

 1

Tensor Products, Wedge Products and Differential Forms
Phil Lucht

Rimrock Digital Technology, Salt Lake City, Utah 84103
last update: June 4, 2016

Maple code is available upon request. Comments and errata are welcome.
The material in this document is copyrighted by the author.

The graphics look ratty in Windows Adobe PDF viewers when not scaled up, but look just fine in this
excellent freeware viewer: http://www.tracker-software.com/product/pdf-xchange-viewer .

The table of contents has live links. Most PDF viewers provide these links as bookmarks on the left.

Overview and Summary... 5
Notation.. 7
1. The Tensor Product .. 10

1.1 The Tensor Product as a Quotient Space .. 10
1.2 The Tensor Product in Category Theory... 15

2. A Review of Tensors in Covariant Notation .. 18
2.1 R, S and how tensors transform : Picture A.. 18
2.2 The metric tensors g and g' and the dot product ...23
2.3 The basis vectors en and en ... 25
2.4 The basis vectors un and un ... 26
2.5 The basis vectors e'n and u'n and a summary .. 28
2.6 How to compute a viable x' = F(x) from a set of constant basis vectors en 31
2.7 Expansions of vectors onto basis vectors.. 33
2.8 The Outer Product of Tensors and Use of ⊗... 36
2.9 The Inner Product (Contraction) of Tensors ... 39

Dot products in spaces V⊗V, V⊗W, V⊗V⊗V and V⊗W⊗X... 40
2.10 Tensor Expansions .. 42

(a) Rank-2 Tensor Expansion and Projection ... 42
(b) Rank-k Tensor Expansions and Projections .. 43

2.11 Dual Spaces and Tensor Functions ... 45
(a) The Dual Space V* in Matrix and Dirac Notation .. 46
(b) Functional notation.. 47
(c) Basis vectors for the dual space V*... 47
(d) Rank-2 functionals and tensor functions ... 51
(e) Rank-k functionals and tensor functions ... 54
(f) The Covariant Transpose ... 57
(g) Linear Dirac Space Operators ... 57
(h) Completeness .. 64

3. Outer Products and Kronecker Products ... 66
3.1 Outer Products Reviewed: Compatibility of Chapter 1 and Chapter 2 .. 66
3.2 Kronecker Products... 68

http://www.tracker-software.com/product/pdf-xchange-viewer�

 2

4. The Wedge Product of 2 vectors built on the Tensor Product.. 76
4.1 The tensor product of 2 vectors in V2 ... 76
4.2 The tensor product of 2 dual vectors in V*2 ... 80
4.3 The wedge product of 2 vectors in L2 ... 83
4.4 The wedge product of 2 dual vectors in Λ2... 92

5. The Tensor Product of k vectors : the vector spaces Vk and T(V) ... 97
5.1 Pure elements, basis elements, and dimension of Vk .. 97
5.2 Tensor Expansion for a tensor in Vk ; the ordinary multiindex .. 98
5.3 Rules for product of k vectors... 99
5.4 The Tensor Algebra T(V) ... 100
5.5 Comments about tensors ... 102
5.6 The Tensor Product of two or more tensors in T(V)...102

6. The Tensor Product of k dual vectors : the vector spaces V*k and T(V*)................................ 107
6.1 Pure elements, basis elements, and dimension of V*k .. 107
6.2 Tensor Expansion for a tensor in V*k ; the ordinary multiindex .. 108
6.3 Rules for product of k vectors... 108
6.4 The Tensor Algebra T(V*) ... 109
6.5 Comments about Tensor Functions... 110
6.6 The Tensor Product of two or more tensors in T(V*)...110

7. The Wedge Product of k vectors : the vector spaces Lk and L(V)... 114
7.1 Definition of the wedge product of k vectors.. 114
7.2 Properties of the wedge product of k vectors.. 116
7.3 The vector space Lk and its basis .. 119
7.4 Tensor Expansions for a tensor in Lk .. 121
7.5 Various expansions for the wedge product of k vectors ... 124
7.6 Number of elements in Lk compared with Vk... 126
7.7 Multiindex notation... 127
7.8 The Exterior Algebra L(V) ... 128

Associativity of the Wedge Product.. 129
7.9 The Wedge Product of two or more tensors in L(V) .. 132

(a) Wedge Product of two tensors T^ and S^ .. 132
(b) Special cases of the wedge product T^^ S^ ... 134
(c) Commutivity Rule for the Wedge Product of two tensors T^ and S^ 135
(d) Wedge Product of three or more tensors ... 136
(e) Commutativity Rule for product of N tensors ... 139
(f) Theorems from Appendix C : pre-antisymmetrization makes no difference........................... 141
(g) Spivak Normalization.. 143

8. The Wedge Product of k dual vectors : the vector spaces Λk and Λ(V) 147
8.1 Definition of the wedge product of k dual vectors.. 147
8.2 Properties of the wedge product of k dual vectors.. 148
8.3 The vector space Λk and its basis.. 149
8.4 Tensor Expansions for a dual tensor in Λk.. 151
8.5 Various expansions for the wedge product of k dual vectors ... 153
8.6 Number of elements in Λk compared with V*k. ... 155

 3

8.7 Multiindex notation... 155
8.8 The Exterior Algebra Λ(V) ... 157

Associativity of the Wedge Product.. 157
8.9 The Wedge Product of two or more dual tensors in Λ(V) .. 160

(a) Wedge Product of two dual tensors T^ and S^ .. 160
(b) Special cases of the wedge product T^^ S^ ... 161
(c) Commutivity Rule for the Wedge Product of two dual tensors T^ and S^ 161
(d) Wedge Product of three or more dual tensors ... 162
(e) Commutativity Rule for product of N dual tensors ... 165
(f) Theorems from Appendix C : pre-antisymmetrization makes no difference........................... 165
(g) Spivak Normalization.. 167

9. The Wedge Product as a Quotient Space.. 169
9.1. Development of Lk as Vk/S.. 169
9.2. Development of L as T/I .. 172

10. Differential Forms... 174
10.1. Differential Forms Defined.. 174
10.2. Differential Forms on Manifolds ... 176
10.3. The exterior derivative of a differential form .. 180
10.4. Commutation properties of differential forms ... 190
10.5. Closed and Exact, Poincaré and the Angle Form... 190
10.6 Transformation Kinematics.. 193

(a) Axis-Aligned Vectors and Tangent Base Vectors : The Kinematics Package 193
(b) What happens for a non-square tall R matrix? .. 195
(c) Some Linear Algebra for non-square matrices .. 199
(d) Implications for the Kinematics Package .. 201
(e) Basis vectors for the Tangent Space at point x' on M.. 202

10.7 The Pullback Operator R and properties of the Pullback Function F*.................................... 203
10.8 Alternate ways to write the pullback of a k-form .. 210
10.9 A Change of Notation and Comparison with Sjamaar and Spivak .. 214
10.10 Integration of functions over surfaces and curves... 222
10.11 Integration of differential k-forms over Surfaces.. 233
10.12 Integration of 1-forms ... 238
10.13 Integration of 2-forms ... 246

Appendix A: Permutation Support .. 255
A.1 Rearrangement Theorems and Determinants ...256
A.2 The Alt Operator in Generic Notation ... 260
A.3 The Sym Operator in Generic Notation ... 264
A.4 Alt, Sym and decomposition of functions.. 267
A.5 Application to Tensors ... 269

(a) Alt Equations (translated from Section A.2) ... 269
(b) Sym Equations (translated from Section A.3)...271
(c) Alt, Sym and decomposition of tensors (translated from Section A.4) 272

A.6 The permutation tensor ε.. 272
A.7 The wedge-product-of-vectors Alt equation .. 275
A.8 Application to Tensor Functions.. 276

 4

(a) Alt Equations (translated from Section A.2) ... 276
(b) Sym Equations (translated from Section A.3)...278
(c) Alt/Sym and Other Equations (translated from Section A.4, A.6 and A.7)............................. 279
(d) Alt/Sym when there are two sets of indices .. 280

A.9 The Ordered Sum Theorem.. 284
A.10 Tensor Products in Generic Notation ... 285

Appendix B: Direct Sum of Vector Spaces .. 287
Appendix C: Theorems on Pre-Symmetrization...294

C.1 Theorem One.. 294
C.2 Theorem Two ... 297
C.3 Theorem Three ... 300
C.4 Summary and Generalization ... 301

Appendix D: A Unified View of Tensors and Tensor Functions... 305
D.1 Tensor functions in Dirac notation... 305
D.2 Basis change matrix ... 306
D.3 Transformations of tensors and tensor functions ... 308
D.4 Tensor Functions and Quantum Mechanics .. 310

Appendix E: Kinematics Package with x' = F(x) changed to x = φ(t) ... 311
Appendix F: The Volume of an n-piped embedded in Rm .. 315

F.1 Volume of a 2-piped in R3 .. 316
F.2 Volume of a 2-piped in R4, R5 and Rm.. 319
F.3 Volume of a 3-piped in R4 .. 321
F.4 Volume of a n-piped in Rm .. 322
F.5 Application: The differential volume element of the tangent space Tx'M 323

Appendix G : The det(RTR) theorem and its relation to differential forms 325
G.1 Theorem: det(RTR) is the sum of the squares of the full-width minors of R 325
G.2 The Connection between Theorem G.1.1 and Differential Forms ... 328

Appendix H : Hodge Star, Differential Operators, Integral Theorems and Maxwell 335
H.1 Properties of the Hodge star operator in Rn ... 335
H.2 Gradient.. 339
H.3 Laplacian.. 340
H.4 Divergence ... 341
H.5 Curl .. 342
H.6 Exercise: Maxwell's Equations in Differential Forms... 345

References .. 348

Overview

 5

Overview and Summary

This monograph is meant as a user guide for both tensor products and wedge products. These objects are
sometimes glossed over in literature that makes heavy use of them, the assumption being that everything
is obvious and not worth describing too much. As we shall show, there is in fact quite a lot to be said
about tensor and wedge products, and much of it is not particularly obvious.
 Our final chapter discusses aspects of differential k-forms which inhabit the wedge product spaces,
with an emphasis on the notion of pullbacks and integration on manifolds.
 We attempt to include both the mathematical view and the engineering/physics view of things, but the
emphasis is on the latter. The discussion is more about activities in the engine room and less about why
the ship travels where it does.
 The study of wedge products is known as the exterior algebra and is credited to Grassmann.
 Maple is used as appropriate to do basic calculations. Covariant notation is used throughout.
 Equations which are repeats of earlier ones are shown with italic equation numbers.

Here is a brief summary of our document which has ten Chapters and eight Appendices :

Chapter 1 surveys the mathematician's description of the tensor product as a quotient space, and then
places the tensor product in the framework of category theory. This approach is resumed much later in
Chapter 9 for the wedge product, after the reader is more familiar with that object.

Chapter 2 reviews tensor algebra and then introduces a meaning for the tensor product symbol ⊗ in
terms of outer products of tensors. After a quick review of tensor expansions and projections, the last
section introduces the notion of a dual space and includes the use of the Dirac bra-ket notation. The
notion of a tensor function is introduced.

Chapter 3 discusses the theory of Chapter 1 versus the practicality of Chapter 2 in terms of outer
products. It then derives the Kronecker product of two matrices in covariant notation. This topic is
somewhat tangential to the main development, but is included since it is sometimes not explained very
well in the literature. Maple is used to compute a few such Kronecker products.

Chapter 4 has four parts involving products of two vectors and their vector spaces: tensor product, dual
tensor product, wedge product, and then dual wedge product. This chapter serves as an introduction to the
four chapters which follow.

Chapters 5, 6, 7, 8 continue this order of presentation for products of k vectors and then for products of
any number of general tensors. The order is: tensor product (Ch 5), dual tensor product (Ch 6), wedge
product (Ch 7) and then dual wedge product (Ch 8). The chapters intentionally have a high degree of
parallelism, though some details are omitted from the later chapters to reduce repetition. The dual tensor
chapters involve tensor functions as the closure of tensor functionals onto a general set of vectors. The
tensor-product tensor functions are multilinear, whereas the wedge-product ones are multilinear and
totally antisymmetric. Alternate wedge product normalizations are discussed. The reader is warned that
these four chapters (especially the last two) are exceedingly tedious because there is a huge amount of
detail involved in laying out these subjects. The silver lining is that all notations are heavily exercised and
many examples are provided.

Overview

 6

Chapter 9 returns to the mathematician's world giving two descriptions of the wedge product in terms of
quotient spaces.

Chapter 10 presents an outline of differential k-forms and pullbacks with an emphasis on underlying
transformations. The contents of Chapter 2 on covariant tensor algebra and Chapter 8 on dual wedge
products (exterior algebra) come into play. Various k-form facts are derived and cataloged. Manifolds are
described without rigor, leading to a discussion of the integration of both functions and k-forms over
manifolds. A special notation is used to distinguish dual space functionals like λi = <ui| = dxi from
calculus differentials like dxi, and no wedge product hats ^ are suppressed. The topics of boundaries ∂M
and orientation are mentioned only in passing, with reference to other sources. Although the generalized
Stokes' Theorem for differential forms on manifolds is not derived, it is nevertheless used. Our goal is to
expose underpinning structures which are sometimes ignored. Multiindex and Dirac notations are used
side-by-side with full index display and normal vector notation.

Appendix A explains our permutation notation and the powerful rearrangement theorems used in
various proofs throughout the document. The Alt and Sym operator properties are presented in a generic
permutation space, and then those generic results are applied to tensors and tensor functions. The
permutation tensor ε is given honorable mention, and a few obscure theorems are proved.

Appendix B discusses the direct sum of vectors, vector spaces and operators in those spaces.

Appendix C shows that when one antisymmetrizes a product of tensors, pre-antisymmetrizing one or
more of those tensors makes no difference in the result.

Appendix D shows how tensors and tensor functions are the same objects expressed in different bases.

Appendix E gives details of the "transformation kinematics package" for x' = F(x) translated to x = φ(t).

Appendix F derives the fact that det(RTR) is the volume of an n-piped in Rm (n ≤ m) , where R is a matrix
whose column vectors span the n-piped. This result is then used to write an expression for the volume of
the differential n-piped for the tangent space TxM associated with a point x on a manifold.

Appendix G shows that det(RTR) equals the sum of the squared full-width minors of R, and then relates
this fact to the measures appearing in pulled-back differential n-form integrals.

Appendix H describes properties of the Hodge dual operator (called *). It then derives certain Hodge
correspondences between differential forms and differential operators, and shows how the generalized
Stokes' Theorem produces many integral theorems of analysis. The last section converts Maxwell's four
partial differential equations to two differential form equations, one of which is dα = 0.

Overview

 7

Notation

This list gives most of the symbols used in the document and should give the reader an idea of the general
flavor of the presentation. Vectors are sometimes bolded, sometimes not. Vector functionals and tensors
of rank 2 or greater are never bolded. In general, dual objects are given Greek or script symbols.
Unfortunately certain symbols have several unrelated meanings.

