, the act of pre-symmetrizing one or more of the
tensors makes no difference. So adding any s subscripts to objects inside an Alt makes no difference.

Various "theorems" can be generated by "adding hats" to the insides of an Alt expression.
Example: Consider.

A[A®B®C] = Alt[(A®B)®C] = Alt[(A®B)~®C] = A[AI(A®B)®C]

AItA®B®C] = AIt{A®(B®C)] = AIt{A®(BR®C)+] = AIt{ARAI(B&C)] (C.4.5)
Therefore
AIAI(A®B)®C] = AItA®BRC] = AIt{ARAI(B®C)] . (C.4.6)

Replacing A,B,C with the obscure names ®,1,0 gives
AltfAlt(o ® 1) ® 0] = Altfo ® n ® 0] = Altfo ® Alt(n ® 0)] . (€47

This may be compared with Spivak page 80 from which we quote,

2) Al(Ale ® n) ® 6) = Alt(w ® 1 ® 6)
= Alt(w ® Alt(n ® 6)). (C438)

Generalization of the three theorems

The theorems derived above can be generalized in the following manner. Suppose for example we have a
set of integers [1,2,3......(kytko+...+ky)] =[1,2,3....kn]. Instead of partitioning this into 2 groups [z,Z] as
done above, we partition the integers into N groups [z1, Z2....Zy] as follows:

K1 =ki // "cumulative ranks", as in (5.6.11)
Ko =ki+ ko

k3 =kit k2 + ks

ky=ki ko +..+ky =Zi=1" ki . (5.6.11)
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[1,2,3...xx] = [21, Z2....Zx] (C.4.9)
z1 =[1,2,3..x1] // the partitions
Z2 = [K1+1,K212,...K2]
Z2 = [K2t+1,k212,...x3]
N = [KN-].) Kn-1 T 1, ...KN] .
And instead of functions f and F, we have functions fi, f5....fx.
Whereas for N =2 we had 22-1 = 3 theorems, for general N there will be 2" - 1 theorems. If we define
L= 3p (-1)°5 B f1[P(21)]f2[P(22)] ... fn[P(zx)] // Left side of theorems (C.4.10)
then here are those theorems: ( exercise for the reader: use induction or brute force )
L =Zp (-1 ® (1) ~[P(z0) f2[P(22)] . fu[P(2n)]
L =2 (-D** P 3[P(20)](f2)A[P(z2)] -.. fulP(zw)]

1

2.

3. L =Zp (- ®(f1)a[P(20)](f2)[P(22)] ... fn[P(z)]

4 L = Zp(-1)° ) £1[P(z1)]f2[P(22)](f3)~[P(23)] .. [P(z)]

@%1). L =Zp(-1) B (£1)a[P(22)](F2)~[P(22)](£3)~[P(z3)] ... fx)»[P(z0)] (C4.11)
Translated to Alt/Sym, notation, we then find for the case N = 3,

AH[T®S®R] = Al[TA®S®R] = AI[T®S®R] = AI[TOS®RA]
= A[TA®SA®R] = AI[T-®S®RA] = Al[T®SA®RA] = Al TA®SA®RA] (C.4.12)

Sym[T®S®R] = Sym[Ts®S®R] = Sym[T®S;®R] = Sym[TOS®Rs]
= Sym[Ts®Ss®R] = Sym[Ts®S®Rs] = Sym[T®Ss®Rs] = Sym[Ts®Ss®Rs] (C.4.13)

One can write these using X = Alt(X) and Xs = Sym(X) to obtain nested equations as we did earlier.
In general one can write

Alt[(T1)®(T2) ...... ®(Ty)] = Alt[(T1)a; ®(T2)ay --.... ®(Tx)ay] (C.4.14)
where each a; can independently be a blank, (T;) , or can be a ”, (Ti)». This then is the ultimate

statement that arbitrary pre-antisymmetrizing of one or more tensors in a totally antisymmetric product
makes no difference. Similarly,

Sym[(T1)®(T2) ...... ®(T)] = Sym[(T1)a;&(T2)ayg -..... ®(Tx)ay] (C.4.15)
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where each a; can independently be a blank, (Ti) , or can be an s, (Ti)s. This then is the ultimate

statement that arbitrary pre-symmetrizing of one or more tensors in a totally symmetric product makes no
difference.

Application to Tensors and Tensor Functions

All the work done above in Appendix C has been "generic", meaning the various operations are with
respect to generic permutation functions like f(1,2...k). The work can be applied to tensors or tensor
functions according to these simple translation rules

f[1,2... k] = T*1*2- - -k = components of a rank-k tensor
f11,2...k] = J(viy, Vi, .-.. Vi) = arank-k tensor function . (C.1.7) (C4.16)

For example, consider our result (C.4.1) above that

AI(T®S) = Al(TA®S) . (C4.1) (C4.17)
In the generic space this equation means

[AI((T®S)](1,2.. k+k")= [Alt(T-®S)](1,2.. k+k') . (C4.18)
Translated from the generic space to the tensor space, one gets

[AI(T®S)] 12 - -Thtk' = [Al(AlY(T)®S)] 12 - - Hetk! (C.4.19)
where for example

[Al(T)]*2%2- - -k = (1/k!) Zp (-1)5 ) TR 3R (2) - - - 1P (k) (C.4.20)
Translated from the generic space to the tensor function space, one gets instead,

[AI(T®S8)](V1, V2....Vkak ') = [AIt(AI(T)®S)](V1, V2.....Vk+k ) (C4.21)
where for example

[AIt(F)](v1, Va...vi) = (1/k!) Zp (-1 F(vp (1), Ve (2)---Ve (k) (C.4.22)

Here we follow our convention of putting dual-space tensor names into script/italic font.
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Appendix D: A Unified View of Tensors and Tensor Functions
In this section multiindex notations are shown in red to the right.
D.1 Tensor functions in Dirac notation

The vector space V has dimension n, and k <n.
The vector space is real, so <a|b> = <b|a>.

In the bra-ket notation (Paul Dirac, 1947), a rank-k tensor functional J is represented by the bra <T|
which is an element of the dual space V**. Meanwhile, elements of the space V* are written as kets
which are a tensor product of smaller kets,

| Viq,Vig, -oe Vi > = |Vj_1> ® ‘V5_2> ® ... ® |Vj_k> . ‘ V1> (D.l.l)

Here the ir are labels, not components. Each v;, is a vector in V having n components (Vil)j .

The tensor function J(vi;, Vi,, ... Vi,) is then represented by the application of the functional <T| to

vectors in V¥ so that,
<T | Viq,Vigs e Vig > = I (Vig, Vi, e Vi) - J(vi)=<T|vr> (D.1.2)

Due to the tensor product (of vector spaces) construction of the "ket" shown in (D.1.1), the function
shown in (D.1.2) is manifestly k-multilinear. We call this a "tensor function".

The bra-ket notation represents an inner product (scalar product) so the spaces here are Hilbert spaces, not
just vector spaces.

As shown in (6.2.2), the covariant tensor Ty s,. .. .1, may be written (each label ir ranges from 1 ton ),
Tijig....ip = <T|uip Wiy, ..Uy, > . Ty =<T|ur> (D.1.3)
The vectors [u;> for i=1 to n form a basis for V, and the n*k kets | uj; ,ui,, .... uz, > form a basis for vk,
From (D.1.2) and (D.1.3), one concludes that
Tijis....ip = I(Uiq, Uiy, ... Uiy) ir=1ton T:=39(ur) (D.1.4)

in agreement with (6.2.5). The contravariant form is then

Ti1i2 cealip g(uilluiZ’ uik) . TI = fj.(uI) (DIS)
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Let us now assume that the n vectors [vi> for i=1 to n form some alternative basis for V, and then the n*k
kets [ viq, Vi, .... Vi > form an alternative basis for VX. The dual basis is {Vi} where v e vy = Sij as in
(2.11.c.1) for the u; basis and its dual u.

Looking at our two equations from above,

<T| Viq,Vig, oo Vip > = 5(Vi1,Vi2a Vik) Ir=1ton (D.1.2)
<T|uil,uiz, e Uy > = Tiliz----ik ir=1ton (D.1.3)
one can say that the tensor Ti;i,....;, and the tensor function J(viy,Vi,, ... Vi) are both

representations of the same abstract tensor <T| in two different V¥ bases, [vy> and |ur>. Both bases have
dimension n*k. Recall

T=3Thu; e V¥ =atensor [T>=2%; Tt lug >
=3 T\ e V¥ = a tensor functional <T| = 21 T <uI|
J ~ T by the isomorphism V** ~ V¥ [see below (2.11.b.1)] . (D.1.6)

Notice that for the basis {vi},
<vivg> =< Vi1|Vj 1>< Vi2|Vj2> o < Vik|ij>
=(vle le)(Vi2 ®V3,) ... (vike Vi)
= §%14,5%25,..8%%;,  //see (2.3.2) for basis {v.} with dual basis {v*}
=5t . // orthonormal basis in the multiindex notation (D.1.7)
This result applies as well to the basis [ur>, so
<uffuy> =<vlijvg> = 8%y . (D.1.8)
D.2 Basis change matrix
The basis-change transformation matrix between the |[vy> and |er> bases is given by,
Mi; = <u'l u2, . ulk| Vi1,V59s oo Vig > My =<uljvs (D.2.1)
= <u'llyy,><u'2vy,> .. <u'k

Vi1 Vi I/ see (2.9.17)
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(Ut e vy (U2 evy,) ... (ukevy,)

ALV OA2(V3,) oo ATR(VS,) // see (2.11.c.5)

(Vi)' (V4)*2 (v, ) &
=y .  //multiindex notation

There are n*k values for I and n*k values for J, so matrix M has dimension nk x nk.