MT, MT covariant transpose and matrix transpose of a matrix M, see 2.11 (f).
m x n used to describe a matrix which has m rows and n columns
det(M) determinant of the square matrix M
det[a,b,c...] determinant of a square matrix whose columns are vectors a,b,c...
Rm Euclidean space with m dimensions
rank rank of a matrix; rank of a tensor or tensor function

⊗ tensor product of spaces or objects in those spaces
⊕ direct sum of spaces or objects in those spaces (App B)
x Cartesian product, as in VxW with element (v,w)
^ wedge product of spaces or objects in those spaces
K a real field (such as the reals, or such as binary {0,1})
si scalars in K
≡ is defined as
* simple multiplication; complex conjugation; the Hodge star operator; pullback function F*
g metric tensor; generic function name
f generic function name
o function composition operator, as in h = (f o g)

F(x) a general transformation x' = F(x)
φ(t) a general transformation x = φ(t) (alternate notation to the above)
Ri

j the differential of transformation F (or φ), down-tilt matrix element
R,S differentials of transformations F and F-1 written as matrices
R,S corresponding Dirac space operators, see 2.11 (g)
F* pullback function for x' = F(x), defined (10.7.17)
φ* pullback function for x = φ(t)

Alt total antisymmetrization operator (App A), short for Alternating
Sym total symmetrization operator

V real vector space of dimension n
a,b vectors in V |a> a Dirac ket
a • b scalar product of two vectors (real) <a|b> = <b|a>
V,v vectors in V |v>
ui axis-aligned basis vector in V |ui>
vi vector with label i in V |vi>
vi covariant component i of the vector v <ui|v>

Overview

 8

ei tangent base vector in V |ei>
ei dual of the above |ei>

W real vector space of dimension n'
e'i basis vector in W |e'i>
w vector in W |w>

a ⊗ b tensor product of two vectors = a pure element of the vector space V2 = V⊗V
ui⊗ uj tensor product of two basis vectors = basis vector of V2 = V⊗V
a ^ b wedge product of two vectors = a pure element of the vector space L2 = V^V ⊂ V2
ui^ uj wedge product of two basis vectors = basis vector of L2 = V^V ⊂ V2

T tensor of rank k |T> T = Σi1i2....ik Ti1i2....ik ui1⊗ ui2⊗ uik
S tensor of rank k' |S>
R tensor of rank k" |R>

T^ general element of Lk T^ = Σi1i2....ik Ti1i2....ik (ui1^ ui2^^ uik)
S^ general element of Lk'
R^ general element of Lk"

V* dual space to V
α,β vector functionals in V* α = <α|, a Dirac bra
αi vector functional in V* with label i αi = <αi|
λi basis vector in V* λi = <ei | = (ei)T

dxi cosmetic notation for λi, an example of a 1-form, used in Chapter 10
dxi a normal calculus differential
∂i abbreviation for ∂/∂xi
dV = dx1 ^ dx2 ^ ... ^ dxn differential volume form in Rn
dAi = *dxi and dA = *dx differential "area" form in terms of Hodge dual of vector (App H)

λI = λi1 ⊗ λi2⊗ λik multiindex notation for a tensor product of basis functionals
λ^I = λi1 ^ λi2^ λik multiindex notation for a wedge product of basis functionals
dx^I = λ^I = dxi1 ^ dxi2^ dxik the above line in cosmetic notation

α ⊗ β tensor product of two dual vectors = a pure element of the vector space V*2 = V*⊗V*
λi⊗λj tensor product of two dual basis vectors of V* = basis vector of V*2 = V*⊗V*
α ^ β wedge product of 2 dual vectors = a pure element of the vector space Λ2 = V*^V* ⊂ V*2
λi ^ λj wedge product of dual basis vectors, basis element of Λ2 = V*^V* ⊂ V*2

α,β names used in Chapter 10 for differential k-forms
dα exterior derivative of a k-form α (Chapter 10)

Overview

 9

T tensor functional of rank k <T| T = Σi1i2....ik Ti1i2....ik λi1 ⊗ λi2⊗ λik
S tensor functional of rank k' <S|
R tensor functional of rank k" <R|

T^ general element of Λk T^ = Σi1i2....ik Ti1i2....ik (λi1^ λi2^ λik)
S^ general element of Λk'
R^ general element of Λk"

λi(v) dual basis vector tensor function, rank-1 <ui |v>
α(v) general rank-1 tensor function <α |v>
T(v1,v2) rank-2 tensor function <T | v1, v2>

I, J multiindices
ΣI Σi1i2...ik symmetric sum
Σ'I Σi1<i2<....<ik ordered sum (increasing)

Vk vector space of rank-k tensors |T>
V*k vector space of dual rank-k tensors = rank-k tensor functionals <T|
V*kf vector space of rank-k tensor functions T(vI) = <T| vI> (k-multilinear)

Lk vector space of totally antisymmetric rank-k tensors
Λk vector space of totally antisymmetric dual rank-k tensors
Λk

f vector space of totally antisymmetric rank-k tensor functions (k-multilinear)

T(V) V0 ⊕ V ⊕ V2 ⊕ V3 ⊕ the tensor algebra
T(V*) V*0 ⊕ V* ⊕ V*2 ⊕ V*3 ⊕ dual tensor algebra
L(V) L0 ⊕ L1 ⊕ L2 ⊕ L3 + exterior tensor algebra
Λ(V) Λ0 ⊕ Λ1 ⊕ Λ2 ⊕ Λ3 + dual exterior tensor algebra

εi1i2...ik rank-k permutation tensor
P permutation operator
S(P) swaps in a permutation
(-1)S(P) swap parity of a permutation

TxM tangent space at a point x on a manifold M

Chapter 1: The Tensor Product

 10

1. The Tensor Product

There are two theoretical paths leading to the tensor product. These are briefly summarized in a non-
rigorous manner in Sections 1.1 and 1.2 below, after a comment on terminology.

Tensor Product vs Direct Product

The tensor product described below sometimes goes by other names.
 In quantum mechanics, a system of two particles might be in a quantum state |ψ1> ⊗ |ψ2> which is an
element of a tensor product space V1⊗V2 (as we shall describe below). Some quantum authors refer to
this tensor product as a direct product (e.g. Shankar pp 248-250) while others call it a tensor product (e.g.
Messiah p 252, 307). It happens that in quantum theory states like |ψ1> reside in a vector space which is
also a Hilbert space. Similarly, when a quantum system has a symmetry, such as rotational invariance
(e.g. an isolated atom), the quantum states can be classified into certain vector spaces associated with the
matrix representations of the symmetry group, and the tensor products of these spaces are usually called
direct products. For example, the rotation group has matrix representations called "j" = (n/2) for any
integer n (matrices are n+1 x n+1), and one writes for example j1 ⊗ j2 to indicate the "direct product" of
two such spaces.
 Sometimes the tensor product is called a tensor direct product, which phrase seems associated with
the outer product componentization of the tensor product noted in Chapter 3.
 Occasionally the raw Cartesian product (see below) is called a tensor product, but usually there is
some additional structure involved.
 Generally, the term direct product seems most suitable for the direct product of groups, rings,
modules and related objects, whereas in the current document we are discussing the tensor product of
vector spaces and of the tensors contained within those spaces.
 Category Theory mentioned below attempts to put all these products into a uniform framework.

1.1 The Tensor Product as a Quotient Space

It does seem odd that one might think of a product V⊗W in terms of a quotient. We shall outline how this
path goes in a series of steps. The key results are stated in Steps 7 and 9.

1. Cartesian Product. Start with the inert Cartesian product set VxW with elements (v,w), where in our
application the sets V and W are vector spaces. This set VxW is "inert" in the sense that one has no
instructions for what can be done with its elements.

2. Space F(VxW). We now endow VxW with an addition operator + and a scalar multiplication operator
(indicated by juxtaposition) allowing us to form linear combinations of elements of VxW with scalar
coefficients. Let's define F(VxW) to be a space which contains all such linear combinations. A typical
element of this F(VxW) space might be 3(v1,w3) - 2.1(v2,w5). Of course (v1,w3) also lies in F(VxW) and
one might call this a pure element, whereas 3(v1,w3) - 2.1(v2,w5) is a mixed element. Because the sum
of two linear combinations is again a linear combination of the same form, the space F(VxW) is closed
under addition.

Chapter 1: The Tensor Product

 11

3. Field K. We usually assume (as above) that the scalars are in the field R of real numbers, but to be
more general one can assume the scalars are elements of some arbitrary field traditionally called K
(though sometimes F or F). In addition to the reals R, there are various fields having an infinite number of
elements (like rational or complex numbers), and there are various fields of having a finite number of
elements (the Galois Fields).

Footnote: Sometimes the space F(VxW) is described as a "free vector space" which is a set of functions f
such that f: VxW → K. Usually such spaces are defined over a discrete set S, and it is not clear how this
works when the set S is continuous, this being the case for S = VxW. Moreover, the functions f mapping
to K cannot be identified with our linear combinations since for example (v2,v5) is not an element of K.
We therefore refrain from giving F(VxW) this moniker and the reader should regard F(VxW) only as we
have defined it above.

4. Equivalence Relations and Classes. Now define the following set of "equivalence relations"

 (v1+v2, w) ~ (v1,w) + (v2,w) for all v1,v2 ∈ V and all w ∈ W
 (v, w1+w2) ~ (v,w1) + (v,w2) for all v ∈ V and all w1, w2 ∈ W
 s(v,w) ~ (sv,w) for all v ∈ V and all w ∈ W and all s ∈ K
 s(v,w) ~ (v,sw) for all v ∈ V and all w ∈ W and all s ∈ K (1.1.1)

where ~ means "is equivalent to" and s is a scalar in K. Rewrite these relations as

 (v1+v2, w) – (v1,w) – (v2,w) ~ 0
 (v, w1+w2) – (v,w1) – (v,w2) ~ 0
 s(v,w) – (sv,w) ~ 0
 s(v,w) – (v,sw) ~ 0 . (1.1.2)

We are declaring here that lots of linear combinations in F(VxW) are equivalent to 0. The reason we do
this is to make our tensor product space (to be defined below) have "nice properties" (i.e., it is then a
vector space).

These linear combinations taken together define an "equivalence class" which is equivalent to 0. Call this
class N (for null).

5. The Quotient F(VxW)/N. There then exists a space which we shall call F(VxW)/N, or F(VxW) "mod"
N. This is a standard structure in equivalence class theory where one takes the quotient of one space S
divided by another space of equivalent items in space S, often written S/~. The upshot is that the elements
of the new quotient space F(VxW)/N consist of all linear combinations of F(VxW) except that any linear
combination which has one of the four forms shown above is filtered out ("modded out") by setting it
equal to 0.

Example: 3(v3,w4) + (v2, w1+w2) – (v2,w1) – (v2,w2) = an element of F(VxW)
 3(v3,w4) = the corresponding element of F(VxW)/N. (1.1.3)

Chapter 1: The Tensor Product

 12

6. The Space V⊗W. We now give this space F(VxW)/N a new name:

 F(VxW)/N = V⊗W = the tensor product space of V and W . (1.1.4)

The elements of V⊗W are linear combinations of elements called v⊗w instead of (v,w) as a reminder that
the equivalence class N must be respected. Whereas the comma in (v,w) was a mere separation operator,
the ⊗ in v⊗w is regarded as a new "tensor product multiplication operator" with the properties listed
below which, in effect, implement the equivalence relations stated above.

7. Practical Summary. The end result of all this song and dance is the following:

The tensor product space V⊗W is the set of all linear combinations of elements (v,w) of the Cartesian
product set VxW, written as v⊗w, where the following rules are declared by fiat:

 (v1+v2) ⊗ w = (v1⊗w) + (v2⊗w) for all v1,v2 ∈ V and all w ∈ W
 v ⊗ (w1+w2) = (v⊗w1) + (v⊗w2) for all v ∈ V and all w1, w2 ∈ W
 s(v⊗w) = (sv)⊗w for all v ∈ V and all w ∈ W and all s ∈ K
 s(v⊗w) = v⊗(sw) . for all v ∈ V and all w ∈ W and all s ∈ K (1.1.5)

The first two rules state that ⊗ multiplication is distributive over addition (from right and left), while the
last two rules state the scalars work in the expected manner.

If these rules were declared for a function f(v,w), they would appear as

 f(v1+v2,w) = f(v1,w) + f(v2,w)
 f(v,w1+w2) = f(v,w1) + f(v,w1)
 s f(v,w) = f(sv,w)
 s f(v,w) = f(v,sw) (1.1.6)

Such a function would then be described as being bilinear because it is linear separately in each argument
with the other argument held fixed. One can then regard the rules shown above for ⊗ as expressing
bilinearity for the tensor product space V⊗W.

Usually the above scalar and distributive rules are combined into the slightly more compact form,

 (s1v1+s2v2) ⊗ w = s1(v1⊗w) + s2(v2⊗w)
 v ⊗ (s1w1+s2w2) = s1(v⊗w1) + s2(v⊗w2) (1.1.7)

and similarly for a bilinear function,

 f(s1v1+s2v2,w) = s1f(v1,w) + s2f(v2,w)
 f(v, s1w1+s2w2) = s1f(v,w1) + s2f(v,w2) . (1.1.8)

Chapter 1: The Tensor Product

 13

8. v⊗w does not commute. Whereas the + operation within V⊗W is commutative, it should be clear that
the ⊗ operation is not commutative. If v ∈ V and w ∈ W, then v⊗w ∈ V⊗W whereas w⊗v is an
element of a completely different space which is W⊗V. Even if W = V, one has v⊗v' ≠ v'⊗v if v≠v'. The
fact goes back to the original Cartesian product set VxV where one has (v,v') ≠ (v',v) if v≠v' because (v,v')
is an ordered tuplet, not a set {v,v'}. If V = W = R, one would not identify the point (x,y) with the point
(y,x) in RxR = R2 if x ≠ y. Another word for commutative is abelian.

9. V⊗W is a vector space. The space V⊗W is a vector space whose vectors are linear combinations of
v⊗w. We shall now verify this to be the case. We already know V⊗W is closed under addition since
F(VxW) has this property. The + inverse of v⊗w is (-1)(v⊗w). Addition is commutative and associative.
Any element of the form 0⊗w or v⊗0 can be taken as the identity for addition (the "zero") since, for
example, using the first rule of (1.1.5),

 0⊗w = (v - v) ⊗ w = (v⊗w) + ((-v)⊗w) = (v⊗w) - (v⊗w) = 0 (0 in the space V⊗W) . (1.1.9)

There is a scalar multiplicative identity since all fields K have an identity "1": 1(v⊗w) = (v⊗w). "Vector
multiplication" is distributive over scalar addition (here the "vector" is v⊗w),

 (s1 + s2)(v⊗w) = [(s1+s2)v]⊗w = [s1v+s2v]⊗w = (s1v)⊗w + (s2v)⊗w = s1(v⊗w) + s2(v⊗w).
 (1.1.10)
Multiplication by a scalar is distributive over "vector addition" :

 s (v1⊗w2 + v3⊗w4) = s (v1⊗w2) + s (v3⊗w4) . (1.1.11)

This property we more or less add by fiat to the earlier properties. It is the only reasonable way to do
things since elements of V⊗W are linear combinations of pure elements of the form v⊗w.

10. Basis of V⊗W and general elements of V⊗W. In the above verification that V⊗W is a vector space,
we used only pure vectors of V⊗W, but general vectors of V⊗W are linear combinations of the pure
vectors so we really should rehash the above for general vectors. To do this, we first note that, since V
and W are vector spaces, each has a basis, and we call these bases {ui} for V and {u'i} for W. It is not
hard to show that the set of elements of the form uj⊗u'j forms a basis for V⊗W, so a general vector T in
V⊗W can be expressed as

 T = Σij Tij (ui⊗u'j) . // coefficients Tij ∈ field K (1.1.12)

The inverse element -T is pretty obvious. Addition T + T' is commutative and T + T' + T" is associative.
The zero element is the same. Vector multiplication is still distributive over scalar addition,

 (s1 + s2)T = (s1 + s2)[Σij Tij (ui⊗u'j)] = Σij Tij [(s1 + s2) (ui⊗u'j)]

 = Σij Tij [s1 (ui⊗u'j) + s2(ui⊗u'j)] = s1 [Σij Tij (ui⊗u'j)] + s2 [Σij Tij (ui⊗u'j)]

 = s1 T + s2 T . (1.1.13)

Chapter 1: The Tensor Product

 14

In this manner, all the required properties of a vector space can be verified for general elements of V⊗W.

11. Vector vs Tensor. Since V⊗W is a vector space, it is proper to refer to its elements v⊗w (or linear
combinations of same) as "vectors". On the other hand, we shall refer to v⊗w as a "tensor" (a cross
tensor) in the tensor product space V⊗W. In particular, it is a "rank-2 tensor" composed from v and w
which are vectors in their respective vector spaces V and W. The word vector must be evaluated in its
context. The subject of rank-2 tensors is developed more in Chapter 4.

12. Dimension of V⊗W. As noted above, the basis of the vector space V⊗W consists of elements of the
form ui⊗u'j . If the dimensions of V and W are n and n', then i takes n values, j takes n' values, and the
dimension of the vector space V⊗W is n*n' (= nn'), the product of the separate vector space dimensions:

 dim(V⊗W) = n*n' where n = dim(V) and n' = dim(W) (1.1.14)

13. Generalization. The above development is easily generalized to the tensor product of any finite
number of vector spaces. One first defines F(V,W,....Z) as linear combinations of elements of the
Cartesian product space VxWx..xZ , which elements have the form (v,w,...z). One then defines a large set
of equivalence relations analogous to those described above. One ends up with a large set of linear
combinations which are all equivalent to 0, and this defines the equivalence class N. One then creates
F(V,W,....Z)/N as the space of linear combinations where any pieces which are equivalent to 0 are filtered
out. One then defines

 V⊗W⊗...⊗Z ≡ F(VxWx...xZ)/N = the tensor product of spaces V and W and... and Z. (1.1.15)

The tensor product space V⊗W⊗...⊗Z is the set of all linear combinations of elements (v,w,...z) of the
Cartesian product space VxWx...xZ, written as v⊗w⊗...⊗z, where the following rules are declared by
fiat:

 (v1+v2)⊗w⊗ ⊗z = v1⊗w⊗ ⊗z + v2⊗w⊗ ⊗z

 v⊗(w1+w2)⊗ ⊗z = v⊗w1⊗ ⊗z + v⊗w2⊗ ⊗z , etc.
and
 s(v⊗w⊗...⊗z) = (sv)⊗w⊗...⊗z = v⊗(sw)⊗...⊗z , etc. s ∈ K (1.1.16)

When these rules are written for a function f(v,w,....z) one has,

 f(v1+v2,w,...z) = f(v1,w,...z) + f(v2,w,...z)
 f(v,w1+w2,...z) = f(v,w1,...z) + f(v,w2,...z), etc

 s f(v,w,...z) = f(sv,w...z) = f(v,sw,...), etc. s ∈ K (1.1.17)

If there are k factors in the tensor product V⊗W⊗...⊗Z, then the function f has k arguments, and a
function obeying all of the above rules is said to be k-multilinear. For k = 2 we have bilinear, for k = 3
we have trilinear, and so on. One can mix in the scalar rule by saying for example

Chapter 1: The Tensor Product

 15

 f(s1v1+s2v2, w, ...z) = s1f(v1,w,...z) + s2f(v2,w,...z)
 f(v, s1w1+s2w2, ...z) = s1f(v,w1,...z) + s2f(v,w1,...z), etc. (1.1.18)

We can then regard the set of ⊗ rules shown above as describing k-multilinearity for the tensor product
space V⊗W⊗...⊗Z. Written in the second form,

 (s1v1+s2v2)⊗w⊗ ⊗z = s1 (v1⊗w⊗ ⊗z) + s2 (v2⊗w⊗ ⊗z)
 v ⊗ (s1w1+s2w2)⊗ ...⊗z = s1 (v⊗w1⊗ ⊗z) + s2 (v⊗w2⊗ ⊗z). etc. (1.1.19)

An alternate approach to developing the tensor product of three or more vector spaces is to inductively
build up by grouping things. For example

 V⊗W⊗X = (V⊗W) ⊗ X = the tensor product of two vector spaces, one of which is V⊗W

 V⊗W⊗X⊗Y = (V⊗W⊗X)⊗Y = the tensor product of two vector spaces, one of which is V⊗W⊗X

The results are the same with either approach.

1.2 The Tensor Product in Category Theory

Category theory is an attempt to abstract the essence of algebraic structures which apply generally to
objects like vector spaces, sets, rings, groups, modules and so on. One encounters certain category
diagrams which must allow for flow through the diagram in all possible ways (the diagram must
"commute"). A diagram consists of certain objects which are connected by arrows known as morphisms.
For our application, these arrows are function mappings between spaces, and two sequential arrows in a
path represent function composition in the sense f o g.
 At a higher level, if the objects in the diagram are themselves categories, the morphism arrows are
called functors. For example, for the category C of "all vector spaces over a field K" where the diagram
arrows are linear maps, one can regard the equation V2 = V⊗V as lying in the map CxC → C, and this
map is then a functor, and the mapping is said to be functorial.
 Category theory is a relatively recent addition to the mathematical house of many mansions. With
precursor work done by Emily Noether (whose work shows up in a lot of places), category theory was
developed in the early 1940's by Saunders Mac Lane (and others) who then summarized the theory in a
text Algebra (1967) with coauthor Garrett Birkhoff. These same authors wrote the classic textbook A
Survey of Modern Algebra (1941/1997) which is known to many students as "Birkhoff and Mac Lane".
 We give here just an outline of this rather slippery tensor product development. It seems more of a
fitting of our conclusions of Section 1.1 into category theory. The reader interested in more detail can
look in Algebra or in Chapter 14 "Tensor Products" of Roman's text Advanced Linear Algebra (2008).
 We start with the following triangle diagram (an example of a category diagram),

Chapter 1: The Tensor Product

 16

 (1.2.1)

In this diagram VxW is the Cartesian product of two vector spaces V and W, exactly as in Section 1.1
above. Elements of VxW are (v,w). There are two mappings f: VxW → X and g: VxW → Y where X
and Y are for the moment just spaces. They in turn are linked by a mapping traditionally called τ, so τ : X
→ Y. One says that "g can be factored through f".
 The functions f and g are declared bilinear from the get-go. This is analogous to our declared
equivalence relations in the approach of Section 1.1.
 The set of all bilinear mappings f: VxW→X is called homK(V,W; X) where K is the field of scalars.
The letters hom stand for homomorphism ("same shape") which is a structure-preserving map. Linear
maps (like τ discussed below) preserve vector space structure.
 The triangle diagram must commute, so we must have g = τ o f (function composition).
 The space X is our candidate space for the tensor product V⊗W space.
 One needs to construct the function τ. To do so, use the fact that the diagram commutes to evaluate τ
at the pure point v⊗w,

 τ(v⊗w) = g(v,w). (1.2.2)

Now "extend" τ so it applies to linear combinations of v⊗w elements by declaring that, for si ∈ K,

 τ (s1 v⊗w + s2 v'⊗w') = s1 τ(v⊗w) + s1 τ(v'⊗w') = s1 g(v,w) + s2g(v',w') (1.2.3)

so τ is now a linear function τ: X→Y. It maps every element of X into an element of Y, and it is unique
by its construction.
 Once we have τ being a unique linear mapping, the "pair" (X, f:VxW→X) becomes a "universal
pair". The idea here is that any alternate "pair" like (Y, g:VxW→Y) is equivalent to (X, f:VxW→X) up to
the isomorphism implied by τ. In this sense, then, the mapping f:VxW → V⊗W is essentially unique -- it
is "universal for bilinearity" -- so the tensor product mapping is well-defined. Function τ is called a
mediating morphism, f is called the tensor map, and the elements of V⊗W are tensors.
 From the top of the triangle one has

 v⊗w = f(v,w) (1.2.4)

since f :VxW→X = V⊗W. Our "rules" of Section 1.1 for operator ⊗ now derive from the fact that f is a
bilinear function:

 (v1+v2) ⊗ w = f(v1+v2,w) = f(v1,w) + f(v2,w) = (v1⊗w) + (v2⊗w)

 v ⊗ (w1+w2) = f(v,w1+w2) = f(v,w1) + f(v,w2) = (v⊗w1) + (v⊗w2)

 s(v⊗w) = s f(v,w) = f(sv,w) = (sv)⊗w s ∈ K

 s(v⊗w) = s f(v,w) = f(v,sw) = v⊗(sw) s ∈ K (1.2.5)

Chapter 1: The Tensor Product

 17

We then end up with the same space V⊗W and rules as in the previous quotient development, and we
have extra assurance that V⊗W is a unique and well-defined object (it is universal).
 The above scenario directly generalizes to the tensor product of k vector spaces with the following
corresponding category diagram,

 (1.2.6)

Lang (Algebra) for example shows the equivalent of this diagram on page 602 of his Chapter 16 (The
Tensor Product). Note that Lang also wrote a different book Linear Algebra. The diagram above also
appears in Roman's Chapter 14 on the Tensor Product, p 383.

Chapter 2: Tensor Algebra

 18

2. A Review of Tensors in Covariant Notation

In Chapter 1 we generally avoided mentioning components of vectors and tensor products. But in many
ways, "components" is what tensors are all about. Anyone who wants to use tensor analysis to actually do
something practical is going to use tensor components. The whole notion of what it means to be a tensor
of some rank requires components and component indices. Later when we deal with tensor functions, the
components will morph into the vector arguments of multilinear functions.

Tensor analysis (algebra) provides some very heavy-duty machinery to handle manipulations of tensors
and tensor components. A key idea is that a true tensor is something that transforms in a certain manner
relative to some defined underlying transformation which below is called x' = F(x). In the following
notes, we review this machinery.

The review is based on our document on tensor analysis and curvilinear coordinates (Tensor, see Refs.)
which follows the unusual path of developing tensor analysis in a "developmental notation" where all
indices are down and covariant objects have overbars, then later this notation is converted to "standard
notation" with the usual up and down indices. It is a large and complicated world, and below we report
out only those facts which are useful for our efforts here.

Equation numbers referring to Tensor are followed by a prime ' .

Bolding Vectors. For the time being we shall display all vectors in bold font because we feel it helps the
reader when dealing with covariant dot products and is compatible with Tensor. However, vector
components are not bolded. Thus vector V will have components Va and Va. The exception is when
vectors have extra labels, such as for the basis vectors en. It's components are written (en)a and (en)a.
Eventually in Section 3.1 where we finally tie back to Sections 1.1 and 1.2 we shall quietly stop bolding
vectors and will then be compatible with those earlier sections. Higher rank tensors are never bolded.

2.1 R, S and how tensors transform : Picture A

Tensor is in large part based on the following "picture",

 (1.11)' (2.1.1)

Below we shall be thinking of x-space as a vector space V having a set of basis vectors {ei} or {ui}.
Then x'-space is a vector space V'. Below we shall use V as a prototype vector in space V, so V ∈ V .

The two vector spaces V and V' have the same dimension N. In what follows, repeated indices are
implicitly summed (Einstein convention) so for example Ra

bVb means Σb=1N Ra
bVb. Hanging indices

like a in Ra
bVb can take any value in the range a = 1,2...N. The implied summation convention reduces

Chapter 2: Tensor Algebra

 19

symbol clutter especially when there are many summed indices in an equation. Sometimes however we
will display sums for emphasis.

Figure (2.1.1) summarizes a generally non-linear transformation x' = F(x) between two spaces called x-
space on the right (metric tensor g) and x'-space on the left (metric tensor g'). The coordinates of x-space
are called x, and those of x'-space are called x'. Quantities in x'-space always have a prime, while those in
x-space have no prime. A vector V in x-space has contravariant components Va and covariant
components Va. The corresponding components V'a and V'a of V' in x'-space are these,

 V'a = Ra

bVb Ra
b ≡ (∂x'a/∂xb) = ∂bx'a (7.5.3)' (7.5.2)'

 V'a = SbaVb Sba ≡ (∂xb/∂x'a) = ∂'axb (7.5.4)' (2.1.2)

As noted, primed equation numbers refer to Tensor.
 The matrices R and S in (2.1.2) and Fig (2.1.1) are linearizations of the generally non-linear
transformation x' = F(x) and x = F-1(x') in the close neighborhood of a selected point x in x-space and x'
= F(x) in x'-space. Therefore, R and S are in general functions of x, though we suppress this dependence.

R is sometimes call the differential of the transformation x' = F(x). We call it the R matrix. Many texts
don't make up a symbol like R for the differential, and so tensor equations such as (2.1.8) below are

strewn with partial derivatives of the form Ra
b =

∂x'a

∂xb . This is useful in doing chain rules, but otherwise

obscures how the indices work. We settled on symbols R and S after rejecting various reasonable
alternatives. One should understand that Ra

b is in general not a simple rotation matrix despite the letter R.

 From the chain rule, one can see that the matrices R and S are inverses of each other,

 Sab Rb

c = δac . // SR = 1 (7.6.1)' (2.1.3)

If desired, the matrix S can be eliminated from the discussion by the fact that (reflect indices in a vertical
line between the indices)

 Sab = Rb

a

 Sab = Rb
a . (7.5.13)' (2.1.4)

Then (2.1.2) can be then be written with only R's ,

 V'a = Ra

bVb Ra
b ≡ (∂x'a/∂xb) = ∂bx'a // V' = RV

 V'a = Ra
bVb Ra

b ≡ (∂xb/∂x'a) = ∂'axb . (2.1.5)

Here is a table summarizing different forms of the differentials R and S :

 Sab = Rb

a = (∂xa/∂x'b) = (∂x'b/∂xa) = ∂'bxa = ∂ax'b
 Sab = Rba = (∂xa/∂x'b) = (∂x'b/∂xa) = ∂'bxa = ∂ax'b
 Sab = Rba = (∂xa/∂x'b) = (∂x'b/∂xa) = ∂'bxa = ∂ax'b
 Sab = Rb

a = (∂xa/∂x'b) = (∂x'b/∂xa) = ∂'bxa = ∂ax'b . (7.5.16)' (2.1.6)

Chapter 2: Tensor Algebra

 20

Notice how an upper index in a derivative denominator acts as a lower index and vice versa. The fact that
each item can be represented by two partial derivatives follows from (2.1.4), (2.1.2) and the raising and
lowering operations described in Section 2.2 below.

Vectors which transform under (according to) transformation F as in (2.1.5) are called rank-1 tensors.
Here is how the four forms of a rank-2 tensor M transform under F,

 M'ab = Ra

a' Rb
b' Ma'b' // pure contravariant

 M'ab = Ra
a' Rb

b' Ma'
b' // mixed

 M'ab = Ra
a'

 Rb
b' Ma'

b' // mixed
 M'ab = Ra

a'
 Rb

b'
 Ma'b' . // pure covariant (7.5.8)' (2.1.7)

We sometimes refer to Ra

a' as the "down-tilt" R matrix, and Ra
a' as the "up-tilt" R matrix. One sees that

a down-tilt R transforms each contravariant (up) index, while an up-tilt R transforms each covariant
(down) index.