Entirely in multiindex notation (see (2.1.7)),

M = <ufy?> = (v))?! // pure contravariant
ME;=<ufjvy> = (vo)* // mixed

M:? = <ugv?> = (v // mixed
Mis=<ug|vg>=(vg)z. // purecovariant

The covariant transpose (see Section 2.11 (f)) is then,
MMz =M1y =<uzlvg> =<vglur> = (Vo)1 // Hilbert Space is real
(MT)JI =M%y =<ullvy> =<vqu™> = (vo)' .

In the bra-ket notation completeness of an orthonormal basis is expressed this way:

1 =35 ug><u?| =2y ul><uy| // see Section 2.11 (h)
= I lve<v?| =25 vI><vyl.

Proof: (example) Consider a general V* tensor T :
(1) [T>=1|T> =25 [ug><u’| T> =25 T juy> // so basis |ug> must be complete
2) ur> =1ljur> =5 |uJ><uJ|uI> =X3 |uJ>8JI = |ur>// why orthonormal is needed
Therefore the basis-change matrix M has the property MM'=1orM'=M"1:

(MM =25 M (MD)5* = 25 <uzlv®><vy u> = <ug| (Zav?><va|) 0>

= <uz|l |uK> =<u1|uK> =ur e uf =5;X // see (2.11.2)

The connection then between the tensors and tensor functions is given by,

Unified View

(D.2.2)

(D.2.3)

(D.2.4)

(D.2.5)

(D.2.6)
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Tr=<ug| T>=<uz| 1 | T> =<ug| Zg[v'><vq T>
=23 <uI|VJ><VJ\ T> = X3 <uI\VJ><T| vg>
= X5 M7 5(vs) . (D.2.7)
Going the other direction,
Fvp)=<vi|T>=<vi|1| T> = <vi| Zyu’l><uy T>

=35 <viju”> <ug|T> = Iy <u’jvy> <T|uz>

=2sM'1 Ty = S;MN" Ty . (D.2.8)
Example of (D.2.7):
Tigip= Z4q,90=1" (VD)i,(vI2)1, T(v41.V5,) ir=1ton
or
Tij= Za,b=1" (vV)i(v®)5 T(Va,Vb) . // n? terms in the sum (D.2.7a)

Example of (D.2.8):

5(V11,V12) = Zjl,j2=1n (Vil)jl (Viz)j2 Tj1j2 ir=1ton
or
F(Vi,V35) = Za,p=1" (vi)? (v§)°Tab . // n? terms in the sum (D.2.8a)

Comment: These examples can be compared to a simple quantum mechanics case. Let [x> be a basis

vector describing a 1D particle at location x (coordinate representation), and let |p> be a basis vector
describing a plane-wave particle having momentum p (momentum representation). Then it turns out that

the basis change matrix is <x|p> = yp(x) = C ¢*P** where C is a normalization constant. So the basis
change "matrix" (continuous matrix subscripts p and x) is a function of p, just as the basis change matrix
in (D.2.8a) is a function of v; and v;.

D.3 Transformations of tensors and tensor functions

In this section we write vectors in bold font.

Consider two sets of n vectors vi and v'; where v; form a basis for V. One can then write,

\ QijVj i=1,2..n implied sum on j (D.3.1)

where Qij is a matrix describing the linear combinations of the v; that make up the v';. Since the tensor
function J(vi,,Vi,, .... Vi, ) is k-multilinear, one can certainly write
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FV'iy Vi o V') = Q1791Q1,72 oo Q1 T% T(V41, Vigs e Vi) (D.3.2)
or just showing the ket part,

| V'ig, Vig, o Vi > = Qilleizjz Qikjk | Vi1, V305 oo Vi > (D.3.3)
Equation (D.3.2) vaguely resembles the Chapter 2 transformation of a covariant tensor field,

T'igip. . .ip (X) = RiyI1R:,32 Ry % Typ5,. 5, (%) (D.3.4)

where
x'=F(x) and dx' =R dx. // R is the differential of F.

The resemblance is perhaps closer if we restrict x' = F(x) to be a linear transformation, so then
x' =R x or x*=R*x3 . (D.3.5)

The resemblance between (D.3.2) and (D.3.4) we claim is really superficial and misleading, which is the
main reason for bringing it up. We just make a few comments on this matter.

e The linearized transformations of Chapter 2 like v'* = Rijvj for a vector v' are component
transformations. The j on v7 is a component index, and v'* = R*3v? (v' = Rv) is an instruction for creating

a new vector v' by linearly combining the components of v. Transformation (D.3.5) is such a component
transformation.

e In contrast, the transformation (D.3.1) that v'; = Qijvj is not a component transformation. It constructs
n new vectors v's by linearly combining the n vectors v;i. The j on v5 is a label, not a component index.

e In (D.3.4), the left-side object T'ii,...1,(x') has a prime on T. It is a tensor different from Ty;5,.. .5,

(x), and this would be true even if there were no x dependence of the field.

e In (D.3.2), the left-side object F(v'i;,V'i,, .... v'i,) has no prime, it is the same J as on the right.

e In fact, as was shown in (2.11.e.8), the object J(vi, V2, ...vx) under any Chapter 2 component
transformation transforms as a scalar, so there are no Rij or Qij matrices involved,

J'(v'1, V'2, ..V'%) =39(V1, V2, ...Vk) . J'(v'z) =TI (vz) (2.11.1f.8)

where
(v'e)" = R*j (vz)? r=1.k implied sum on j

Il
—_
=]

J(v1, V2, ...vx) is a scalar because it is the scalar product of a rank-k tensor functional § = <T| with a

rank-k tensor | vi, v, ...vk >, justas <a|b>=a e b is a scalar.

¢ (D.3.2) is nothing more than a statement that the tensor function J(v1, va, ...vx) is k-multilinear.
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D.4 Tensor Functions and Quantum Mechanics
Eq. (D.1.2) defining a tensor function as a bra-ket combination
<T | Viq,Vig, e Vip = = 5(Vi1,vi2, Vik) (D.1.2)

has the following quantum mechanics incarnation, which was the original use Dirac intended for his bra-
ket notation,

<\V| ry, ra..I'y> = \}I(I‘:L, rz..rg) . (D.4.1)

Here object <y| plays the role of the abstract tensor <TJ, and the generic arguments v; = become the
physical positions r; of k particles. The object v is a functional in V** which gets applied to |r1,rz....rc>
= [r1>®|rz>....®|r> and the resulting function y(ry,r»...rx) is called a "wave function" which describes
the "probability amplitude" that the k particles are near spatial locations r1, ra, ....rx. The probability that
the k particles are near these spatial locations is given by |\|/(r1,r2...rk)|2dnr1dnr2 ...d"rg. "Near" means
that r; lies somewhere in the range r; to ri+d"r;. Normally one uses n = 3 for 3D space.

It happens that in quantum mechanics literature it is the ket that is the functional in V** and the bra which
is the element of V¥. So in a physics text one always sees equations like,

y(r, ra..rx) = <ri, r...rg| V>, (D.4.2)

This is a long-standing convention difference between the physics and math worlds. When talking about a
functional f applied to a vector x, it seems natural to have f(x) = <f | x>, which is the math convention.
The physics person writes <x|y> = y(x) and says that the state vector |y> is being projected onto the
coordinate representation basis element <x|. Usually y is not called a "functional". A ket is thought of as a
vector v, while the bra is a transpose vector vT and then <vilve> = V1TV, in a matrix notation sense, so
here it seems logical to put "the vector", whether v, v, or vy, on the right.

Our functional § maps elements of V¥ to the real numbers, and <a|b> = <bja>=a e b, so one can "for
free" switch the role of which is the functional, and which is the ket acted upon by the functional. In
quantum mechanics the functional maps to complex numbers, and <alb> = a* e b where * is complex
conjugation. Then <bja> =Db*e a = (a e b*)* =a* e b = <alb>*. And <vj|vy>= ViT* vy = vt

crucial element of quantum mechanics that the space V* is complex and not real. In the math world, one

vo.Itisa

usually sees instead <bla>=Db e a* .

If the k particles are electrons or other half-integral spin particles which are in a "symmetric spin state",
then the wavefunction (D.1.4) must be replaced by [Alt(y)](r1, rz...rx) in order to make it be totally

antisymmetric in the coordinates r;, as required by "Fermi statistics" for half-integral spin particles. We

mention this just to show that both the Alt operator and more generally the permutation group of
Appendix A have important applications in quantum mechanics.
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Appendix E: Kinematics Package with x' = F(x) changed to x = ¢(t)

The material here is just for completeness and is intended only for perusal. It shows how the development
of Chapter 10 appears for x = @(t) in place of x' = F(x). In some ways, the x = @(t) results concerning
differential forms are simpler that those expressed in the x' = F(x) notation. The less pleasant aspect is
that tensors (including metric tensors), basis vectors, and their spaces need an extra x or t label to
distinguish the two spaces (now t-space and x-space), whereas in the x' = F(x) approach this distinction is
accomplished by a prime versus no prime. We do use part of this notation in Section 10.9 since it brings
our results into a more standard form for comparison with other sources.