From the above, one can intuit the way an arbitrary rank-n tensor transforms under F. For example

 T 'abcde = Ra

a' Rb
b' Rc

c' Rd
d' Re

e' Ta'b'c'
d'e' . (7.10.1)' (2.1.8)

The various forms of the R matrix have these four orthogonality rules,

 1: Rb

a Rb
c = δac 2: Rb

a Rb
c = δac // sum is on 1st index

 3: Ra

b Rc
b = δac 4: Ra

b Rc
b = δac . // sum is on 2nd index (7.6.4)' (2.1.9)

These are just renditions of (2.1.3) with (2.1.4) (that is to say, SR = RS = 1).

Using these rules, one can show (proof below) that the inverses of the vector transforms shown above in
(2.1.5) are these

 Va = Rb

aV'b (7.6.7)'
 Va = Rb

aV'b (7.6.8)' (2.1.10)

where the summation index b on R is not abutted against the following vector.

The inversion of any tensor equation can be obtained instantly using the following simple rule:

Inversion Rule: For each R, reflect the indices in a vertical line between the indices. (2.1.11)

Examples: V'n = Rn

m Vm , inversion is: Vn = Rm
n V'm Rn| m → Rm

n
 V'n = Rnm Vm , inversion is: Vn = Rmn V'm Rn|

m → Rmn

Chapter 2: Tensor Algebra

 21

Proof : (2.1.8)#1
 V'n = Rn

m Vm ⇒ Rn
iV'n = Rn

iRn
mVm = δimVm = Vi ⇒ Vi = Rn

iV'n ⇒ Vn = Rm
nV'm .

The proof of the 2nd example follows from application of the tilt reversal rule (2.9.1) to the first example.

General Proof: Recall from (2.1.4) that Sab = Rb

a. The vertical line reflection Ra|
b → Rb

a = Sab just
changes R into S, and S is the inverse of R as in (2.1.3). So V' = RV gives V = SV' and similarly for
higher tensor cases.

Exercise: Invert equation (2.1.7) which says M'ab = Ra

a' Rb
b' Ma'b' :

Result: Mab = Ra'

a
 Rb'

b
 M'a'b' .

The canonical vectors are the differential distances dxi in x-space and dx'i in x'-space (near some point x
and corresponding x'). From (2.1.5) one then has,

 dx'a = Ra

bdxb // dx' = Rdx
 dx'a = Ra

bdxb . (2.1.12)

From inversion rule (2.1.11) the inverses of (2.1.12) are,

 dxa = Rb

adx'b
 dxa = Rb

adx'b . (2.1.13)

The derivative operator ∂a ≡ ∂/∂xa transforms like any other covariant vector. It is in fact the canonical
covariant vector for the transformation F. Thus, from (2.1.5),

 ∂'a = Ra

b∂b Ra
b ≡ (∂x'a/∂xb) = ∂bx'a ∂a = ∂/∂xa ∂'a = ∂/∂x'a

 ∂'a = Ra
b∂b Ra

b ≡ (∂xb/∂x'a) = ∂'axb ∂a = ∂/∂xa ∂'a = ∂/∂x'a . (2.1.14)

For example, if φ(x) is a scalar field (rank-0 tensor), ∂aφ(x) transforms as a covariant vector under F, and
∂aφ(x) transforms as a contravariant vector. Derivatives of tensors above rank-0 are more complicated,
see Comment 1 below.

The R matrix is really four matrices, and we have seen two of its forms above. The R object is not a
tensor because, as Ra

b ≡ (∂x'a/∂xb) suggests, R has one foot in x'-space and one foot in x-space. In fact,
the first index of R is raised or lowered by g', while the second index is raised or lowered by g:

 Ra

b = (∂x'a/∂xb)
 Rab = Ra

b' gb'b = (∂x'a/∂xb) // g pulls up the second index of Ra
b

 Rab = g'aa'Ra'
b = (∂x'a/∂xb) // g' pulls down the first index of Ra

b

 Ra
b = g'aa'Ra'

b' gb'b = (∂x'a/∂xb) . // both actions at once (7.5.9)' (2.1.15)

Chapter 2: Tensor Algebra

 22

Tensor fields

We have suppressed the fact that in general everything above is a function of x (or equivalently x'). For
example, when we compute Ra

b ≡ (∂x'a/∂xb) we generally obtain Ra
b(x). The transformation of a vector

from x-space to x'-space was given in (2.1.5) as V'a = Ra
bVb. For general x' = F(x) this really a

statement about the transformation of vector fields: V'a(x') = Ra
b(x)Vb(x). The rank-2 tensor

transformation in (2.1.7) really says M'ab(x') = Ra
a'(x) Rb

b'(x) Ma'b'(x) and we are transforming a
rank-2 tensor field.
 In special relativity it happens that x' = F(x) is linear so x'a = Fabxb (usually written with non-bold 4-
vectors and Greek indices like x'μ = Λμ

νxν). In this situation Ra
b does not depend on x, and one can then

have vectors which are not fields like p'μ = Λμ
νpν (momentum of a point particle) and vectors that are

fields like A'μ(x') = Λμ
νAν(x) (electromagnetic vector potential). Notice on the x'-space side of the

equation that the vector field A'μ is a function of the x'-space coordinate x', while on the x-space side Aμ
has argument x. In continuum mechanics and general relativity, Ra

b is a function of x so everything is a
field.
 In the following examples, matrix R is the linearization of x' = F(x). In the neighborhood of the point
x one has dx' = R(x)dx as a "linear fit" to the generally non-linear x' = F(x). If F(x) is a linear
transformation, then x' = Fx so dx' = Fdx and then R = F = independent of x.

(a) T' a'b'c'd' = Ra'

aRb'
bRc'

cRd'
d Tab

cd tensor (rank 4, mixed)

(b) T' a'b'c'd'(x') = Ra'

a(x)Rb'
b(x)Rc'

c(x)Rd'
d(x)Tab

cd tensor which is not a field in x-space

(c) T' a'b'c'd'(x') = Ra'

aRb'
bRc'

cRd'
d Tab

cd(x) tensor field, linear F(x)

(d) T' a'b'c'd'(x') = Ra'

a(x)Rb'
b(x)Rc'

c(x)Rd'
d(x) Tab

cd(x) general tensor field (2.1.16)

Item (a) is the generic form we use for a transformation of a rank-4 tensor. If F(x) is linear (as in special
relativity), then Ra

b does not depend on position, and it is possible for T'abcd and Tab
cd not to be fields.

Item (b) is for a non-linear x' = F(x) where Tab

cd is not a field. Obviously T'a'b'c'd' must depend
therefore on x, and hence x', and so it is a field. In this unusual situation, the entire dependence of T' on x'
is induced by the non-linearity of the transformation.

Item (c) is more standard, where the transformation is linear and a tensor field is being transformed. This
is the case in special relativity.

Item (d) is the same thing, but the transformation is non-linear so one has Ri

j(x).

Comments:

1. For situations where Ra

b is a function of x, it is easy to see why there is trouble with derivatives. One
need only consider :

Chapter 2: Tensor Algebra

 23

 V'a(x') = Ra
b(x)Vb(x) and ∂'b = Rb

c(x)∂c
so
 V'a,b(x') ≡ ∂'bV'a(x') // Va,b is just a new notation for a derivative

 = (Rb

c(x)∂c)[Ra
d(x)Vd(x)] = Rb

c(x) Ra
d(x) (∂cVd(x)) + Rb

c(x)(∂cRa
d(x)) Vd(x) . (2.1.17)

It is this second term that causes ∂cVd not to transform as a rank-2 tensor. It only transforms as a tensor if
it happens that x' = F(x) is linear so Ra

b is constant (as in special relativity). This problem is remedied by
introducing the covariant derivative Vd;c as discussed in Tensor Appendix F, see for example (F.9.5).
This new object then properly transforms as a rank-2 tensor,

 V'b;a(x') = Rb

c(x) Ra
d(x)Vd;c(x) . (2.1.18)

2. We have chosen to write (∂x'a/∂xb) as Ra

b as a space-saving notation. This object is often called "the
differential" of the transformation x' = F(x) at point x. Tensor deals only with transformations where x
and x' have the same number of components N, but the idea (∂x'a/∂xb) as Ra

b generalizes beyond this
restriction. Of course then the matrix Ra

b is no longer square and the associated linear algebra is more
complicated. This situation arises in Chapter 10 below.

3 Although we have used the letter R in Ra

b, one should not think that R is a rotation. It could be a
rotation, but in general it is more complicated, involving both rotation and stretching. It could be a
rotation which, although being a rotation, is a different rotation at every point in space, like Ry(θ(x)).

2.2 The metric tensors g and g' and the dot product

Within each space (x-space and x'-space in the (2.1.1) Picture A), the metric tensor lowers or raises vector
indices,

 Va = gabVb V'a = g'abV'b
 Va = gab Vb V'a = g'ab V'b . (7.4.4)' in std notation (2.2.1)

In the same way, the metric tensor lowers or raises any index on any tensor.

The contravariant and covariant metric tensors are inverses of each other,

 gabgbc = gac = δac = δa,c // note that δij = δij = δi,j . (2.2.2)

Here the gab lowers the first index on gbc to make gac which is δac = δa,c so gdngup = 1.

The objects gab, gab, gba and gab are true tensor objects whereas δac and δa,c are not. It just happens that
the value of gac is δac. In writing covariant equations, one should replace δac by gac before attempting
to raise index a or lower index c.

Chapter 2: Tensor Algebra

 24

The metric tensor is a rank-2 tensor like any other rank-2 tensor, and so, looking at the first and last lines
of (2.1.7),

 g'ab = Ra

a' Rb
b' ga'b'

 g'ab = Ra
a'

 Rb
b'

 ga'b' . (7.5.6)' (2.2.3)

Any metric tensor is symmetric,

 gab = gba gab = gba
 g'ab = g'ba g'ab = g'ba . (5.4.3)' in std notation (2.2.4)

The metric tensor defines a (covariant) dot product in each space

 a • b = gijaibj = gijaibj = aibi = aibi x-space

 a '• b' = g'ija'ib'j = g'ija'ib'j = a'ib'i = a'ib'i x'-space . (2.2.5)

The dot product is a scalar (rank-0 tensor) so it must be the same in either space

 a '• b' = a • b . (2.2.6)

An exception to this rule is noted for fluid flow, see Tensor end of Section 5.2.

When applied to the canonical differential vector dxi we find

 dx • dx = gijdxidxj = || dx ||2 ≡ (ds)2 x-space

 dx' • dx' = g'ijdx'idx'j = || dx' ||2 ≡ (ds')2 x'-space (2.2.7)

Thus from (2.2.6) ds = ds' (invariant distance). In special relativity, ds is called the proper time dτ.

The metric tensor gets its name from these last equations. The distance between two points x and y in a
metric space is determined by a function called "the metric" d(x,y). A commonly used metric is d(x,y) =
||x-y|| where the metric is defined by the norm. The distance between two close points x and x+dx is then
given by d(x,x+dx) = ||x+dx-x|| = || dx || = ds. Squaring, d2(x,x+dx) = || dx ||2 = gijxixj which shows how
the metric tensor gij describes the squared metric d(x,x+dx) in the metric space of interest. One might
recall that in a raw vector space, there is no distance concept d(v1,v2). A vector space with a metric and
an inner product, such as that shown above as • is then a Hilbert Space. It happens that the same metric
tensor gij has two roles to play: it determines differential distance, and it lowers an index. See Chapter 5
of Tensor for more details.

Chapter 2: Tensor Algebra

 25

As shown in (2.1.16) (d), for a general transformation everything (including g) is a function of x. For
example,

 Va(x) = gab(x)Vb(x) V'a(x') = g'ab(x')V'b(x') (2.2.1)

 g'ab(x') = Ra

a'(x) Rb
b'(x) ga'b'(x) . (2.2.3) (2.2.8)

2.3 The basis vectors en and en

There are two sets of basis vectors called en and en which exist in x-space (vector space V). The integer n
is a label, not a component index. These basis vectors are defined as

 en = ∂x/∂x'n = ∂'nx tangent base vectors

 en = ∂x/∂x'n = ∂'nx . reciprocal base vectors (7.13.5)' (2.3.1)

where x = F-1(x'). The tangent base vectors en are tangent to the "coordinate lines" in x-space. If in x'-
space a particular x'n is allowed to vary while all other x'i are held fixed, the locus in x'-space is a line
parallel to the n axis, while the mapping of that line in x-space is the (often curved) coordinate line
associated with x'n. Then en = ∂x/∂x'n evaluated at a point x on that coordinate line is a vector in x-space
tangent to that coordinate line. For coordinate line examples, see e.g. Tensor (1.12)', (1.13)' and (3.2.8)',.
 Meanwhile, the reciprocal vectors en are "dual to" the en in that en • em = δnm . In fact we have,

 en • em = g'nm g'in en = ei
 en • em = δnm = g'nm
 en • em = g'nm g'in en = ei (7.18.1)' (2.3.2)

The equations on the left imply those on the right which show how to raise and lower basis vector labels.
Although the en and en are vectors in x-space, it is the metric tensor of x'-space which raises and lowers.

For "duality" see text above Tensor (6.2.8)'. It is shown there that a unique dual basis bn always exists for
any given basis bn.

For a general transformation F, the tangent base vectors are functions of location and should be written
en(x), and of course the same is true for en(x). Looking at (2.3.2), we see that en(x) • em(x) = δnm manages
to be valid at every point in x-space. On the other hand, g'nm(x) = en(x) • em(x) shows that the metric
tensor is also a function of x.

Example: In polar coordinates (r,θ) one has er = r̂ and eθ = r θ̂, both of which obviously depend on

location in space. The metric tensor is gab = ⎝
⎛

⎠
⎞ 1 0

 0 r2 and also depends on spatial location through r. The

coordinate lines for θ are circles whose tangents are eθ , while those for r are rays whose tangents are er.

Chapter 2: Tensor Algebra

 26

These basis vectors are like any other vectors in x-space, and so they have contravariant and covariant
components such as (en)i and (en)i . Going back to our definition (2.3.1) we see that

 en ≡ ∂x/∂x'n ⇒ (en)i = ∂xi/∂x'n = Rn

i . // from (2.1.5) (2.3.3)

Looking at (en)i = Rn

i we make these observations:

 (1) the n label of (en)i goes up and down with g' as shown in (2.3.2).
 (2) the n index of Rn

i also goes up and down with g' as shown in (2.1.15).
 (3) the i index of (en)i goes up and down with g as shown in (2.2.1).
 (4) the i index of Rn

i also goes up and down with g as shown in (2.1.15).

Therefore the equation (en)i = Rn

i is "covariant", even though it is not a tensor equation (since R is not a
tensor), so we can raise and lower indices at will on both sides. Therefore

 (en)i = Rn

i (en)i = Rni (en)i = Rn
i (en)i = Rni . (2.3.4)

The en and en also satisfy a "completeness relation",

 (en)a(en)b = δab (2.3.5)

where the implied sum is over the label n. From (2.3.4) this says Rn

a Rn
b = δab which in fact is just

orthogonality rule #2 in (2.1.9). This completeness relation is different from the "orthogonality relation"
en • em = δnm of (2.3.2) written as (en)i (em)i = δnm . Here the implied sum is over the component index i.