Translation Table

Picture A’ /’{:_FM Picture F' /ﬁm
S,

x-space x'-space t-space SR x-space
g V'a = Ra, Vb g 2 (xV2) = Ray ( tVb) xZ
—
X-space - t-space
x'-space = — X-space
F — (0} general transformation name
xX=FXx) — X = @(t) general transformation equation
R,S — R,S differential matrices (no change in name)
F* — o* pullback function
A% — +V vector in t-space
\'%& — Yy vector in x-space
e — te tangent base vectors in t-space
— £ axis-aligned basis vectors in t-space
g — tg metric tensor in t-space
u' — | tangent base vectors in x-space
! — x€ axis-aligned basis vectors in x-space
g — x& metric tensor in x-space
A* — <AF dual space to R™
A¥ — AF dual space to R™
M= S A=t basis vector in dual space to R™
A =dd' o At =di' basis vector in dual space to R™ (E.1)

In this new notation, the "kinematics package" of (10.6.a.1) with adjustment (10.6.d.1) for "tall" R
appears as
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Picture F' /}':m

t-space SR X-space

B (V)= Tyeim Re (VB) X8

(@) x=¢(t) xform RY; = (x*/o)=058x*  R=(Do)
V=R ¢V vector Sty = (at/oxT) =05 ¢t

(b) xe; with (xe;)d =857 axis-aligned basis vectors in x-space (i = 1..m)
tei tei =S xe; tangent base vectors in x-space (i = 1..n)

(c) ¢u; with (guz)d =837 axis-aligned basis vectors in t-space (i = 1..n)
Ui «Ui=R guy tangent base vectors in t-space (i = 1..n)

(1)’ = RIy (cus)*

(d) xI = |xei> <xei| = | xei> <x€i| = | xU;> <xui| = xui> <yxlUi completeness in x-space

ef = | ces> <ee'| = | ce™> <cei| = | gus> <eu'|

(€) (tu3)™ = u™ e puy = <gu” | gy > = £875 = LUT 0 LUy = <eu' | xuy >

i _ i _ i _ Qi _ i
(t€3)” = cu” ®cey = <eu e3> =S73=Ry
i _ i _ i _ i i _ i
(x€5)" =x€” @385 = <x€ |yxe5> =42 5 = t€ @€y = <te |tey>
i i _ i _pi _ gl
(xu3)” =xe” e xuy = <ye" | xuy >= R*5 = §j
i_ ij i_ ij i_ ij i_ ij
() e =xg™” re5 x€" = xg" xey tu’ = g™ cuy AU =gt uy
t€i = x8ij e’ x€i = x8ij x€7 tWi = £8ij tu? xUi = t8ij <’

(8) <eey |S|xe™> = <xe" | R|res> = g5
<tes | S]xu™>= <u® |R|ces> = ST5=Ry"
<euj | S| xe™>= <xe* |R|eus> = R¥y =S5
<guy | S| xu>= <u' | R|eus> = gy

(h) S=R' Sty =R =Ry
(i) SR=1  SST=R'R=1 (10.6.a.1)

The uniqueness table of (10.6.d.2) becomes the following,

Metric tensors
i3 .
tgij, t8 7 unique
<2 unique, since xg*3 = R*,R7y (g

x8ij not unique, Since xgij = Riaij tZab = Saisbj tZab and S*5 not unique

| eu™™> <euy) completeness in t-space

(E.2)
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Transformation matrices

Rij = Sji unique (tall R matrix from x' = F(x))

R*I =g3t unique since R*3 = gI3®R*, and both g2 and R*, are unique
Rji = Sij not unique, see (10.6.c.3)

Rij =Sj3: not unique, since Rjj = xgia Raj and xgia not unique

Axis-aligned basis vectors

(tuj)i unique since (tuj)i = tgji (xej)i unique since (xej)i = xgij (= 8ij)
(tu?)? unique since (tu::,)% = t83i (xe::,)% not unique since- (,-{ej)i = x8ij
(gu?)* unique since (¢u?)* = ¢gl* (xe?)™ unique since (xel)* = xg™?

(tuj)i unique since (tuj)i = tgji (xej)i unique since (xej)i = xgij

Tangent base vectors

(tej)i not unique since (tej)i = Rji (xuj)i unique since (xuj)i = Rij
(€)1 not unique since (te5);i = Rji (xuj)i not unique since (xu3)i = Rjj
(ced)* unique since (ze?)* = R3* (xu?)* unique since (yul)* =R*?
(tej)-l unique since (tej)i = R3; (xuj)-1 not unique since (xuj)-1 = R,’
(10.6.d.2) (E.3)

Other parts of the development translate as follows:

Basis Vectors

{eusi} i=1,2..n basis for t-space, axis-aligned
(zus)? =38, components of these basis vectors in t-space . (10.6.e.1) (E4)
_ JReuy i =1 through n (tangent base vectors)
Ui = { asneeded i=n+l through m (10.6.e.4) (E.5)
R*s = [xU1, xU2 ...xu5] R has full rank n = basis for TxM complete (10.6.e.5) (E.6)
Non-Dual Pull Backs
Ui =R tuy lxui> =R |gui> i=12.n push forward (10.7.1) (E.7)
tui =S xuj leui> =8 |[xui> i=12.n pull back (10.7.2) (E.8)
<Ut =R ut xu*>=R |cu™> i=12.n push forward
al =RT it > =R > i=12.n pull back (10.7.4) (E.9)
xei =R tei \xei> =R |tei> 1=1,2.n push forward
cet =RT 4et o> =R |cet> i=12.n pull back (10.7.4) (E.10)
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Dual Pull Backs
uH)'= (u)TRT <= <ad®RT  i=12.n push forward
(ew)T = (u)T R <] = <uil®  i=12.n pull back (10.7.6) (E.11)
(xeH)™= (ceH)TRT  <gel|= <cel|RT i=12.n push forward
(eh)T =(xeH)TR  <eel| =<4e*|R i=12.n pull back (10.7.6) (E.12)
O¥(<xe’) = 0*(xh") = <xe'| R = R*y<eul| =R*; (AJ (10.7.19) 5
0*(<xu') =<xut| R =<eut| = AT (E.11) (E.13)
R | t° R™ X"
t-space X-space

x=¢(t)

X
axis-aligned \A\xul
base vector

1| te —

u 2 2
t t XW X
push forward
t1
tlll — RT xl.ll
pull back
(10.9.2) (E.14)

Further translations of significant equations appear in Section 10.9.
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Appendix F: The Volume of an n-piped embedded in R™

First, recall these facts about the various basis vectors described in Chapter 2,

(uj)i = Sji axis-aligned basis vectors in x-space  // (2.5.3)

(e'j)i = Bji axis-aligned basis vectors in x'-space  // (2.5.3)

(ej)i. = Si.j tangent base vectors in x-space //(2.3.4) and (2.1.4) Sij = Rji
(u'3)* =R% inverse tangent base vectors in x'-space // (2.5.2)

e; =Se';. //(2.5.1) dx =S dx'

u';s =Ru; /1(2.5.1) dx'=Rdx . (F.1)

We claim that the volume of an m-piped in x-space = R™ spanned by the tangent base vectors €1, €z....en
is given by

V =det[eq, €2....en] =det(S) . (F.2)
For the case n = 2 the fact that V = det[e1, e2] is easily shown, see text below (4.3.14).

Similarly, the volume of an m-piped in x'-space = R™ spanned by the inverse tangent base vectors u'y,
u'z....u'y is given by

V =det[u'y, u'z....u'y] =det(R) . (F.3)
First of all, note from (F.1) that

[e1, €2....em] =S because (e;)°=SPe(e's)S= SP8:° = Sbi, i = column index

[u';,u's...u'y] =R because (u';)® =RP.(u;)®= RP8;%=RP;, i=column index (F.4)

Statements (F.2) and (F.3) are really the same fact stated first for the forward transformation x' = F(x)
with differential R = S, and then for the inverse transformation x = F'l(x') with differential S = R™2.

The fact (F.2) is derived in Tensor (with m = N) so we won't repeat that derivation here. One starts with
an m-cube in x'-space which is spanned by axis-aligned unit basis vectors e'; and which has volume V' =
1. One then transforms this m-cube into a skewed m-piped in x-space spanned by the tangent base vectors
e; = Se's where S is the mxm matrix that maps the vectors e'; into the e;. One then finds that the m-piped
has the volume shown in (F.2). Tensor Appendix B concerns the geometry of N-pipeds in RN and the
result (F.2) appears as (B.5.d.13).

The different question addressed by our current Appendix F is the following:

What is the volume of an n-piped in R™ where n <m ?
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The answer, to be proven below, is (new meanings for S and R ),

V= \/det(STS) where S = [e;,, €:,....e5 ] n-piped in x-space = R™ (F.5)
V= \/det(RTR) where R=[u';;, u's,...u"; ] n-piped in x'-space = R™ (F.6)

where the subscripts i, enumerate a subset of the tangent base vectors in each case which "span" the n-
piped. For example, if in R3 we have tangent base vectors (e1, €2, €3) spanning a 3-piped, we know that
any pair (es,, €i,) with iy # i spans a 2-piped which is a face of the 3-piped.

Notice that S and R appearing in (F.5) and (F.6) are non-square "tall" matrices because each has m
rows but only n columns since each [...] has only n vectors. Thus det(S) and det(R) do not exist. In the
special case that n = m, then S and R are square matrices, and for example w/det(STS) = det(S), and the
results (F.2) and (F.3) are recovered.

Again, (F.5) and (F.6) are really the same statement expressed for x' = F(x) with differential R and
then for a transformation x = G(x') with differential S. We deal with x' = F(x) for a non-square "tall" R
matrix in some detail in Section 10.6.

The result (F.5) is derived in Tensor [2016] Section 8.4 (h). Below, we shall prove (F.6) where the n-
piped spanning vectors will be called aj,as,...a, . In particular, we shall show that :

Fact : Let u; for i = 1...n be n axis-aligned unit basis vectors in R®. Let aj,a,...a, be n arbitrary vectors

in R™ where m > n. These vectors span an n-piped in R™ which has a volume V = \/det(RTR) where RR
is a nxn matrix, R =[aj,as,...a,] is a m X n matrix, and the arbitrary n vectors may be written a; = Ru; .
(F.4.11)

Our derivation below is a seat-of-the-pants "geometric" approach, appropriate for people like the author
who like to "see" what is going on. Basically we start with simple examples and progress toward the

general case. Sjamaar provides a nice "axiomatic" derivation on pp 99-102.

Warning: In the discussion below Ri, Rz and Rz are linear transformations, while R2, R3 are Cartesian
spaces. It just happens that the same symbol R is used for both kinds of objects.

F.1 Volume of a 2-piped in R?

The simplest case to consider is that of a 2-piped (a parallelogram) embedded in R3. Consider then this
set of four spaces connected by three transformations (this picture will be reused several times) :
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e _R3R25181 —Rel

e; = Slc':i. (3"1 = R2 e; eMi= R3€"j_

Re RO R T N R T N e

x'-space X-space x"-space x"'-space

/" 2-cube / / / \‘: \
X1

2- d R2 " 2- d R3
-piped in X' -piped in rotated 2-piped in R3
: V= det( dCl(El 82) = Vh=y'=V

(F.1.1)
The names and symbols for the left two spaces are chosen to be compatible with Chapter 2 based on Fig

-space.
The leftmost picture shows a unit square (2-cube) lying in the x'1-x'2 plane. The square is spanned by

m

2.1.1). The remaining two spaces are given the arbitrary names x"-space and x
g p g ry p

two axis-aligned unit basis vectors e'; and e'; as described in (2.5.3). The volume (area) of the square is 1
unit.

The second picture is obtained from the first by a general non-linear transformation x = F~*(x") which
has a linearized form dx' = R1dx and correspondingly dx = S;dx' where R1S; = 1. These 2x2 R; and S;
matrices are called R and S in Chapter 2, but here we add subscript 1 since this is the first of three
transformations shown above. The volume of the 2-piped is det(S1) = det(e1,e2) as noted in (F.2). The
transformed basis vectors (""tangent base vectors") are e; = Sie'; (and e's = Rje;) as shown in (2.5.1).

The third picture is obtained from the second merely by adding a third axis called x"3. The 2-piped
has not moved and still lies in the x"1-x", plane. Then e"; = (e;,0) where we add a third zero component
to the basis vectors. The 2-piped volume is still det(S;). Below we shall discuss the linear transformation
Rz which links x-space to x"-space.

The fourth picture is obtained from the third by an arbitrary rotation R3 in R3 space. The 2-piped then
ends up in some arbitrary orientation in R3. It's volume is still det(S1) since shape and volume (here area)
are not changed by a rotation. R3 is a 3x3 real orthogonal matrix.

The linear transformation Ry, connecting x"-space and x-space is this

- 1Oty [ ()
= . [ (ei) . N2 _ e
Rz—[g (1)] for example:  e"; —[8 é]((ei)z) = ((e(l)) J = (0 ) (F.1.2)

This matrix Ry is just the 2x2 identity matrix with a null third row added. This transformation simply
adds a third null coordinate to a 2D vector in R? as shown in the example above. Notice that
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RZTR2=((1)?8)((1) ?}:(é (1))= 1. (F.1.3)

00

As shown at the top of Fig (F.1.1), the concatenated effect of the three transformations on the basis
vectors is this,

e"; =Re's where R = R3R2S; . =12 (F.1.4)

The combined matrix R is in fact a "tall" 3 x 2 R matrix which we verify with the following schematic
conformation picture,

R:R3R281:[* * *j(o 1](* *):[* *j (* *) :(* *j (F15)

In fact, from (F.1.4) and (2.5.2) we find that
(e"5)* =R% (€1)°= R*% 8;°= R*; i=12 a=12 (F.1.6)
which tells us that the final vectors e"'; are the columns of the matrix R, so

R — [e‘”l, elﬂz] (F.1.7)

which we then verify is a matrix with 3 rows and 2 rows as shown at the right of (F.1.5).
Note that non-square R does not have a determinant. But consider,

R™R = (R3R2S1)"R3R2S1

=S1TR,TR3TR3R S, // rule for transpose of a product of matrices
= $;"R,TR,S; // R3TR3 = 1 because Rj is a rotation (real-orthogonal)
=S;7S;. // R2™R2 = 1 as just shown in (F.1.3) (F.1.8)

As shown in Fig (10.6.c.1), the matrix R*R is a square matrix of dimension 2x2 and so R'R does have a
determinant. In fact, from (F.1.8),

det(RTR) = det(S17S1) = det(S1T)det(S1) = det?(S1) . (F.1.9)

In terms of the overall vector transformation R going from the left picture to the right picture above, we
have just shown that the 2-piped volume can be written

V =det(S1) =[/det(R'R) where R =[e"1, e",] (F.1.10)

where both S; and R™R are 2x2 matrices.
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F.2 Volume of a 2-piped in R*, R® and R™

The equation numbers here mimic those of the previous section. Since some equations need not be
repeated, there are missing equation numbers below.

In blue we make very slight modifications to the previous picture :

e'"-l = R3R251 e’-l =R e.i

¢ =Rs e

Rz = F—l(x ) /_\ /_\ Rg

x'-space X- space x"-space x"'-space

II
Vd ‘ ; " ;
X1

2-piped inR?2  yv, 2-piped in R4
V=1 V = det(S;) = det(eg,e2) V'=V

rotated 2-piped in R*
V=V =V

(F.2.1)

R3 is now a real-orthogonal 4x4 rotation matrix in R*. The new R, transformation has two rows of zeros
added at the bottom instead of one row,

10 10 (es)!
01 01 |( ()t (e1)2 61

Ry = 00 for example: e"; =Rze; = 00 ((ei)z) = (l) = 8 . (F.2.2)
00 00 0

This transformation R, simply adds a third and fourth null coordinate to a 2D vector in R? as shown in
the example above. And as before,

0
O[]0
0

The new conformation picture is this

00
10

O -

R2'R; = (

SO O~

% ok ok % 10 * % * %
* ok ok % 01 * ok * % * % * %

R=R3R2S1= | 4 & & « 00 (* *): * % (* *) T ox % (F.2.5)
* ok ok % 00 * % * %
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and now the tall R matrix has 4 rows and 2 columns. Equation (F.1.6) still applies for this new R, so we
still conclude that

R=1[e"1, e"2] (F.2.7)
but now each vector has 4 components instead of 3 as in (F.1.7).

Apart from these matrix shape changes, the steps (F.1.8) through (F.1.10) proceed exactly as above and
again one concludes that

V =det(S1) = \[det(RTR) where R =[e"1, "'2] (F.2.10)
where both S; and R™R are 2x2 matrices.

In going from R* to R> the reader can see that R, will acquire yet another null row, one still has R,"R, =

1, and everything goes through as before again giving V = \/det(RTR) where R = [e"'1, €"'2] now has 5
rows since the two vectors exist in R. The result clearly extends to a 2-piped in R™ for any m > 2.

We then arrive at the following Fact, where we rename e's — uj and e"1,2 — a,b :

Fact : Let uy = (1,0) and uz = (0,1) be two axis-aligned basis vectors in R%. Let a and b be two arbitrary

vectors in R™. These vectors span a 2-piped in R™ which has a volume (area in this case) V = \/det(RTR)
where R™R is a 2x2 matrix, R = [a,b] is an m x 2 matrix, and the arbitrary two vectors may be written
a=Ruj and b = Ru,. (F.2.11)

Comment: Recall from (10.6.¢.6) that rank(R*R) = rank(R). If a and b are linearly dependent, R = [a,b]

has less than full rank 2 and so does square R*R which means det(R*R) = 0 so V = 0. This is the result
one would expect if a and b are collinear, so the above Fact applies to any pair of vectors a, b.
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F.3 Volume of a 3-piped in R*

The logic flows as in the previous examples, so we omit the words. We start with a new but similar
transformation picture,

c'"i = RngSl c'i =R C'j_

e; = Sie'y e"s =Rze; e"'i=Rje"
R3 = F'l(x') R3 /_\ R‘l /—\ R4
x'-space X-space x"-space x'"-space
‘ x", X'y X‘"-I. Xm3
X3 X3
rotated 3-piped in R?
X'z x"y 2
3-cube 3-piped in R3 3-piped in R
Xr]_ X1
V'=1 V = det(S;) = det{ey.ez,e3) V=V

(F3.1)
The R matrix (3x3 identity with a null added 4th row) adds a null 4th component to any 3-vector,

100 100 1 (es)*
010 . 010 (el)z (e;)? e;
Ry = 001 for example: e;" =Rge; = 001 (91)3 = (91)3 =lo /) (F.3.2)
000 000/ \(€) 0
1000 (1) (1) 8 100
Ro™Rp= |01 00| oo/ |=[010|=1. (F.3.3)
0010/\ 500 001
e";=Re'; where R=R3R5S: .  i=1,23 (F.3.4)
R=R3R2S1=| 4 & % « 001 = % R (F.3.5)
k ok ok k% ok
(e";)* =R3% (¢'1)° = R%, 8;°= R i=123 a=123 (F.3.6)
R=[e"1, e", e"3] =a4x 3 matrix (F.3.7)
R™R = $;7S; = a 3x3 matrix (F.3.8)
det(R™R) = det?(S1) (F.3.9)
V =det(S1) =+[det(RTR) where R =[e";, e"'2, e"3] . (F.3.10)
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Fact : Let u; = (1,0,0), uz = (0,1,0) and u3 = (0,0,1) be three axis-aligned basis vectors in R3. Let a,b,c
be three arbitrary vectors in R*. These vectors span a 3-piped in R* which has a volume V = \/det(RTR)

where RR is a 3x3 matrix, R = [a,b,c] is a 4 x 3 matrix, and the arbitrary three vectors may be written
a=Ruj, b=Ruz and ¢ =Rus. (F.3.11)

Comment: Recall from (10.6.c.6) that rank(R*R) = rank(R). If a,b,c are linearly dependent, R = [a,b,c]
has less than full rank 3 and so does square R'R which means det(R*R) = 0 so V = 0. This is the result

one would expect if a,b,c are linearly dependent: they all lie in the same plane and thus span no 3D
volume. Thus, the above Fact applies to any triplet of vectors a, b, c.

F.4 Volume of a n-piped in R"

In the general case we have an n-piped in R™. The method outlined in the previous examples prevails with
generalizations for the objects involved. Again we omit the words.