Recall from (2.3.2) that

 en • em = g'nm . (2.3.2)

There are two cases that are often of interest:

 en • em = fn δn,m the {en} form an orthogonal basis for V

 en • em = δn,m the {en} form an orthonormal basis for V . (2.3.6)

Remember that the vectors en exist in x-space, despite the fact that the metric tensor g'nm is for x'-space in
our transformation Picture A.

2.4 The basis vectors un and un

One can also define a set of "axis-aligned" basis vectors in x-space as follows

 (un)i = δni = gni (un)i = δni = gni (7.18.3)' (2.4.1)

Chapter 2: Tensor Algebra

 27

which can be compared with (2.3.4) for en and en. Relations involving the u basis vectors are

 un • um = gnm gin un = ui
 un • um = δnm = gnm
 un • um = gnm gin un = ui . (7.18.3)' (2.4.2)

Notice the similarity to the relations (2.3.2) for the en and en. The un are dual to the un. Whereas the en
and en involve the x'-space metric tensor g', the un and un involve the x-space metric tensor g.
 We can easily calculate from (2.3.4) and (2.4.1) that

 en • um = (en)i(um)i = Rn

i δmi = Rn
m . (2.4.3)

According to (2.3.2), g' raises and lowers the label n on en. According to (2.1.15), g' raises and lowers the
first index n on Rn

m. Similarly, the label on um and the second index of Rn
m are raised and lowered by g.

Thus our equation (2.4.3) is "covariant" (even though it is not a true tensor equation), so we can at once
write out all four forms of the dot products between the e and u basis vectors on the left below,

 en • um = Rn

m ⇔ en = Rn
m um = Rnm um

 en • um = Rnm ⇔ en = Rnm um = Rn
m um

 en • um = Rn
m ⇔ un = Rm

n em = Rmn em
 en • um = Rnm

 ⇔ un = Rmn em = Rm
n em . (2.4.4)

Each column implies the other. For example, for the third line,

⇒: un = Σm (em • un) em = Σm Rm

n em // (em • un) is coefficient of the em expansion of un

⇐: un = Σm Rm

n em ⇒ ek • un = Σm Rm
n ek • em = Σm Rm

n δkm = Rk
n . (2.4.5)

The equations on the right of (2.4.4) show that the R matrix is the "basis change matrix" relating the two
different bases e and u of x-space. These right-side equations are "vector sum equations" in which no
component indices appear.

The basis ui has a special place among possible bases for x-space. Above we call it an "axis-aligned"
basis since (un)i = δni so for example in R2 we would have u1* = (1,0) and u2* = (0,1). Here the little
asterisk is a notation to show we are talking about contravariant components. To say that (un)i = δni does
not say that x-space is Cartesian, since x-space could have any metric tensor gij.

What is really being said by the statement (un)i = δni is that the components of vectors (and higher
tensors) are being defined in a specific way.
 If v is a vector, then vi has the following meaning: vi = ui • v. Another way to say this is that the vi
are the components of v when v is expanded in the u basis: v = Σi viui. In particular, since un is itself a
vector, we have un = Σi (un)iui = Σi δniui = un. So the components of vectors are always defined
relative to the u basis when u is selected as the "axis aligned basis" with (un)i = δni. The component

Chapter 2: Tensor Algebra

 28

indices on all tensors of Chapter 2 are referred to the u basis, examples being the i and j of the metric
tensor gij and of any tensor Mij or Mijk.
 We shall see below that one could expand vector v on the en basis, but then one gets v = Σi v'iei
where v'i = ei • v . The coefficient v'i here is of course different from vi since the bases are different. In
fact v'i = Ri

jvj.

2.5 The basis vectors e'n and u'n and a summary

Basis vectors e'n and u'n are just mappings of en and un from x-space to x'-space,

 u'n = R un un = S u'n
 u'n = R un un = S u'n

 e'n = R en en = S e'n
 e'n = R en en = S e'n . (2.5.1)

Each of these mappings is like any vector mapping V' = RV. The primed basis vectors exist in x'-space,
whereas the unprimed ones exist in x-space.

The components of these vectors are easily computed,

 (u'n)i = Ri

j (un)j = Ri
j δnj = Ri

n // (2.4.1)

 (e'n)i = Ri

j (en)j = Ri
j Rn

j = δin = g'in // (2.3.4) and (2.1.9) #3 . (2.5.2)

Whereas the un were the axis-aligned basis vectors in x-space, we see that the e'n are the axis-aligned
basis vectors in x'-space.

Since (u'n)i = Ri

n from (2.5.2), and since Ri
n = (∂x'i/∂xn) = ∂nx'i from (2.1.6), we can write u'n = ∂nx'

which is similar to the corresponding en = ∂'nx of (2.3.1) and shows that the u'n really are tangent base
vectors for the inverse transformation. We summarize :

 (un)i = δni axis-aligned basis vectors in x-space
 en = ∂'nx tangent base vectors in x-space

 (e'n)i = δni axis-aligned basis vectors in x'-space
 u'n = ∂nx' inverse tangent base vectors in x'-space . (2.5.3)

The situation is depicted in this drawing,

Chapter 2: Tensor Algebra

 29

 (2.5.4)

The figure shows just one basis vector of each type. Here red e1 is the tangent base vector for coordinate
x'1, whereas blue u'1 is the tangent base vector of the inverse transformation x = F-1(x') for coordinate x1.
In each case a light black curve represents a piece of a coordinate line (curve) whose tangent is the
tangent base vector.

The associated dot products are obtained from (2.4.2) and (2.3.2),

 u'n • u'm = gnm // = un • um gin u'n = u'i
 u'n • u'm = gnm
 u'n • u'm = gnm gin u'n = u'i (2.5.5)

 e'n • e'm = g'nm // = en • em g'in e'n = e'i
 e'n • e'm = g'nm
 e'n • e'm = g'nm g'in u'n = u'i (2.5.6)

and the basis vectors can therefore be raised and lowered as shown on the right by an appropriate metric
tensor.

So far we have computed these basis vector components,

 (un)i = gni = δni (2.4.1) (en)i = Rn

i (2.3.4)
 (u'n)i = Ri

n (2.5.2) (e'n)i = g'in = δin (2.5.2) . (2.5.7)

By raising n, lowering i, or doing both, one arrives at 12 more equations to get this full set of 16,

1 (un)i = gni = δni (en)i = Rn

i
2 (u'n)i = Ri

n (e'n)i = g'in = δin

3 (un)i = gni (en)i = Rni
4 (u'n)i = Rin

 (e'n)i = g'in

Chapter 2: Tensor Algebra

 30

5 (un)i = gni (en)i = Rni
6 (u'n)i = Rin (e'n)i = g'in

7 (un)i = gni (en)i = Rn

i
8 (u'n)i = Ri

n
 (e'n)i = g'in . (2.5.8)

The reason one is allowed to do this follows from the label raising and lowering relations shown on the
right side of (2.3.2), (2.4.2),(2.5.5), (2.5.6), and finally from (2.1.15) concerning indices on Ri

j .
 Since (u'n)i = Ri

n , the contravariant u'n vectors are the columns of R*
*.

 Since (en)i = Rn
i , the covariant en vectors are the rows of R*

* :

 R*
* = [u'1*,u'2*, ...u'N*] =

⎣
⎢
⎡

⎦
⎥
⎤e1*

e2*
...

e3*

 (2.5.9)

Using the fact that the dot product is a scalar, we can instantly obtain the following vector sum equations
from (2.4.4),

 e'n • u'm = Rn

m ⇔ e'n = Rn
m u'm = Rnm u'm

 e'n • u'm = Rnm ⇔ e'n = Rnm u'm = Rn
m u'm

 e'n • u'm = Rn
m ⇔ u'n = Rm

n e'm = Rmn e'm
 e'n • u'm = Rnm

 ⇔ u'n = Rmn e'm = Rm
n e'm . (2.5.10)

again showing that the R matrix acts as a basis-change matrix this time in x'-space.

Fact: One can treat the en as an arbitrary set of basis vectors . (2.5.11)

Above we started off by assuming some arbitrary transformation x' = F(x) and then the en(x) are the
tangent base vectors for this transformation F.
 From a different viewpoint, one can assume some arbitrary expressions for the en(x) and try to find a
corresponding x' = F(x) for which those en(x) are the tangent base vectors. Given the functions en(x), one
would know the matrix of functions Rn

i(x) from (2.5.8) item 1. One could then attempt to integrate
(2.1.12) which says dx'a = Ra

b(x)dxb to find x' = F(x). Let's assume this is all doable so x' = F(x) can
always be found. From this point of view, one can regard the above equations concerning the en(x) to
apply to an arbitrary set of basis functions en(x). Of course they have to be linearly independent at each
value of x. The next section provides a very simple example.

Chapter 2: Tensor Algebra

 31

2.6 How to compute a viable x' = F(x) from a set of constant basis vectors en

As a first step, select g = 1 so that x-space is the usual Cartesian space and un = un are the usual
orthonormal axis-aligned unit vectors of Cartesian space.
 Suppose we are handed a set of constant-in-space basis vectors en specified by their components
relative to the x-space axes. From (2.5.8) item 1,

 (em)n = Rm

n (2.6.1)

so we know the matrix Ra

b (the em* are the rows of the up-tilt R matrix).
 What is the simplest way to fit this scenario into the tensor environment of Picture A in (2.1.1)?
 We try a linear transformation of the form x' = F(x) = Fx where F is a constant matrix (independent of
x). Since x'a = Fabxb we find Ra

b ≡ (∂x'a/∂xb) = Fab, and then of course Ra
b = Fab. So we have found a

linear transformation F that works: Fab = Ra
b. Then the en are the tangent base vectors for this

transformation F, and en are the reciprocal base vectors (the dual vectors of en).
 The metric tensor g'nm can be computed from the dot product (2.3.2),

 g'nm = en • em = (en)i (em)i = (en)i (em)i = Rn

iRm
i . (2.6.2)

Since g = 1, the second index on R is allowed to move up and down "for free".

This g'nm can then be inverted to determine g'nm. The reciprocal base vectors are then given by (2.3.2),

 en = g'nm em (2.6.3)

with components

 (en)i = g'nm (em)i = g'nm Rm

i . (2.6.4)

We then rewrite the above equations as

 (em)n = Rmn // the em are the rows of matrix R, (2.6.1) lower n

 g'nm = RniRmi = RniRT

im = (RRT)nm ⇒ g' = RRT // (2.6.2) lower i

 en = g'nm em = hnm em // where we define hnm ≡ gnm // (2.3.2)

 (en)i = hnmRmi = (hR)ni. // the en are the rows of matrix (hR), (2.6.4) (2.6.5)

Exercise: You are handed these three constant vectors en in a 3-dimensional Cartesian x-space,

 e1 = (2,-1,3) // for example, (e1)2 = (e1)2 = - 1
 e2 = (-1,2,4)
 e3 = (1,3,2) // e3 = 1 u1 + 3 u2 + 2 u3

Chapter 2: Tensor Algebra

 32

so

 R** =
⎝
⎜
⎛

⎠
⎟
⎞ 2 -1 3

 -1 2 4
 1 3 2

 // = F; "the em are the rows of matrix R" from (2.6.5) (2.6.6)

Use Maple to compute g, h and then (hR). Here we are just implementing the equations in (2.6.5).

First enter the three en vectors and construct matrix R**,

Then compute the covariant metric tensor g' = RRT ,

From this compute the contravariant metric tensor h = g'-1 and then matrix (hR)

The rows of (hR) are the vectors en (called En in the code),

Chapter 2: Tensor Algebra

 33

As a check, we verify that en • em = δnm :

 (2.6.7)

2.7 Expansions of vectors onto basis vectors

Given vector V in x-space and the corresponding vector V' in x'-space, one may write the following
expansions (Tensor (7.13.10,11)),

1 V = Σn Vn

 un where Vn = un • V axis-aligned basis
2 V = Σn Vn un where Vn = un • V axis-aligned basis
3 V = Σn V'n en where V'n = en • V tangent base vector basis
4 V = Σn V'

n en where V'n = en • V tangent base vector basis

5 V' = Σn V'n e'n where V'n = e'n • V' axis-aligned basis
6 V' = Σn V'n e'n where V'n = e'n • V' axis-aligned basis
7 V' = Σn Vn u'n where Vn = u'n • V' tangent base vector basis
8 V' = Σn Vn u'n where Vn = u'n • V' tangent base vector basis . (2.7.1)

Notice that expansions 7,8 are obtained from 1,2 by applying the R matrix, since V' = RV and u'n = Run.
Similarly, expansions 5,6 are obtained from 3,4

Any expansion can be directly verified by dotting the left column into an appropriate basis vector. For
example, for expansion 5, using e'm • e'n = δmn ,

 V' = Σn V'n e'n

 e'm • V' = e'm • (Σn V'n e'n) = Σn V'n e'm • e'n = Σn V'n δmn = V'm . (2.7.2)

Notice that each set of coefficients appears twice on the right in (2.7.1), once for V and once for V'. This
duplication arises because a • b = a' • b' for any pair of vectors in either space. For example,

 Vn = un • V = u'n • V' appears in lines 1 and 7 . (2.7.3)

Chapter 2: Tensor Algebra

 34

Looking a bit ahead, we shall be extending the notion of a vector expansion to that of tensors of any rank,
and the meaning of component indices is still governed by Fact (2.7.1). First, for expansions on the axis-
aligned un we write,

 V = Σn Vn un rank-1 tensor, (2.7.1) line 1

M = Σnm Mnm un⊗um rank-2 tensor

 T = Σi1i2....ik Ti1i2....ik (ui1⊗ ui2⊗ uik) . rank-k tensor (2.7.4)

As discussed in (2.5.11) we may regard the basis vectors en as being an arbitrary basis. The primed tensor
components are then the components of the x'-space version of the tensor under the transformation x' =
F(x) generated by those arbitrary en. The corresponding expansions are then,

 V = Σn V'n en rank-1 tensor, (2.7.1) line 3

M = Σnm M'nm en⊗em rank-2 tensor

 T = Σi1i2....ik T' i1i2....ik (ei1⊗ ei2⊗ eik) . rank-k tensor (2.7.5)

In the above, any pair of tilted matching indices can be tilted the other way. The meaning of the ⊗ symbol
is discussed below, but we use it just momentarily here.

For an expansion on a mixed basis like en⊗um , we will use the following notation

 M = Σnm [M(e,u)]nm en⊗um . (2.7.6)

Using this same notation we could write,

 M = Σnm M'nm en⊗em = Σnm [M(e,e)]nm en⊗em ≡ Σnm [M(e)]nm en⊗em . (2.7.7)

Exercise: Consider these two expansions shown above of the rank-2 tensor M,

 M = Σab Mab ua⊗ub // (2.7.4) (2.7.8)

 M = Σab M'ab ea⊗eb . // (2.7.5) (2.7.9)

Verify that the coefficients M'ab and Mab are related as expected.