Picture generously supplied by the reader capable of making hyperspace drawings (F.4.1)
[ This is one reason mathematicians don't like geometric derivations! ]

Ry = (m-n roivnsxg £ ZCI‘OS) which is an m x n tall R matrix (F.4.2)
R2"R2 = lpxn (F.4.3)
e";i=Re'; where R = R3R5S; . 1=1,2..n (F.4.4)
R =R3R2S; = (m x m rotation matrix R3) (m x n Rz matrix) (n X n matrix S;) =mxn (F.4.5)
(e"3)* =R% (¢'1)° = R%, 8;°= R i=12.n a=12.n (F.4.6)
R=[e"1,e"2 ....e"n] = m x n tall R matrix (F.4.7)
R™R = S;%S; = an nxn matrix (F.4.8)
det(R™R) = det?(S1) (F.4.9)
V = det(S1) =+[det(R™R) where R= [e", " ... e"s] . (F.4.10)

Fact : Let u; for i = 1...n be n axis-aligned unit basis vectors in R™. Let a3,az....a, be n arbitrary vectors

in R™ where m > n. These vectors span an n-piped in R™ which has a volume V = \/det(RTR) where RR
is a nxn matrix, R =[aj,as,...a,] is a m X n matrix, and the arbitrary n vectors may be written a; = Ru; .
(F4.11)
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Comment 1: Recall from (10.6.c.6) that rank(R*R) = rank(R). If the a; are linearly dependent, R =
[a1,32,...a5] has less than full rank n and so does square R'R which means det(RTR) = 0 so V = 0. This is
the result one would expect if a; are linearly dependent: they span no nD volume. Thus, the above Fact
applies to any set of n vectors aj;.

Comment 2: The discussion above is presented for n < m. In the case n = m, things simplify. Looking at
Fig (F.3.1) we can ignore the x"-space and x"'-space pictures and in effect set R, = R3 = 1 so that R = Sj.
The final vectors are the e; in x-space which we then take to be are arbitrary vectors a;. The general
formula still works, but now the R matrix is square, so

V =+/det(R'R) =+/det(S17S1) =+/det(S17)det(S1)) =+/det(S1)det(S1))
=det(S1) where S1 = [e1,ez,...en] = R =[aj,a,,...a]
in agreement with (F.2).
F.5 Application: The differential volume element of the tangent space Tx'M

Recall Fig (10.7.5) which shows how the axis-aligned basis vectors u; of x-space are pushed forward to
become the tangent base vectors u's which span the tangent space Ty M at point x' in x'-space,

R® X" R™ X™
x'-space
X-space
P x' = F(x)
X' tangent base
axis-aligned u'l vector
base vector 7

ul :RT u'l

pull back

(10.7.5)
If we take a differential n-cube located at position x in x-space, it has differential volume

dv = dxtdx?.... dx™ . (F.5.1)

This volume is mapped into an n-piped in x'-space by the mapping u™ = R u;. According to Fact (F.4.11),
we may conclude that the volume of the tangent space n-piped in x'-space at point x' is this,

dV' =+/det(R™R) dx*dx.... dx™ . (F.5.2)

We have already seen an example of this fact. Recall these equations from Section 10.10,
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A= Js da = ¢ Kx) dxtdx?. (10.10.21)
K? = det(R"R) (10.10.22)

In the area integral, the differential "volume" is dA' = K(x) dx*dx? = det(RTR) dx*dx?.
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Appendix G : The det(R™R) theorem and its relation to differential forms

G.1 Theorem: det(R™R) is the sum of the squares of the full-width minors of R

We saw and verified an example of this theorem in Section 10.10 for a 3 x 2 R matrix,
K? = det(R"R) (10.10.22)
K2 = det? @;i 1;1222) + det? @;i 1;1322) + det? (Ezi 1;2322) : (10.10.18)

Before proving the theorem, we have Maple test it for a messy case, just to make sure it is true. Enter a
generic 6x4 R matrix as follows:

m := 6 n := 4

m
Il

matrix(m,n}): print(R),

Rg 1 Rg o Rg 3 Ry 4]

Compute and accumulate into "acc" the squares of all (6,4) = 15 full-width minors,

L := [seq(k,k=1..m}];
L=[1,273475468]
acc = 0 H =0
# compute all full-width minors and accummlate into "acce™ the sum of their squares
for i from 1 to m-1 do
for j from i+l to m do # below knock out rows i and j
minor[i,j] := det(submatrix(R, subsop(i=HULL, j=HULL , L), 1..n}},
acc = acc + {(minor[i,j]1)"2; N := H+1;
od,;
od;
H,;
15

If we take the resulting "acc" and expand it, we get a series of 4,230 terms each of which contains a
product of eight matrix elements of R,

nops (expand{acc) ) ; # terms in the sum of squares of the minors

4230
Here are four of these terms
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+2Ry (2R g Ry g Rg 4R o g Rs 3+ 2Ry (R g Ry g Rg 42 Rs 1 R3 o Ry 5
TRy 1 Rs o Ry 3Ry g Rs 1Ry o Ry g B 3-2Ry (Rs o R3 32 Rg y2Rs 1Ry 5

We next compute det(RTR), note that it also has 4,230 terms, and then we show that det(R*R) = acc.

detRTR := det (transpose(R) &* R)
nops (detRTER)
4230
detRTR - acc: simplify{%),
0

Fortified with the knowledge that the theorem seems to be true, we proceed:

Theorem: Let R be an m x n matrix with m > n. There are (m,n) full-width minors.
The claim is that det(R*R) = sum of the squares of the full-width minors. (G.1.1)

Comment: For m = n there is only one minor for square R which is det(R), the sum of the squares of the
minors is then just detz(R), and indeed det(RTR) = detz(R).

Proof forn<m :

Define a multiindex I as follows
I=11,12,....1n (G.1.2)

where the i, indicate which n rows of the R matrix are included in a certain minor. Each i, takes values in
the range 1 to m since R has m rows. Denote a full-width minor of R by

minors . (G.1.3)

We shall need the following

Lemma:

¥'; [minor{]? = (1/m!) g [minorz]? (G.1.4)
where

2't = X1<iq<in<. .. .<ip<m = ordered sum

m

X1=2iq,ip,...ip=1 = symmetric sum . (G.1.5)
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Proof of Lemma:

Y1 [minorg]® =i, i,,.. ip=1" [minors]?
= Ziq#is#t. #ig [minorI]2 // minorz = 0 if two rows are the same
= (Zig<ip<....<ip T Zip<ii<....<ip T n!-2 other orderings) [minorz]?
= (Zp [Zp(i1)<p(ig)<...<k(ip)]) [minorz]?
= Tii<igp<...<ip [Zp fo(ip(in) .. .06y ] /by (A9.1) withfi s, . i = [minors]?

But fi;i,.. .5, = [minorI]2 is a totally symmetric function of the indices since row swaps don't affect a

squared determinant. Thus we continue the above to get
=Xiq<ig<...<ip [2p fiqiy...ip] = Zig<ip<...<ip figip...ip [Zp 1]
= Tij<ip<...<ip figip...in [N!] = Zij<ip<. . .<s, [minorz]® [n!]
=n!ZX'; [minorI]2 QED Lemma

Proof of Theorem:

We can write minor as the determinant of a matrix using (A.1.19)
minory = Xp(-1)°® R*1p (1) R2p 2y ...R™p(n
= R, R¥2, Rin_ 4] signed permutations
= 3p(-1)° BRI ) . // in multiindex notation, Z =1,2...n (G.1.6)
Then we first claim that
Sum = sum of all full-width squared minors = X'y [minorI]2 . (G.1.7)

In this ordered sum, each full-width minor of R is included exactly once. For example, for a 3x2 R matrix
we had above

R, Rlz) (Rll Rlz) (Rzl R"‘z)

2 _ 2 2 2 '

K= det (Rzl R2, + det R3, R3, + det R3, R3,) - (10.10.18)
il,iz = 1,2 il,iz = 1,3 il,iz = 2,3

Then using the above Lemma we write
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Sum = X'; [minorz]? = (1/n!) £ [minorz]? = (1/n!) £1 [minors] [minorz] // now use (G.1.6),
= (1/m) Zr [Ze(-1)5® R¥p 3y R*2p 5, . R¥mp () ][ Zp (-1)5 ") R0 (1) RY2p0 5) . R¥%p0 ()]

= (1) Z1 [Ze(-D3 BRI ()1 [ Zp: (- 1D ®'RTp1 (zy]  // multiindex notation

= (1/n) Zp(-1)*® 2. 1DV E; RY )R (z) // reorder

= (I/n!) Ep(-l)s(P) Zp'(-l)S(P')ZI (RT)P(Z)IRIpv (2) // matrix transposes

= (1/n!) Zp(-1)°® 2. (-1)5 BV (RTR)E B, (z) // n matrix multiplications use up X1
= (I/n!) Zp(-1)® (P) oo (-1)° (@) (RTR)P(Z)va (2) // Zp+ rearrangement theorem (A.1.3)
= (1/n!) Zp(-1)*® 2p. (-1)S BBV RTR)E®) 1 (4 // select Q = P

= (1/n) 2p(-1)°® 2p. (-1 BV RTR)Zp: (2 // (A.8.32) since factored form

= (I/n!) Zp Zp (-3 BV RTR)Zp: (z) // (A.1.11)

= (1) Zp: (D3 EVRIR)pr 5y [Zp 1] = (1/n) Zpo (-DSF VI (RTR)?pr (2 [n!]

=Zp (-1*FV RTR) e ()

= 2p(-1)* P (R*R)%e (2

= det(R"R) . // (A.1.19) QED Theorem (G.1.8)
G.2 The Connection between Theorem G.1.1 and Differential Forms
Recall from (10.11.7) that the integral of a k-form oy for F: R® — R™ is given by

Ox' = X'z fr(x') dx'n! (G.2.1)

[or o = [ 551 f(FX) det(REy) Il A axd2 A A gidk

s IJ XA = 2.
¢ 21 f:(F(x)) T3 det(R%) dxs” // R = (DF) (G.22)

The context here is that x' = F(x) is a point on a manifold M created by the mapping F: R"— R™ as
illustrated for example in (10.7.26) which we replicate here
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n n Rm le
R X pullback X-space
x-space Bx = F*(0y) p

U Bx
xe forward map -
x' = F(x) X
x1 open region U, dim(U) = n x'1 open region V, dim(V) = dim(M) = n
Be € A¥ (Uc=R®) tx € AV c M cR®)
(10.7.26)

A case of frequent interest is k = n, and in this case there is only one term in the ordered X's sum, so

[s ax = [s =1 fr(Fx)) det(REg) dnt A dx? ~ .. A "

¢ =11 fr(F)) det(Rg) dio? . Z=12..n /] dxa®=dV (G.2.3)

The object det(R*z) is a full-width minor (a number) of the m x n R matrix. In (G.1.3) we called this
minors So

det(R*z) =minor; = mg (G.2.4)

where m; is a compact notation for minors. Since Rij(x) is generally a function of x (or x' = F(x)), we
may regard mr = mz(X'), so this minor's value is a function of x' on manifold M.

Then, suppressing the arguments {1 and mz, (G.2.3) becomes

J‘sv Ox' = fs [Z'I fI l’IlI]dV . (G25)
We may consider fr and my to be vectors with (m,n) components which we can dot together to get,
[eag = Js[fomar. // fem = X1 fr mg (G.2.6)

For example, for n =2, m = 3 we would write, showing components of each vector in "standard order",
fem = (f12, f13, f23) ® (M12, M3, m23) =f12m2 +f13myz +f23mez =X'r f; mr. (G.2.7)

One could create a minor unit vector i in this manner
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h E|—$| (G.2.8)
where
m|®> = 2’1 (mp)® = ¥'1 (minory)?® = det(R™R)  //(G.1.1) (G.2.9)

where we just invoked the det(R*R) theorem of Section G.1. One then has,

Jsiax=[s[ fetr]jm arv

= Js [fefa][[det(RTR) @], (G.2.10)

The objects in red above are all functionals in the space A"(R™) in our "cosmetic notation". According to
the "second definition" described in (10.1.3) we are always allowed to replace the functional ¢/ by dV to
obtain a normal calculus integral that can be evaluated by standard methods,

AV =dt N dx® Ao d - dV = dxEdxEdxR . (G.2.11)

Now consider the special case where the function f =1 . Then,

Js o =[s[ fodh][/det®TR) dV'] = [ sr[det(R™R) oV

= [ \[det®R) dv (G.2.12)

which displays the tangent space volume measure dV' =~/det(R"R) dx*dx?.... dx™ shown in (F.5.2). This
last integral gives the volume (area) of the surface S' (example below) and for this reason we refer to the
n-form o'y with this value of f as the volume measure form p'. From (G.2.1) then,

W= Y frdia' = fedxa’ = hedxa . (G.2.13)

Here we use the same dot product idea as in (G.2.6), where f; and dx'A" are each treated as vectors
having (m,n) components.

The pullback of this measure form appears in the integrand of (G.2.10),
F*(u') =+/det(RTR) 4V
= \/det((DF)T(DF)) dxt A dx® AL A dx" // Sjamaar p 105 above item 8.12 . (G.2.14)

Consider now a different situation where
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f(x') =|f(x") | M (G.2.15)

so that our new function f, considered as a vector with those (m,n) components, points in the m direction.
In this case we get

Js o = Js [f oM ][\detR™R) @] = [ | f((Fx))|[det(RTR) IV’ (G.2.16)

and this is how one treats the integration of a scalar function over the surface S' such as the average
temperature calculation in (10.10.20). In this case we can write the corresponding n-form in x'-space as

Ogr =37 fr di'n' = fedxa' = [f|Medxs = (o) edxs =(fei)p (G.2.17)
from which we extract this equation
fodxs = (feim)p' . (G.2.18)

Special case: Hypersurface wheren=m - 1

Suppose now that n = m-1, so that the manifold M embedded in R™ is a hypersurface, meaning it has
dimension one less than R™. In this case, (m,n) = (m,m-1) = m and each of our "vectors" above has
exactly m components.

One can define the following Hodge star objects as discussed at the start of Section 10.3 (see (H.1.13)),
#xt = (DFY det Ade? L [dx™] N dx™ where dx"" is missing (G.2.19)

so that each *dx'" object is an (m-1)-form (that is, an n-form). These m Hodge dual objects can be
combined to form a vector

*Ax' = (edx, *dx?, L xkdx™) (G.2.20)
We now define new vectors F and n' as follows,

F; = (-l)i__lflz. [i]..m
n's = (-1)**my,. [i]..m (G.2.21)

where the notation [i] means that index i is missing from 12...m. It follows that

F e *dx' = fedxa' (G.2.22)
n' e *dx’ =me dxa' (G.2.23)
n'eF =me f . (G.2.24)
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The proofs of the above three lines are basically the same, so we prove just the first line :
Fe*dx' = £31™F; (*dx")
=%ic1™ (D¥ Maz iy m (DY ax Adx? L [dx "] A "
=%ia™ fi2 (i .mdx™ Adx? L[] A dx™
=[foza..m dx? ~"dx® Ndx™ o Adx™ 4 fiag o dxt Adx® Adx?t LA™+ L]
= ¥'1f; dx'~T with series terms reordered from standard order
=fedxn" . (G.2.25)

Because vector n' is a reordering of vector m where certain terms have minus signs, the sum of the
squares of the components of the two vectors is the same, so

n'[=|m]| . (G.2.26)
Then dividing (G.2.23) and (G.2.24) by |n'| one finds

fi'e *dx =me dxa' (G.2.27)
fN'eF =me f . (G.2.28)

Recall from above that
n = e dxa’ (G.2.13)
fodxa'= (fe)p' . (G.2.18)

Now consider,

w = e dxa' // (G.2.13) just above
= fi' @ *dx 11(G.2.27)
fedxa = (fem)p /1 (G.2.18) just above

Fe*dx' = (' e F) ' /1 (G.2.22) on the left and (G.2.28) on the right

We therefore obtain,
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p' =n'e *dx' // see Sjamaar p 109 item 8.17 (G.2.29)

Fexdx'= (Fefi")'. // see Sjamaar p 107 item 8.16 (G.2.30)
Sjamaar's equations are written in the x = @(t) context rather than x' = F(x) so have *dx, fi and p.
Example: F:R?>5R3 k=n=2,m=3. (G.2.31)

This example was first treated in Section 10.10 as a no-differential-forms problem, and was then
reconsidered as a 2-form problem in Section 10.13 (but in the x = @(t) context). Here we write out various
objects defined above and show how equations come out with equation number references in italics.

ox = 2't f1(x") dx'A' = f12 dx™ A dx? + f13 dx™ A dx® o+ fo3 dx” A dx™ // a general 2-form

= fedxs' = Fe*dx' = FedA' =(Fef')dA’ // see below  (G.2.1)
f= (f12, f13, f23) (G.2.7)
RY; R?

Mji2 = Minorip = det(Rlzlz) =det (Rzi R222) // R is a 3 x 2 matrix with 3 full-width minors

. R; RY,
mis3 = minoriz = det(R1312) = det (R31 R32)

. 23 Rzl R22
mgp3 = minorzs = det(R“71,) = det R3, R3, (G.2.4)

- - (Rll Rlz) (Rll Rlz) (Rzl Rzz)
m = (mj2, mz3, mz3) = ( det R2, R%, ), det R3, R3,) det R3, R3, ) (G.2.7)
F = (f23, -f13 f12 // agrees with (10.13.16 G221
14 g
R?; R%, R'; RY; R'; RY;

n' = (mz3, -m13,my2) = (det R3, R3, ), - det R3, R3, ) det R2, R%, ) (G.2.21)

~ oot o R ) (R 22, e (a2 )
= (de R3, R3, ), +de R, RY, ) det{ RZ, R2, )

= agrees with (10.10.19) where n' is shown as normal to the surface

m[2 =|n'f = det? (Ezi 1;2322 ) + det? (Eii 1;3122 ) + det (Ezi 1;1222 ) (G.2.26)
=K? = det(R™R) // agrees with (10.10.18) and (10.10.22) (G.2.9)

dxa" = (dx Aadx?, dxt N dx®,) dx? A dx® ) // standard order

*dx' = (fdx?, Fdx?xdx® ) = (@2 A dx® - det A dx B dxt A dx? ) = dA (10.13.23)
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fedxs' = (fiz, f13, f23) ® (dx™ N dx?, dx™ N dx®, dx? ~dx™)

=15 dx™ A dx? + fi3 dx™t A dx® + fo3 dx? A dx® = X' fr dx'A!
F e *dx' = (fp3,-f13,f12) @ (dx” N dx™ | - dx™ ~ dx®, dx™ ~ dx?)

=fo3 dx? N dx® +f13 det A dx® +fpdet Mdx® = T frde'a' = fedxa’
n'e F = (mg3, -m13,mi2) @ (f23, -f13,f12) = m23faz + ma3fi3 + miofin

=my2f12 + my3fiz + mosfas = (m12, m13, ma3) @ (f12, f13, f23) =mef

W =f'e*dx" = f'edA' =dA’ // area measure on surface
FedA' =(Feii')dA'= (Feil") ' /I this is oy, the integration integrand

Example: F:R2—>R4, k=n=2,m=4.

(G.2.22)

(G.2.24)

(G.2.29)

(G.2.30)

(G.2.32)

We leave this as a reader exercise. The exercise is to write out new versions of all the equations of the

previous example. One entry is = (f12, f13, f14,123, {24, f34) .
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Appendix H : Hodge Star, Differential Operators, Integral Theorems and Maxwell

Here we study the relationship between the d and * operators, differential forms, and the classical
differential operators of analysis such as the Laplacian. Some classical integral theorems are derived from
the generalized Stokes' Theorem, and the Maxwell Equations are reformulated in terms of differential
forms as an exercise. The cosmetic notation dx" is used throughout for the functional A*. Since A is a
functional acting on the Cartesian vector space V =R", up and down tensor indices are the same.
H.1 Properties of the Hodge star operator in R"
Start with,

dx~" = some ordered multi-index wedge product of k dx' in R® (a basis vector k-form) . (H.1.1)
This dx" has k vectors wedged together in "standard order". The only non-zero n-form in R" is this,

dv=dxt A dx® AL dx™. // "the volume form" in R® (H.1.2)
The Hodge dual object *dx~' is defined as (sign is treated below),

*dyal = (sign)z,x dxa'® /' Ic = complement of | (H.1.3)
where dx~'€ is the full wedge product ¢ in which the vectors of dx~" are deleted.