Use the result in (2.4.4) line 2 that em = Rm

iui to get for (2.7.8),

Chapter 2: Tensor Algebra

 35

 M = Mab ua⊗ub // all implied sums

 = Mab (Ri

a ei) ⊗ (Rj
b ej)

 = (Ri

aRj
bMab) ei⊗ ej

so comparing to (2.7.9) one concludes that

 M'ab = Ri

aRj
bMab

which is the correct statement that M transforms as a rank-2 tensor as shown in (2.1.7).

Confusion about vectors and scalars

The following issue is a subtle one that is worth nailing down early on because it can lead to confusions
and seeming paradoxes. Consider this fact,

 un • V = u'n • V' . (2.7.10)

Being the dot product of two vectors, this object transforms as a scalar under x' = F(x) as shown in
(2.2.6). We might express this fact by writing

 s(n) = un • V s'(n) = u'n • V' s(n) = s'(n) n = 1,2....N . (2.7.11)

What we have here is a set of N scalars, s(n) for n = 1,2..N, where n is just a label. One would never
claim that this set of scalars s(n) transforms as a vector, which would require that s'(n) = Rn

m s(m). We
don't have such a relation; what we have is s'(n) = s(n).

Now it happens that s(n) = s'(n) = Vn where Vn is the component of a vector. Notice that :

 V'n = Rn

mVm true : the Vn transform as a vector

 V'n = Vn false

 s(n) = s'(n) true : each s(n) = un • V transforms as a scalar

 s'(n) = Rn

m s(m) false (2.7.12)

We can summarize this discussion as follows:

Fact: Just because the scalars s(n)= un • V take the values Vn does not mean that the scalars s(n)
transform as vectors, nor does it mean that the vector components Vn transform as scalars. (2.7.13)

Chapter 2: Tensor Algebra

 36

2.8 The Outer Product of Tensors and Use of ⊗

Consider two vectors which transform in the usual rank-1 tensor manner relative to some underlying
transformation x' = F(x) (for which R is the linearization),

 a'i = Σj Ri

j aj
 b'k = Σm Rk

m bm from (2.1.5) (2.8.1)

where we temporarily show the summation symbols. Multiplying these equations together gives

 (a'i)(b'k) = (ΣjRi

jaj)(ΣmRk
mbm) = Σjm Ri

jRk
m(ajbm)

and then hiding the sums again,

 (a'ib'k) = Ri

jRk
m(ajbm) . (2.8.2)

Looking at the first line of (2.1.7), we see that this object is transforming as a rank-2 tensor, therefore it is
a rank-2 tensor, and we can write it as

 M'ik = Ri

jRk
mMjm where Mij ≡ aibj . (2.8.3)

The rank-2 tensor Mij = aibj is said to be the outer product of two rank-1 tensors (vectors).

This idea can be generalized ad infinitum. For example, if K is a rank-2 tensor and v is a vector, then

 Mijk = Kijvk (2.8.4)

is a rank-3 tensor because it transforms as one using the same argument shown above. Next, consider,

 Mabcde = KabKcd ve . (2.8.5)

If K is a rank-2 tensor and v is a rank-1 tensor, then M is a rank-5 tensor. Of course since this is a "true
tensor equation" (a covariant one), indices may be shuffled any way one wants, such as

 Ma

bc
d
e = Ka

bKc
d ve . (2.8.6)

Just imagine applying g** several times to both sides of (2.8.5) to get (2.8.6).

There are so many possibilities for creating outer product tensors that one sometimes forgets that not all
tensors can be "factored" into products of lower rank tensors.

The ⊗ Symbol Appears subtitle: "the rabbit goes into the hat"

In Sections 1.1 and 1.2 we had v⊗w being an element of a "tensor product space" V⊗W and we described
two approaches to the development of the meaning of the symbol ⊗ : quotient space and category theory.

Chapter 2: Tensor Algebra

 37

Here we provide a third approach to the meaning of ⊗ which is equivalent to that of the first two
approaches. This third approach is geared to dealing with tensor components so there are lots of indices
floating around, whereas in Sections 1.1 and 1.2 components were not even mentioned.

Recall our previous two equations

 Mabcde = KabKcd ve . (2.8.5)
 Ma

bc
d
e = Ka

bKc
d ve . (2.8.6)

In order to display the outer product as a unified entity, we had to make up a new symbol M to represent
the outer product tensor. We can avoid having to do this by writing M = K⊗K⊗v, so that the ⊗ symbol in
our "third approach" is just a way to name an outer product tensor. The above equations are then

 (K⊗K⊗v)abcde = KabKcd ve . (2.8.7)
 (K⊗K⊗v)abcde = Ka

bKc
d ve . (2.8.8)

Here K and v are tensors, they are not spaces, so this is more like v⊗w than V⊗W. In fact, as a special
case we can use this idea to name the outer product of two vectors to be rank-2 tensor a⊗b,

 (a⊗b)ij = aibj a,b ∈ V . (2.8.9)

Notice that ⊗ is a non-commuting operator: a⊗b ≠ b⊗a .

In our "third approach" the ⊗ symbol exists only within the context of V⊗V, since vectors a and b both
belong to the x-space of Picture A (2.1.1) which we identify with vector space V. However, one can
extend this meaning of ⊗ to apply more generally as the outer product of vectors in different vector
spaces,

 (v⊗w)ij = viwj v ∈ V w ∈ W . (2.8.10)

If we try to fit this into our notion of tensor transformations, we would need two copies of Picture A, one
for U→V and the other for X→W with vector transformations

 v(V)i = R(V)i

jv(U)j R(V)i
j = linearization of some transformation x' = F(V)(x)

 w(W)i = R(W)i
jw(X)j . R(W)i

j = linearization of some transformation y' = F(W)(y) . (2.8.11)

Then the transformation of the outer product "tensor" would be written as,

 (v(V)iw(W)i) = R(V)i

aR(W)j
b (v(U)aw(X)b)

or
 [(v⊗w)(V,W)] ij = R(V)i

aR(W)j
b [(v⊗w)(U,X)]ab . U⊗X → V⊗W (2.8.12)

One might refer to (v⊗w)(V,W) as a "cross-space rank-2 tensor" (cross tensor). Normally the word
"tensor" is used when W = V. Then the above reads,

Chapter 2: Tensor Algebra

 38

 [(v⊗w)(V,V)] ij = R(V)i

aR(V)j
b [(v⊗w)(U,U)]ab U⊗U → V⊗V

or
 (v⊗w)' ij = Ri

aRj
b (v⊗w)ab . // Picture A (2.1.1) (2.8.13)

The outer product thus has the same form in x'-space and in x-space, being a rank-2 tensor,

 (a⊗b)ij = aibj a,b ∈ V .

 (a⊗b)'ij = a'ib'j a',b' ∈ V' . (2.8.14)

As a final outer product example, consider the outer product of three vectors,

 Mijk = aibjck a,b,c ∈ V , (2.8.15)

Using our ⊗ naming method for outer products, this becomes

 (a⊗b⊗c)ijk = aibjck (2.8.16)

with this obvious extension to the outer product of any number of vectors

 (a⊗b⊗c⊗....)ijk.... = aibjck.... (2.8.17)

Associativity of ⊗

The outer product operator ⊗ as defined here is an associative operator, because multiplication of real
numbers is associative. Consider for example,

 (A⊗B⊗v)abcde = AabBcdve
 (multiplication of reals is associative)
 [(A⊗B)⊗v]abcde = [(A⊗B)abcd] ve = [AabBcd] ve = AabBcdve . (2.8.18)

Adding the parentheses on the second line in (A⊗B)⊗v does not alter the value of the components. This
is true for the tensor product of any number of tensors,

 (T1⊗T2⊗T3....⊗TN)I1I2I3...IN = T1

I1T2
I2T3

I3 TN
IN (2.8.19)

where each Ii represents a set of indices to go with Ti. For example,

 (T1⊗(T2⊗T3)....⊗TN)I1I2I3...IN = T1

I1(T2⊗T3)I2I3 ... TNIN

 = T1

I1[T2
I2T3

I3] ... TN
IN = T1

I1T2
I2T3

I3 TN
IN

 = (T1⊗T2⊗T3....⊗TN)I1I2I3...IN . (2.8.20)

Chapter 2: Tensor Algebra

 39

Therefore we have,

Fact: The ⊗ operator is associative for any tensor product, so parentheses can be added anywhere in a
tensor product. (2.8.21)

The associativity of the product of a set of real numbers along with the outer product definition of ⊗ is
what causes the ⊗ operator to be associative. With the abstract ⊗ definitions of Chapter 1, associativity of
⊗ is added by fiat as an axiom.

2.9 The Inner Product (Contraction) of Tensors

When any tensor structure contains a pair of implicitly summed indices which are "tilted", one says that
those indices are contracted. It is easy to show that, due to the orthogonality rules (2.1.9), such internal
index contractions behave as a scalar, which is to say, behave as if they weren't there at all with respect to
a transformation. A proof appears in Tensor (7.12.2). Such contractions in a tensor structure reduce the
rank of the tensor by two, resulting in an inner product. The contracting sum must occur only on a "tilted
pair" of indices.

Tilt Reversal Rule: Any such tilted index pair can have its tilt reversed "for free". (2.9.1)

Proof: Using (2.2.1) and (2.2.2),

 [-----a---------a----] = gab gac [-----b---------c----] = gba gac [-----b---------c----]

 = δbc [-----b---------c----] = [-----b---------b----] = [-----a---------a----]

where dashes indicate up or down tensor indices we don't care about. This "tilt reversal rule" applies to
any contracted index within a tensor expression. It applies as well in other cases where g raises and
lowers things so the above proof still works. The classic example involves expansions of the form (2.5.1)

 V = V'n en = V'n en . (2.9.2)

The tilt can be reversed even though the n on en is a label and not a tensor index. The reason is that

 en = g'ni ei en = g'ni ei (2.3.2)

 V'n = g'nbV'b V'n = g'nb V'b . (2.2.1)

The standard first example of an inner product is the inner product of two vectors. Consider,

 Mij = aibj = a rank-2 tensor, which we now contract to form,

 s = Mi

i = aibi = aibi = a rank-0 tensor (a scalar) . (2.9.3)

Chapter 2: Tensor Algebra

 40

Using our notation (2.2.5) this is written

 s = a • b // <a | b> in Dirac notation (2.9.4)

which is an "inner product" of two vectors. This is of course the inner product / scalar product / dot
product which makes our vector space V be a Hilbert space.
 In this example, creating an "inner product" of the two vectors ai and bj which has rank-0 goes in the
opposite direction of the "outer product" that creates Mij = Mij = aibj of rank-2.
 The term "contraction" is more often applied to reducing the rank of tensors than is "inner product",
and perhaps it is best to reserve the term "inner product" for the above dot product of two vectors.
 Here are other examples of rank reduction by contraction. Define

 Mabcd ≡ KabQcd = rank-4 tensor (2.9.5)

 Tac ≡ Mabc

b = KabQc
b = rank-2 tensor . (2.9.6)

In this last example, contraction on the b index happens to occur between the two rank-2 tensors from
which M was constructed as an outer product. One more step,

 S ≡ Ta

a = KabQab = rank-0 tensor (scalar) . (2.9.7)

Using the ⊗ notation introduced in the previous section, we can write the inner product s = a • b as a
contraction of the outer product a⊗b

 s = (a⊗b)ii = (a⊗b)ii and ||a||2 ≡ aiai = (a⊗a)ii . (2.9.8)

Similarly (2.9.5,6,7) can be written

 (K⊗Q)abcd = KabQcd = rank-4 tensor (2.9.9)

 Tac = (K⊗Q)abcb = rank-2 tensor (2.9.10)

 S = Ta

a = (K⊗Q)abab = rank-0 tensor (scalar) . (2.9.11)

Dot products in spaces V⊗V, V⊗W, V⊗V⊗V and V⊗W⊗X

Recall that (2.2.5) defines the (covariant) dot product of two vectors in V

 a • b = gijaibj = gijaibj = aibi = aibi . x-space = V (2.2.5)

It is possible to define an inner product operator • for use between two elements of V⊗V :

 (a⊗b) • (c⊗d) ≡ Σij(a⊗b)ij(c⊗d)ij (a⊗b), (c⊗d) ∈ V⊗V
 (2.9.12)
 = Σijaibjcidj .

Chapter 2: Tensor Algebra

 41

With this definition, we have a tiny theorem:

Theorem: (a⊗b) • (c⊗d) = (a•c)(b•d) a,b,c,d ∈ V (2.9.13)

Proof: (a•c)(b•d) = (Σi aici)(Σj bjdj) = Σij aicibjdj = Σij aibj cidj

 = Σij(a⊗b)ij(c⊗d)ij = (a⊗b) • (c⊗d) .

Suppose dim(V) = n and dim(W) = n'. Then we can extend the above theorem to V⊗W in this way. First
define the dot product as,

 (a⊗b') • (c⊗d') ≡ Σi=1nΣj=1n'(a⊗b')ij(c⊗d')ij (v⊗w),(v'⊗w') ∈ V⊗W
 (2.9.14)
 = Σijaib'jcid'j .

The corresponding Theorem is then

Theorem: (a⊗b') • (c⊗d') = (a • c)(b' • d') a,c ∈ V b',d' ∈ W (2.9.15)

Proof: (a•c)(b'•d') = (Σi=1n aici)(Σj=1n b'jd'j) = Σijaicib'jd'j = Σijaib'jcid'j

 = Σij (a⊗b')ij (c⊗d')ij = (a⊗b') • (c⊗d') .

In a similar fashion one can show using (2.8.17) that with the following definition,

 (a⊗b⊗c) • (d⊗e⊗f) ≡ Σijk (a⊗b⊗c)ijk (d⊗e⊗f)ijk V⊗V⊗V (2.9.16)

one obtains

Theorem: (a⊗b⊗c) • (d⊗e⊗f) = (a • d)(b • e)(c • f) all vectors ∈ V (2.9.17)

with a similar extension to V⊗W⊗X,

Theorem: (a⊗b'⊗c") • (d⊗e'⊗f") = (a • d)(b' • e')(c" • f") a,d ∈ V; b',e' ∈ W; c",f"' ∈ X
 (2.9.18)

Chapter 2: Tensor Algebra

 42

2.10 Tensor Expansions

Having a name for the outer product of two vectors allows us to write expansions of tensors of rank
greater than 1 in a compact notation. The template is the vector expansion from (2.7.1) line 3,

 V = Σa V'a ea . (2.10.1)

(a) Rank-2 Tensor Expansion and Projection

As shown in (2.7.5) and (2.7.9), one can expand a rank-2 tensor on the tangent base vectors as follows,

 M = Σab M'ab ea⊗eb . (2.10.2)

To verify that this is the correct expansion, we take the ij components of both sides,

 [M]'ij = [Σab M'ab ea⊗eb]'ij

 = Σab M'ab (ea⊗eb)'ij

 = Σab M'ab (e'a)i (e'b)j // (2.8.14), outer product in x'-space

 = Σab M'ab δaiδbj // (2.5.8) line 2 used twice

 = M'ij (2.10.3a)

so the expansion is correct. Similarly,

 M = Σab Mab ua⊗ub

 [M]ij = [Σab Mab ua⊗ub]ij

 = Σab Mab (ua⊗ub)ij

 = Σab Mab (ua)i (ub)j // (2.8.14), outer product in x-space

 = Σab Mab δaiδbj // (2.5.8) line 1 used twice

 = Mij . (2.10.3b)

Chapter 2: Tensor Algebra

 43

A convenient notational method for projecting out the coefficients of any tensor expansion is the use of
tensor-product-space dot products defined in Section 2.9. To demonstrate, we use a tensor expansion in
V⊗W where the basis vectors are en and e'n for V and W, using notation of (2.7.6),

 M = Σab [M(e,e')]ab ea⊗e'b . M ∈ V⊗W . (2.10.4)

The appropriate projector is (ei⊗e'j), which is just the expansion's basis ea⊗e'b with up/down toggled on
the indices, and dummy labels like i,j selected. Using this projector one finds,

 (ei⊗e'j) • M = Σab [M(e,e')]ab (ei⊗e'j) • (ea⊗e'b)

 = Σab [M(e,e')]ab (ei • ea)(e'j • e'b) // theorem (2.9.15)

 = Σab [M(e,e')]ab δia δjb // dual pairs as in (2.3.2)

 = [M(e,e')]ij (2.10.5)

and indeed, the coefficient is duly projected out of M. Here is a more complicated example where M is
now a rank-3 tensor, and where we use a perverse mixed basis,

 M = Σabc [M(e,u',e")]abc ea ⊗ u'b ⊗ e"c M ∈ V⊗W⊗X . (2.10.6)

The projector is (ei ⊗ u'j ⊗ e"k) and we use it to project out the coefficient in (2.10.6) :

 (ei ⊗ u'j ⊗ e"k) • M = (ei ⊗ u'j ⊗ e"k) • Σab [M(e,u',e")]abc ea ⊗ u'b ⊗ e"c

 = Σab [M(e,u',e")]abc (ei ⊗ u'j ⊗ e"k) • (ea ⊗ u'b ⊗ e"c)

 = Σab [M(e,u',e")]abc (ei • ea)(u'j • u'b)(e"k • e"c) // theorem (2.9.18)

 = Σab [M(e,u',e")]abc δia δjb δkc // each pair is dual as in (2.3.2)

 = [M(e,u',e")]ijk . (2.10.7)

(b) Rank-k Tensor Expansions and Projections

A rank-k tensor T in Vk has this expansion on the er basis,

 T = Σi1i2....ik T'i1i2....ik (ei1⊗ ei2⊗ eik) . (2.10.8)

To verify, we take components of both sides,

Chapter 2: Tensor Algebra

 44

 [T]j1j2...jk = Σi1i2....ik T'i1i2....ik (ei1⊗ ei2⊗ eik)j1j2...jk

 = Σi1i2....ik T'i1i2....ik (ei1)j1 (ei2)j2(eik)jk // (2.8.17)

 = Σi1i2....ik T'i1i2....ik Ri1

j1 Ri2
j2Rik

jk // (2.5.8) line 1

 = Σi1i2....ik [Ri1

j1 Ri2
j2Rik

jk T'i1i2....ik]

 = Tj1j2...jk . (2.10.9)

To get the last step, we use the inversion rule (2.1.11) applied to the known tensor transformation

 T'j1j2...jk = Rj1i1 Rj2i2Rjkik

 Ti1i2....ik . (2.10.10)

The coefficients T'i1i2....ik can be projected out from T as in (2.10.5),

 (ei1⊗ei2⊗... ⊗eik) • T = T'i1i2...ik (2.10.11)

with an appropriate generalization of the dot product • to the space Vk = V⊗V...⊗V ,

 (v1⊗v2...⊗vk) • (w1⊗w2...⊗wk)

 ≡ Σi1i2....ik (v1⊗v2...⊗vk)i1i2....ik (w1⊗w2...⊗wk)i1i2....ik

 = Σi1i2....ik (v1)i1(v2)i2... (vk)ik (w1)i1(w2)i2... (wk)ik // outer products

 = (v1 • w1) (v2 • w2) (vk • wk) . (2.10.12)

Using the notion of a multiindex I (an ordinary multiindex),

 I ≡ i1, i2,ik // each ir ranges 1,2....n n = dim(V) (2.10.13)

and a shorthand notation for the basis vectors

 eI ≡ ei1⊗ ei2⊗ eik eI ≡ ei1 ⊗ ei2⊗ eik (2.10.14)

the expansion (2.10.8) can be stated in the following compact form,

 T = ΣI T'I eI (2.10.8) (2.10.15)

and the coefficients T'I can be projected out according to (2.10.11),

 eI • T = T'I . (2.10.11) (2.10.16)

Chapter 2: Tensor Algebra

 45

With no comments, we now repeat the above set of steps for the expansion of T on the ur basis:

 T = Σi1i2....ik Ti1i2....ik (ui1⊗ ui2⊗ uik) (2.10.17)

 [T]j1j2...jk = Σi1i2....ik Ti1i2....ik (ui1⊗ ui2⊗ uik)j1j2...jk

 = Σi1i2....ik Ti1i2....ik (ui1)j1 (ui2)j2(uik)jk // (2.8.17)

 = Σi1i2....ik Ti1i2....ik δi1

j1 δi2
j2δik

jk // (2.5.8) line 1

 = Tj1j2...jk (2.10.18)

 (ui1⊗ui2⊗... ⊗uik) • T = Ti1i2...ik (2.10.19)

 uI ≡ ui1⊗ ui2⊗ uik uI ≡ ui1 ⊗ ui2⊗ uik (2.10.20)

 T = ΣI TI uI (2.10.21)

 uI • T = TI . (2.10.22)

2.11 Dual Spaces and Tensor Functions

We denote dual-space vectors and tensors by Greek or script font letters.

The dual space V* is by definition the space of linear functionals over V. If α ∈ V*, we can then write

 α : V → K α(v) = k ∈ K (2.11.1)

where K is any field (but we always use the reals). Since α is a linear functional, α(v) is a linear function.

In normal calculus, if f: V → R, one refers to f as a function, and f(v) as that function evaluated at some
point in V, though loosely speaking f(v) is also called a function. To emphasize the distinction, we shall
refer to f as a "functional" and f(v) as a "function".

Comments: Much of the rest of this section will be repeated in later Chapters. We have found that the
notations involved can be a major stumbling block, and feel it is important to exercise the notation in
many ways to make the reader (and author) feel comfortable with it. As with most endeavors, it is a
matter of practice. We also try to explain why certain notations are used.

Chapter 2: Tensor Algebra

 46

(a) The Dual Space V* in Matrix and Dirac Notation

For every column vector v in V, there exists a row vector vT such that (vT)i = vi. For example, for N=2,

 v = ⎝
⎛

⎠
⎞ a

 b = |v> vT = (a, b) = <v| . (2.11.a.1)

Here we have snuck in the Dirac bra-ket notation where the ket |v> is a column vector and the bra <v| is
the corresponding row vector. The notation vT means that the row vector is the Transpose of the column
vector.

We now have multiple ways to write the dot (inner, scalar) products of Section 2.9 :

 v • v' = vTv' = (a, b) ⎝
⎛

⎠
⎞ a'

 b' = aa'+bb' = <v | v' > . (2.11.a.2)

Because our vectors have real components, the above can also be written

 v' • v = v'Tv = (a', b') ⎝
⎛

⎠
⎞ a

 b = aa'+bb' = <v' | v > . (2.11.a.3)

We mention real components only because in the Dirac notation one has <a|b> = <b|a>* where * means
complex conjugation, so if this scalar product is real, then <a|b> = <b|a> .

We regard v or |v> as being a vector in the vector space V, while vT or <v| (the row vector) is a vector in
the dual space V*. This is really a simple concept. Sometimes the dual-space vector vT = <v| is referred
to as the covector of v = | v > .

Suppose αT = <α | is a vector in the dual space V* . One can regard this dual-space vector <α | as being a
functional which acts on vectors in the space V. Then,

 α = <α | = functional

 α(v) = <α | v> = α • v = function = a scalar number (2.11.a.4)

 α : V → K . // K = any real field, such as the real numbers

Just as the space of column vectors V is a linear space (a vector space), so also the dual space of row
vectors V* is a linear space, so we know that the functional <α | is a linear functional. That in turn implies
that the function α(v) is a linear function, which we now show directly:

 α(sv) = α • (sv) = s (α • v) = s α(v)

 α(v+v') = α • (v+v') = α • v + α • v' = α(v) + α(v') . (2.11.a.5)

Chapter 2: Tensor Algebra

 47

(b) Functional notation

We have now a slight notational conundrum. We like to write a scalar-valued function F(v) in non-bold
font, whereas a vector-valued function would be F(v). Thus we have written α(v) above with a non-bold
α, since α(v) is a scalar-valued function. On the other hand, α(v) is really a function of the vector α, so it
seems misleading to refer to it as α(v), and we ought to call it α(v) so then α(v) = <α | v> has everything
bolded on both sides. But then the functional would have to be called α = <α | . But this contradicts our
notation earlier that α is a vector, αT is the transpose, and we should write αT = <α |. If we use α = <α |
then we avoid that contradiction. This is what authors end up doing, writing a functional as a scalar entity
which for us means an unbolded entity. A possible solution would be to say,

 fα = <α | = functional

 fα(v) = <α | v> = α • v = function (2.11.b.1)

where f is non-bold, and the subscript label α is bold, but then we have introduced a new symbol f which
seems superfluous. So the conclusion is this: α = <α| = functional, α(v) = <α | v> = function, and one
must understand that α(v) is a function of the vector quantity α. Obviously there is a unique functional
α(v) for each vector α in V (and thus for each αT in V*). The spaces V and V* have the same dimension n
and are isomorphic to each other in the sense just noted.

(c) Basis vectors for the dual space V*

Now recall that our axis-aligned x-space basis vectors ui have dual basis vectors ui where ui• uj = δij
which is the idea of orthogonality in the covariant world (which might be non-Cartesian). In our notations
above,

 ui• uj = (ui)T uj = <ui | uj> = δij
 = ui• uj = (ui)T uj = <ui | uj> = δij = δi,j . (2.11.c.1)

Since ui and ui are in general different column vectors in V, (ui)T and (ui)T are different row vectors in
the dual space V*.

Just as the column vectors |ui> and |ui> form two distinct bases for V, the row vectors <ui | and <ui |
form two distinct bases for V*. Certainly dim(V) = dim(V*).

Definition of λi

Above we discussed α = <α| as a vector functional, and α(v) = <α|v> as the corresponding scalar function.
Whereas <α| is some general vector in V*, we now consider in its place a basis vector <ui| in V*. With
what notation shall we represent this functional? In analogy with α and α(v) we could use ui and ui(v)
where the ui is unbolded to indicate a scalar function. Or we could use fui = <ui| and fui(v) = <ui| v> .
The first notation is not uncommon (see wiki dual space where ui = ei), while the latter notation is
unpleasant. Other common notations are v*i(v) or e*i(v) which for us would be u*i(v).

Chapter 2: Tensor Algebra

 48

 We shall use the following notation,

 λi ≡ <ui| basis functional in V* // λi = (ui)T

so
 λi(v) = <ui|v> basis function in V*f // λi(v) = (ui)Tv . (2.11.c.2)

The λ is unbolded, consistent with α(v). λ is a Greek letter consistent with our plan to use Greek or script
letters for dual space objects. The index on λi is up, matching the index on ui in <ui|. Notice that

 λi(uj) = <ui|uj> = δij . (2.11.c.3)

We think of λi ≡ <ui| as being in the dual space V* while λi(v) = <ui|v> lies in a directly corresponding
space of functions which we call V*f. This is our first example of what we shall call a "tensor function".

Comment: Lang [1999] uses λi(p 130) for the his dual space basis functionals. Sjamaar used symbol λi
in his 2006 notes (p 84), but changed to βi in his 2015 update (p 91). Spivak uses φi (p 76). Wiki (dual
basis) uses basis vectors vi instead of ei so their λi is called vi. Wiki (dual space) uses ei while Lang
[2002] uses fi (p 143). There seems to be no standard notation as in physics where F = ma is universally
recognized as Newton's Second Law which would be hard to identify if written G = nb. Probably ui or ui

(unbolded) is the most logical choice if the V basis vectors are ui, but it is so easy to confuse functional
ui with the vector ui (especially when we drop our bolding of vectors starting in Chapter 3) that we shall
stick with λi.

Eq. (2.7.1) line 1 gives the expansion of a vector v onto the ui

 v = Σi vi ui where vi = ui • v
or
 |v> = Σi vi |ui> where vi = <ui| v > = ui • v . (2.11.c.4)

Notice therefore that

 λi(v) = <ui|v> = ui • v = vi . (2.11.c.5)

The function λi(v) is sometimes called "the ith coordinate function" since it projects out the ith
component the vector v. As summarized in (2.7.13), since each dot product ui • v is a scalar, the
functions λi(v) i = 1..N transform as scalars despite the fact that the values of these scalars are the
components of the vector vi.

Transposing (2.11.c.4) produces a vector functional expansion in V*,

 vT = Σi vi (ui)T or <v| = Σi vi <ui| = Σi vi <ui| . (2.11.c.6)

Using Greek letters for dual space objects we write this as

Chapter 2: Tensor Algebra

 49

 α = <α| = Σi αi <ui| = Σi αiλi . (2.11.c.7)

Then,

 α = Σiαiλi functional (2.11.c.8)

 α(v) = Σiαiλi(v) = Σiαivi = α • v function (2.11.c.9)

or in bra-ket notation,

 <α| = Σiαi<ui| functional

 α(v) = Σiαi<ui|v> = Σiαivi = α • v = <α |v> function (2.11.c.10)

and we replicate the result (2.11.a.4).

Definition of λ'i

We have defined λi ≡ <ui| as a notation for a certain basis functional in dual x-space. We would like to
somehow define an object λ'i which is a basis functional in dual x'-space. How should this be done?

One might intuitively feel that one should set λ'i ≡ <u'i| . Or one might think that once λi is defined as
above, then the meaning of λ'i is forced upon us by some equation like λ'i = Ri

jλj . Both these notions
are not what we want to do. We are not forced to say λ'i ≡ <u'i| just because λi ≡ <ui| since we are
making two separate definitions. And λ'i = Ri

jλj is complete nonsense for the following reason. The N
functionals λi for i = 1..N are each vectors in V*, so {λi} is a set of vectors, not a set of numbers,
whereas when one tries to write λ'i = Ri

jλj one is implying that λj is a set of numbers which form a
vector.

Recall that the ui are the "axis-aligned" basis vectors in x-space since (ui)j = (ui)j = δi,j.
Recall that the e'i are the "axis-aligned" basis vectors in x'-space since (e'i)j = (e'i)j = δi,j.

This suggests that the proper definition of λ'i is the following:

 λ'i ≡ <e'i| . (2.11.c.11)

One then finds that, for v' a vector in x'-space,

 λ'i(v') ≡ <e'i| v'> = v'i (2.11.c.12)

which is then analogous to

 λi(v) ≡ <ui| v'> = vi . (2.11.c.5)

Chapter 2: Tensor Algebra

 50

In both cases then λi and λ'i are the "ith coordinate functions", projecting out the ith coordinate from a
vector.

Since v'i = Ri

jvj we can certainly write

 λ'i(v') = Ri

j λj(v) (2.11.c.13)

as a statement relating two vectors of scalars. Notice this does not say λ'i = Ri

jλj which we already
noted above does not even make sense. If we display the fact that Ri

j in general is Ri
j(x) then

 λ'i(v') = Ri

j(x) λj(v) . (2.11.c.14)

Since this does not fit into any of the molds shown in (2.1.16), one cannot quite claim that λj(v)
transforms as a vector field, but the transformation is similar.