Fact: Since dx~' is a k-form, *dx' is an (n-k)-form which is "dual" to dxa' . (H.1.4)

For example, for the k-form

deaV = dx® A dP A LA dxO /la<b<c..<q
one has
dxea1C =t A A L [dx®] oo [dxP]en [dX N d” (H.1.5)

where the notation [dx®] means that dx® is missing.

Example: In R3 letdea' = dx?. Thendx~'® = dxt ~ dx®.

Example: In RO let dx~' =dx® ~dx*. Thendxa'® =dx* ~dx® ~dx® ~ax® .
Fact: The sign (sign)z,x in (H.1.3) is selected so that the following is true :

dxa' A (kdxeaty =av . (H.1.6)
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Fact: Forak-form dxr' = dx® A dx® A ..~ dx9 the sign in (H.1.3) is given by

(sign)g = (-1)3#PF -+ (RO /2 (H.1.7)
Proof:

dea' A (dxa") = (sign)g x dia' A dxa'C

= (sign)r,k ( dx®" dx® A A dxd ) // first factor has k vectors wedged
( A dx® A Jdx] e [dP]e [dX9] N ) (H.1.8)

The task is then to slide each of the dx" of the first factor into its corresponding "hole" in the second
factor and count up the number of adjacent vector position swaps required :

slide dx? to the right, number of swaps = (k-1) + (a-1).
then slide dx” to the right, number of swaps = (k-2) + (b-1)
then slide dx® to the right, number of swaps = (k-3) + (c-1)

then slide @x“ to the right, number of swaps = (k-k) + (g-1) . (H.1.9)

Total swaps then is

swaps = T3 (k-i) + (atb+..+q) - k . (H.1.10)
But

Tica® (ki) = k Zica®[1]-Ziza®[i] =k *k - k(k+1)2 =k?/2 -k/2
SO

¥io1® (k-i) -k =Kk%/2-3k2 = (k-3)(k/2)
and

swaps = (k-3)(k/2) + (at+b+...+q) . (H.1.11)
Then since each adjacent pairwise vector swap creates a (-1) factor according to (8.2.4), we get

phase — (_1)a+b+. ..+qg (_1) (k-3)k/2
But 1 =(-1)2%=(-1)*/2 5

(-1)R=D/2 () k=3)Kk/2 ()ak/2 (] (etD)k/2

and the result is

phase :(_1)a+b+...+q (_1)(k+1)k/2 ) (H112)

336



Appendix H: Hodge Star

After all these "slides" are completed, equation (H.1.8) says
dea' A (%dxa") = (sign)r x * phase * dx' A dx® A .. dx"
= (sign)r,x * phase *dV .
According to the requirement (H.1.6) that dxat A (*dxA') = dV we find
(sign)z x = phase = (-1)**P*---*a ()t k/2 QED
Example: dx-' =dx"inR®, sok=1and (-1)®**/2 = ([1)3+11/2 — () Then,
(sign)z,x = (D ()= (D = ()i
*dx' = (DF Tt A @@ A L [dx '] N d (H.1.13)
Verify: dia' ~ (Cedea"y = ax' ~ { (DYt Ad® A L [ A dx
= (-t dx" At maxP e [dxi]... A" = ddt A A LA =dV .
One can form an n-component vector from the *dlx! objects
*dx = (*dxt, *dx2, ... *dx"). (H.1.14)
One can think of
*dx' = dA" or *dx = dA (H.1.15)

as an element of "area" in n-1 dimensions. For R® we have (cyclic order)

*oct = dx2 A dx® = dat dea' A (Fdxa"y =dxt A (AP A ddy=dv

*dx = d® N dxt = da® deat A (Fdea'y =dP A (dE N dxty=av

*d3 = dxt A =dA® dea' A Gy =d3EA (N d®)y=dV (H.1.16)
or

dA® =*dx* = (1/2) exs3 dx* ~dxd (H.1.17)

Another useful example:
Fact: *dV =1 (H.1.18)

Proof: Then dxa' ~ (*dxa') =dV A (*dV)=dV 1 = dV, satistying (H.1.6) .
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Fact: dx' ~*dx) =8; 5 dV (H.1.19)

Proof: Ifi#], then dx* appears in *dx) since *dx) only has dxt missing. But then dx* appears twice, and
so the wedge product must vanish, hence the factor 8; , 5. And then dx" ~*dx" = dV by (H.1.6).

Fact: *(*dxa') = (-1)*™*% A" (H.1.20)
Proof: The requirement is that

dxat A (kdxaly =av . (H.1.6)
which applied to *dxal says

*dea! A xraxaly = v (H.1.21)
We know that there exists some sign such that

*(*dxa) = (sign) dxn' (H.1.22)
since doing the complement twice restores all the original dx;j factors. Thus, (H.1.21) says

*eal A [(sign) dxa' 1= dV

or

(sign) *dx~' Ndxa' =av .
Now consider

*eat A deal = (sign') dxa' A xdxa! = (sign') dV (H.1.23)
where (sign') arises from sliding dx~" to the left. Once we find (sign"), we then have

dV = (sign) *dxa' » dxa' = (sign)(sign') dV
so the solution to our problem is then sign = sign'. To find sign' we slide each dx'in dxa" to the left in

(H.1.23). Doing so, we pick up a sign (-1)*"* since n-k is the number of vectors in *dxal Doing this one
at a time for each of the vectors in dx~' one gets,

(sign') = (_1)(n-k)k: (_l)kn—kz _ (_l)kn (_1)k2 _ (_1)kn (_l)k _ (_1)kn+k ‘
Therefore

*(*dxal) = (sign) dx~' = (sign) dx~' = D gLl QED
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Corollary: If o is a k-form in R®, then *(*o) = (-1)**** a. (H.1.24)

Proof: a=2X'7; {1 dcn!
— *(*(7.) =3 fI *(*dXAI) =3 fI (_l)kn+k dXAI _ (_l)kn+k ' fI dXAI _ (_l)kn+k a

in agreement with Sjamaar p 28 Exercise 2.15.
Fact: If @ = asdx' and B= bjdxj are 1-forms in R™, then o ~(*B) = aeb dV. (H.1.25)
Proof: a A(*) = (azdx")Nbs*dxl) = asbsdx A(*dxl) = azbs 85, 54V by (H.1.19) = aeb dV

So one can say that a ~(*f) is "Hodge-associated" with aeb. In the non-dual space L?(R™) one would have
instead a * (*b) =(a e b) urz = (aeb)u; " uz *...u,. We already saw in (4.3.18b) the Hodge association
a”b =Ae(axb)inL3R>), where A = vector area = *u = (*uy, *up, *us) = (A1,A2,A3). Sometimes

these two Hodge correspondences are written,

a”(*h) < aeb forR" a’b o axb forR3. (H.1.26)
H.2 Gradient
Start with a simple 0-form and compute da,

a="f // 0-form

do = (8:) dx' = Vfedx. //(10.3.3) (H.2.1)

One then has the following "Hodge correspondence”,

a=f 0-form in R™ o« f
do= Vfedx 1-form in R™ do > V£ . (H.2.2)

Apply Stokes's theorem (boundary here is two oriented endpoints of a curve C)
Juda = [oma

Juvteax = [on £

[cVfedx = f(b)-fla) . (H2.3)

When both sides are converted to regular calculus integrals (two definitions of Section 10.11), one gets
[cVfedx = f(b)- f(a) (H.2.4)

which we shall call the "line integral of a gradient theorem" .
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H.3 Laplacian

Start again with a simple O-form and compute various interesting objects :
a="f // 0-form
do = (8:f) dx" //(10.3.3)

*(dat) = (85f) *ax*

d(*do) = (9505f) dxd ~ *dx* /1(10.3.3)
= (050if) 8i,5 dV // (H.1.19)
= (@*if)av
=(V20) dV

*(d(*da)) = Vf (*dV) =V3*f . //(H.1.18)
One then has the following "Hodge correspondence”,

a=f 0-form in R® o f

*(d(*da)) = V3f 0-form on R™ *(d(*da)) < V3f .

Consider now,
B=fVge (*dx) =fVgedA =Tf(dig) (*dx") // (H.1.15)
dp=d[f(@:g)] (*dx")

05 [ F(01g) 1 ~ (*dx") //(10.3.3)

= aj[f(aig)]6i,jdV //(H119)

01 [f(G:g) 1dV
=[£(0:%g) + (8:D(@1g) 1 dV
=[f(V3g)+ VfeVg]dV.

Apply Stokes's theorem,

Judp = JomB

Ju [£(V?) + VEevglar = [ s fVgedA .

Appendix H: Hodge Star

(H.3.1)

(H.3.2)

(H.3.3)

(H.3.4)

(H.3.5)

(H.3.6)
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When both sides are converted to regular calculus integrals (two definitions of Section 10.11), one gets
[G1fV2a+VEeVa]dV = [¢fVaedA = [sfVae[Ada] = [ (Gag)dA (H3.7)
which is known as Green's first identity. Swapping f«>g and subtracting gives

Jul£V2g—gV?1dV = [§[f(@ng) - g (0ah] dA (H.3.8)

which is Green's second identity.
H.4 Divergence

Start this time with a 1-form and compute various interesting objects :

a=F; dx' =F e dx // 1-form (H.A4.1)
*a= Fi (*dx') = Fe*dx = FedA // (H.1.15) (H.4.2)
d(*a) =05Fs did A (*dx') //(10.3.3)

= 05F; 85,5 dV // (H.1.19)

= (0:Fs) dV

= (div F) dV/ (H.4.3)
*d(*a)) = (divF)*dV = divF . //(H.1.18) (H.4.4)

One then has the following "Hodge correspondence”,

a=F e dx 1-form on R® a «—F
*(d(*a)) = div F 0-form on R™ *(d(*a)) <> div F . (H.4.5)

Apply Stokes' Theorem with = *a :

Judp = JomB
Jwdca) = J am (*a)

JudivF ar = [au Fedn . (H.4.6)

When both sides are converted to regular calculus integrals (two definitions of Section 10.11), one gets
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[¢divF dv = [§ FedA

which is the divergence theorem in n dimensions. For R? this is Gauss's Theorem.
H.5 Curl
Start again with a 1-form and compute objects of interest:
a=2X4F; dx) = F e dx // 1-form
do=Ts<5 (0:F5 - O3Fs) dx' ~ // (10.3.24b), do, written in standard form

*(da) = Zics (0sF5 - 05Fs) *(dx' ~dxd)  // on next line specialize to R> :

(H.4.7)

(H.5.1)

(H.5.2)

= (01F2 - 92F1) *(dx* " dx®) + (61F3 - 03F1) *(dx* » dx®) + (02F3 - 03F2) *(dx> » dx?)

= (01F2 - 82F1) *(dx* A dx®) + (83F1 - 01F3) *(dx> A dxY) + (02F3 - 03F2) *(dx® » dx?)

= (curl F)3 dx° + (curl F)z dx? + (curl F)y dx*
=(curl F) e dx .
One then has the following "Hodge correspondence”,

o=F e dXx 1-form in R3 o —F
*(do) = [curl F] e dx 1-form in R® *(do)) <> curl F.

Apply Stokes' Theorem in R™ to get

IMda:faMa

IM Zi<j (aiFj - 6jFi) dxi A dxj = J.ﬁM F o dx
e In R? there is only one term in the sum on the left and one gets,
J‘M (61F2 - 82F1) dxl n dx2 = f@M [ Fldxl + F, dxz ] .

When both sides are converted to regular calculus integrals (two definitions of Section 10.11),

[ & (01F2 - 05F1) dxtdx® = [ ¢ [ Fidx® + Fadx?] .

(H.5.3)

(H.5.4)

(H.5.5)

(H.5.6)

(H.5.7)
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Setting xt=x,x2= y, F1 =fand F, = g one gets
Ja (Gug - 0y dxdy = [ ¢ [ fdx + gdy] (H.5.8)
which is known as Green's Theorem in the plane.
e In R? , we can write out the three terms on the left side of (H.5.2)
da = (61F2 - 02F1) dxt ~dx® + (61F3 - 03F1) dxt 7 dx® + (02F3 - 03F2) dx® ~ dx®
= (01F2 - 82F1) dA® + (61F3 - 03F1) [-dA” ]+ (02F3 - 93F2) da*
= (02F3 - 03F2) dA* + (63F1 - 01F3) dA? + (81F5 - 0,F1) dA®
= (curl F); dA* + (curl F)y dA? + (curl F); d4®
= (curl F) e dA . (H.5.9)
Then Stokes' Theorem says

.[Md(l:faM(l

[u(curl Fye dA = [ oy Fodx. (H.5.10)
When both sides are converted to regular calculus integrals (two definitions of Section 10.11), one gets
[a(curl F)edA = [cFedx = $c Fedx (H5.11)

which is the traditional Stokes' Theorem in R® where C is the boundary of the area A. Note that the
boundary C and its enclosed area A can be non-planar.

An exercise using the ¢ tensor

Consider the following area 2-form dA in R3 (implied sums on all repeated indices),
dAx = (12)es5x dx' ~do) =N dx* N did = g55m dApy . (H.5.12)
This can be verified by applying X; 5(1/2)¢; 5% to the equation on the right,

(1/2)8ijk[ Sijmqm] = (1/2) {Sijk Sijm}dAm = (1/2) {2 Sk,m}dAm = dAk .
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Then consider a general 0-form,
a=f /I 0-form
do = (05 o
d2a = 01(d50) dx* * dx!
= (013f) €i3m dAn // (H.5.12), =0 by symmetry on the i,j indices
=dAn [ €mij 01(05F)]  // cyclic rule €apc= €bca = Ecab
=dA e [curl grad f]. (H.5.13)
Thus one can associate d2a = 0 for a 0-form f with the fact that curl grad f = Vx(Vf)=0.
Similarly, consider the following 3-form in R® (implied sums on all repeated indices),
dV'=(1/6) €55 dx' "~ dxd A dx® =  dx' rdd Ndf= g dy. (H.5.14)
This can be verified by applying X; 5x(1/6) €14k to the equation on the right,
(1/6) { e15x€isk} dV'=(1/6) {31} dV =dV .
Then consider a general 1-form in R,
o = fio dx =fedx
da = (056) dod  di"
d2a = 03(05fx) dx' At ~ "
=0i(0sfi)[ €15k dV]  // (H.5.14), =0 by symmetry on the i,j indices
= dV 0i[e:3x(031k)]
=dV 0; [curl f];
=dV div curl f. (H.5.15)

Thus one can associate d%a = 0 for a 1-form o = f e dx with the fact that div curl f = Ve (Vvxf)=0.
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H.6 Exercise: Maxwell's Equations in Differential Forms

This section is based on Sjamaar p 30 Exercise 2.23, but we use SI units instead of cgs units.

Maxwell's equations in SI units are,

curl H= 06D +J Maxwell curl H equation
curl E=- 0B Maxwell curl E equation
divD=p Maxwell div D equation
divB=0. Maxwell div B equation (H.6.1)

Write these equations in components and think of time cdt = dx* with ¢ = 1, so we are working here in
spacetime R®. The metric tensor is +diag(1,1,1,-1) but this fact has no effect on the presentation below.

(aiHj- 8jHi) - Sijk(&;Dk) = Sijk Jk // for example, (61H2— 82H1) - 64D3 = J3

(aiEj- ajEi) + 3ijk(a4Bk) =0

0iDi =p

0iB;i =0. (H.6.2)
In the above, indices i,j,k range from 1 to 3 and all implied sums have this range.
Define two differential 2-forms o and [ as follows,

a= (Eedx)"dx* +BedA /1 dA = *dx

B=-(Hedx)"dx* +DedA (H.6.3)

where dx and dA and dV refer to R® objects as used in earlier sections above.

Start with o written in components and compute da. Again, all implied sums are summed 1 to 3. Then,
a= Eydv »dx* +Bj *dx)
do=%521% (0:E3) dx' A dd M +250% (8:B3) dx' A rad 1/(10.3.6)

= (0iE3) dx' ~ I Nax® 4 (Bs) dx' N *dx]
+(0aB3) N A At + (04By) di* A

The third term vanishes since there are two dx” vectors present. In the second term use
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dxi/\ *dxi ZSi,jdXiA *dxi :8i,jdV // (H.1.19)
SO : ;

(aiBj) dx" N *dyd = (6iBj)61,j dav :(aiBi) av.
Then

da = (0:E3) dx' ~ did N dx* + (0iBi) dV + 0+ (84Bx) dx* ~ *dx®
= (01E3) dx' ~ dd M dx* +(84By) dx* N *dx + (81Bs) dV . (H.6.4)
Recall from (H.1.17) that
0 = dA® = (1/2) exay dx* ~did = (1/2) ex3x dx’ ~ ) . (H.1.17)
Using this fact, and writing the first term in da as two terms, we find
do = (1/2) (815 - 83E1) dx' ~ dxd ~ dx® + (84By) (1/2) €13 dx* ~ dx* »dod + (8:Bs) dV
= (1/2) [ (0:E5 - 05Es) + £13x(@aBy) ] dx' » dxd ~dx™ + (83Bs) dV . (H.6.5)
According to Maxwell's equations (H.6.2) each of these terms vanishes so the result is simply
do =0. (H.6.6)

The form B in (H.6.3) is the same as o with replacements: E — -H and B — D. We can then convert
result (H.6.5) to get

dB =(1/2) [- (@:Hj - 05H3) + £551(8aDy) 1dx* ~ dd ~dx® + (0:Ds) dV . (H.6.7)
According to Maxwell's equations (H.6.2) we then get (writing the result many ways),
dB= (1/2)[- a5 T Jdx* ~ dd A +pdv
=- L [(1/2) es5x d" ~ dd )~ dx* +pdV
=-Je dA" Nax* +pdV =- (3 e dA) Ndx* +pdV
=- Jx S Adt +pdV = - (T e *dX) Ndx* +pdl. (H.6.8)
Now compute
ddp)=d[- Jx *&* rax* +pdV]

= %500 (O30 dd A Fd A dxt + 25004 (05p) dd A dV
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= - @5J) dxd A EddK At + (@5p) dd A av
- (Badi) dx* A K A dxt + (Bap) dxt AN dY

= - (830%) 85, AV ~axt + 0 // (H.1.19)
- 0 - (Bap) dVNdx?

=-[(@575) + (Gap) ] dV ~elx*
=-[divJ + (Bep) | dV Adx* . (H.6.9)
But d?f = 0 from (10.3.10) so we conclude that
divJ + (Oep) =0 (H.6.10)
which is the well-known equation of continuity stating that charge is conserved,

oSy pdvi = [sd eds. (H.6.11)

"charge enclosed in V decreases at a rate equal to the current flowing out through boundary S"
Here then is a summary of our results :

a= (Eedx)"dx* +BedA /1 dA = *dx

do=0 < curl E=-0¢Band divB=0

B=-(Hedx) dx* +DedA

dB=-J e dA) "dx* +pdV < curlH= 8D+ JanddivD=p

d®B =0 < divd+(dep) =0 . /] 03P =0 (H.6.12)
In free space where J = p =0, Maxwell's Equations take this impressively simple form,

do=0
dp=0. (H.6.13)
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