We can study (2.11.c.13) in Dirac notation as follows (see below for Dirac notation details),

 λ'i(v') = <e'i|v'> = <ei|v> = <ei| 1 | v> = <ei|uj >< uj| v> = ei• uj λj(v) = Ri

jλj(v)
 (2.11.c.15)
where the last step comes from (2.4.3).

Once one has a functional λ'i, one can define a general rank-1 functional α' in dual x'-space as follows:

 α' = Σiα'iλ'i functional in V'* (2.11.c.16)

 α'(v') = Σiα'iλ'i(v') = Σiα'iv'i = α' • v' function in V'*f . (2.11.c.17)

It then follows that

 α'(v') = α' • v' = α • v = α(v) (2.11.c.18)

and in some sense one could say that α(v) transforms as a scalar field, where v plays the role normally
occupied by the position vector x. On the other hand, the vector |v> and the dual vector (functional) α =
<α| transform as vectors and so α is a vector functional.

We now define α(v) to be a "rank-1 tensor function". Spivak would call it a "1-tensor". We have this
seeming contradiction that α(v) is a rank-1 tensor function, yet that function transforms as a rank-0 scalar.
The rank-1 description really applies to the functional α = <α| which is in fact a vector and transforms as a
vector. When this is closed with the ket |v> one obtains the scalar object α(v) = <α | v>. (2.11.c.19)

Vector space names: V, V*, V*f and V', V'*, V'*f (2.11.c.20)

Here we have associated vector space names V and V* with x-space in Picture A (2.1.1), while V' and
V'* are associated with x'-space. All these spaces have the same dimension n and all are isomorphic.
There is a 1-to-1 relationship between V and dual space V* as noted above, and there is a 1-to-1

Chapter 2: Tensor Algebra

 51

relationship between V and V' since for every vector v in x-space there is a unique corresponding vector
v' = Rv in x'-space. We refer to V* as dual x-space and V'* as dual x'-space. Associated with the dual
space V* of functionals is the space V*f of corresponding functions, and similarly for V'* and V'*f.

(d) Rank-2 functionals and tensor functions

A rank-2 tensor may be represented as

 T = Σab Tab ua ⊗ ub (2.11.d.1)

 V = Σa Va ua

where on the second line for comparison we show a general rank-1 tensor (vector). In Dirac notation, we
write

 | ua, ub> ≡ |ua> ⊗ |ub> ↔ ua ⊗ ub (2.11.d.2)

which represents any of the n2 basis vectors of the tensor product space V2 = V⊗V. We could write this
as | ua, ub>2 ≡ |ua>1 ⊗ |ub>1 to distinguish the fact that some kets are in V1 and others in V2, but the
contents of the ket usually make it obvious to which vector space a ket belongs. In Dirac notation, the
tensor T is written

 |T> = ΣabTab |ua> ⊗ |ub> = ΣabTab | ua, ub> (2.11.d.3)

and this is a general element of the space V2. The corresponding rank-2 linear functional in the dual
space V*2 is given by

 <T| = ΣabTab <ua | ⊗ <ub| = ΣabTab < ua, ub| . (2.11.d.4)

This is done in analogy with the vector case

 |V> = Σa Va |ua>

 <V| = Σa Va<ua | . (2.11.d.5)

We are careful to have the index "tilt" have the form of a contraction, even though we are not really
contracting indices on a tensor. The rank-2 functional <T| is linear in both V* spaces of V*⊗V*, so it is
called a bilinear functional. If we let (subscript 1 and 2 are labels of two vectors, not components of v)

 | v1, v2> ≡ |v1> ⊗ |v2> (2.11.d.6)

represent an arbitrary (but pure) element of V2 = V⊗V, then we may construct

Chapter 2: Tensor Algebra

 52

 T = <T| rank-2 tensor functional

 T(v1,v2) = <T | v1, v2> rank-2 tensor function (a Spivak "2-tensor") . (2.11.d.7)

It follows that

 T(v1,v2) = <T | v1, v2> = ΣabTab < ua, ub| v1, v2>

 = ΣabTab <ua| v1> <ub| v2>

 = ΣabTab (v1)a (v2)b (2.11.d.8)

where we have used the fact that the scalar product for elements of V*2 with elements of V2 is the
product of two V*-with-V scalar products, as seen for example in (2.9.13). In the last line above we see
that the tensor function T(v1,v2) is the contraction of a rank-2 tensor with two rank-1 tensors, and so is a
scalar. Thus,

 T'(v'1,v'2) = T(v1,v2) (2.11.d.9)

and a rank-2 tensor function transforms as a "scalar field of two arguments". The "rank-2" description
applies to the tensor functional <T| , and when this is closed with an element of V2 the result is a scalar.

Note from (2.11.d.8) and (2.4.1) that (ui)a = δia ,

 T(ui,uj) = ΣabTab (ui)a (uj)b = ΣabTab δia δjb = Tij (2.11.d.10)

so the tensor function evaluated at the basis vectors gives a corresponding element of the tensor.

Using λi = < ui| as defined above in (2.11.c.2), we can rewrite (2.11.d.4)

 <T| = ΣabTab <ua | ⊗ <ub|
as rank-2 tensor functional
 T = ΣabTab λa ⊗ λb (2.11.d.11)

which is analogous to

 <α | = Σa αa <ua|
 rank-1 tensor functional
 α = Σa αa λa . (2.11.d.12)

We continue to use script or Greek fonts to represent functionals, such as α and T.

Taking the special case of a rank-2 functional which is just λa ⊗ λb we construct the following rank-2
tensor function,

Chapter 2: Tensor Algebra

 53

 (λa ⊗ λb)(v1,v2) = < ua, ub| v1, v2> = <ua| v1> <ub| v2> = (v1)a (v2)b

 = λa(v1) λb(v2) . (2.11.d.13)

This function is manifestly linear in both arguments, since λa(v1) is linear, so it is a bilinear function. For
example,

 (λa ⊗ λb)(v1+v1',v2) = (v1+v1')a (v2)b = (v1)a (v2)b + (v'1)a (v2)b

 = (λa ⊗ λb)(v1,v2) + (λa ⊗ λb)(v'1,v2) . (2.11.d.14)

Whereas <T| shown above is a general rank-2 tensor functional, we can consider the special case of a
pure rank-2 functional formed from two vector functionals α = <α| and β = <β| . In that case one finds,

 (α ⊗ β) = <α| ⊗ <β| = <α, β | rank-2 functional

 (α ⊗ β)(v1,v2) = <α, β | v1, v2>
 = <α | v1> <β | v2> = α(v1)β(v2) rank-2 tensor function

 (α ⊗ β)(ui,uj) = α(ui)β(uj) = αiβj = (α ⊗ β)ij rank-2 tensor (2.11.d.15)

where the very last item is αiβj expressed in the tensor product notation of (2.8.9). Once again,
evaluation of a tensor function at two basis vectors creates an element of the tensor.

Comment on vertical bars in the Dirac Notation

Let |a> be a vector in V, and <b| a vector in the dual space V*. Notice that

 <b| |a> = <b||a> = <b|a> . (2.11.d.16)

The official notation for the scalar product is <b | a> not <b || a> so one replaces the || with | . The same
replacement is made for example doing a scalar product between elements of V*2 and V2

 <a| ⊗ <b| |c> ⊗ |d> = <a,b||c,d> = <a,b | c,d>
or
 <a| ⊗ <b| |c> ⊗ |d> = (<a| |c>) (<b| |d>) = <a|c><b|d> . (2.11.d.17)

Chapter 2: Tensor Algebra

 54

(e) Rank-k functionals and tensor functions

It is a simple matter to generalize from k = 2 to k = k, so the vector space is Vk and the dual space is V*k,

 Vk ≡ VxVx....xV k factors // Cartesian product of k spaces

 Vk ≡ V⊗V⊗....⊗V k factors // tensor product of k vector spaces

 V*k ≡ V*⊗V*⊗....⊗V* k factors // tensor product of k dual spaces . (2.11.e.1)

 We then have as a most general element of Vk (a rank-k tensor),

 T = Σi1i2....ik Ti1i2....ik (ui1⊗ ui2⊗ uik) . T = ΣITI uI (2.11.e.2)

with

 (ui1⊗ ui2⊗ uik) = |ui1> ⊗ |ui2 >.....⊗ |uik> = | ui1, ui2, uik >k (2.11.e.3)

 = | ui1, ui2, uik > . uI ≡ ui1⊗ ui2⊗ uik

On the right in red we show our equations expressed in the multi-index notation introduced in (2.10.20)
and (2.10.21). The letter Z which appears below is used to represent the set of integers 1,2...k.

Then the rank-k tensor T in Vk is represented in Dirac notation as

 |T> = Σi1i2....ik Ti1i2....ik | ui1, ui2, uik > . |T> = ΣITI |uI> (2.11.e.4)

The rank-k tensor functional <T| of V*k is then

 <T | = Σi1i2....ik Ti1i2....ik < ui1, ui2, uik | <T| = ΣITI <uI|
or (2.11.e.5)
 T = Σi1i2....ik Ti1i2....ik λi1 ⊗ λi2⊗ λik . T = ΣITI λI

A general pure element of Vk is specified by

 |v1, v2, ...vk> = |v1> ⊗ |v2> ⊗ ⊗ |vk> . |vZ> = |v1> ⊗ |v2> ⊗ ⊗ |vk> (2.11.e.6)

The corresponding rank-k tensor function is given by

Chapter 2: Tensor Algebra

 55

 T(v1, v2, ...vk) = <T | v1, v2, ...vk>

 = Σi1i2....ik Ti1i2....ik < ui1, ui2, ..., uik | v1, v2, ...vk>

 = Σi1i2....ik Ti1i2....ik < ui1|v1>< ui2|v2> < uik|vk> (2.11.e.7)

 = Σi1i2....ik Ti1i2....ik (v1)i1 (v2)i2....(vk)ik . T(vZ) = ΣITI (vZ)I

This shows that the rank-k tensor function is a linear combination of the products of the argument
components weighted by the components of the corresponding rank-k tensor. Since this is the contraction
of a rank-k tensor with k rank-1 tensors, the result transforms as a scalar, so then

 T'(v'1, v'2, ...v'k) = T(v1, v2, ...vk) . T'(v'Z) = T(vZ) (2.11.e.8)

That is to say, the rank-k tensor function transforms as a scalar field, where the term "rank-k" is
associated with the functional T = <T| which is an element of the dual space V*k . Finally we see that

 T(uj1,uj2, ujk) = <T | uj1,uj2, ujk >

 = Σi1i2....ik Ti1i2....ik (uj1)i1 (uj2)i2....(ujk)ik

 = Tj1j2....jk . T(uJ) = TJ (2.11.e.9)

From (2.11.e.7) one sees that the tensor function T(v1, v2, ...vk) is manifestly k-multilinear, which is the
generalization of linear for k = 1 and bilinear for k = 2.

Once can construct a rank-k tensor functional purely from the dual basis vectors,

 (λi1⊗λi2⊗ ... ⊗λik) = <ui1| ⊗ <ui2| ... <uik| rank-k tensor functional λI = <uI| (2.11.e.10)

 (λi1⊗λi2⊗ ... ⊗λik)(v1,v2....vk) = λi1(v1)λi2(v2)....λik(vk)
 = (v1)i1(v2)i2 ... (vk)ik rank-k tensor function λI(vZ) = (vZ)I (2.11.e.11)

 (λi1⊗λi2⊗ ... ⊗λik)(uj1,uj2, ujk) = λi1(uj1)λi2(uj2)....λik(ujk)
 = (uj1)i1(uj2)i2 ... (ujk)ik
 = δj1

i1δj2
i2 ... δjk

ik evaluated at basis vectors . λI(uJ) = δIJ (2.11.e.12)

As an alternative to the most general rank-k tensor functional T and the all-basis-vector rank-k tensor
functional (λi1⊗λi2⊗ ... ⊗λik), one can consider a "pure" rank-k tensor functional constructed from k
dual vectors which we shall call <αi| . In this case we find,

Chapter 2: Tensor Algebra

 56

 <α1, α2....αk| = <α1| ⊗ <α2| ⊗ <αk|
 pure rank-k tensor functional
 = α1 ⊗ α2... ⊗ αk = (α1⊗α2...⊗αk) (2.11.e.13)

 (α1⊗α2...⊗αk)(v1, v2, ...vk) = α1(v1)α2(v2)αk(vk)

 = (α1•v1)(α2•v2)(αk•vk) pure rank-k tensor function (2.11.e.14)

 (α1⊗α2...⊗αk)(uj1,uj2, ujk) = α1(uj1)α2(uj2)αk(ujk)

 = (α1• uj1) (α2• uj2) ... (αk• ujk) evaluated at ur

 = (α1)j1(α2)j2...(αk)jk = (α1⊗α2...⊗αk)j1j2... jk outer product notation (2.11.e.15)

Hopefully after this long slog, the following paragraph makes some sense to the reader:

A rank-k tensor function is the bra-ket closure (inner product) of a rank-k dual tensor functional <T| of
V*k with a pure rank-k non-dual tensor |v1,v2...vk> of Vk such that T(v1,v2,...vk) = <T|v1,v2...vk>. The
tensor function is k-multilinear in its arguments, and transforms as a scalar field with k vector arguments.
When the rank-k tensor function is evaluated at the basis vectors ur, it replicates the non-dual rank-k
tensor with which is it associated, which is to say, T(uj1,uj2, ujk) = Tj1j2....jk . Spivak on page 75
refers to a rank-k tensor function as a "k-tensor". (2.11.e.16)

As we shall see later, a motivation for using tensor functions is their crashingly simple description of the
tensor product of an arbitrary rank-k tensor with an arbitrary rank-k' tensor to produce a rank-(k+k')
tensor :

 k<T | v1,v2...vk>k k'< S| vk+1,vk+2...vk+k'>k'

 = [k<T ⊗ k'<S|] [|v1,v2...vk>k ⊗ |vk+1,vk+2...vk+k'>k']

 = k+k'<T⊗S | v1,v2...vk+k'>k+k' (2.11.e.17)

or

 T(v1,v2,...vk) S(vk+1,vk+2,...vk+k') = (T⊗S)(v1,v2 vk+k') . (2.11.e.18)

This equation appears below as (6.6.13) and also appears in Spivak page 75.

As noted by Benn and Tucker page 2, the relationship between the vector space Vk and the dual vector
space V*k is a reciprocal one. One could, as they say, perversely regard V*k as the starting vector space
and then Vk would be the dual space of V*k. This amounts to swapping bra ↔ ket in the Dirac notation
outlined above. Instead of having a functional α(v) = <α|v>, one would have a functional v(α) = <v|α>.

Chapter 2: Tensor Algebra

 57

We find that things are hard enough to understand without doing this "perverse" swapping of things right
off the bat as they do. They refer to a rank-k tensor as a tensor of degree k, while other authors refer to
rank as the order of a tensor. We us the term rank and promise not to confuse it with the different notion
of the rank of a matrix which is the number of linearly independent rows or columns, or with various
other meanings of the word "rank" in mathematics.

(f) The Covariant Transpose

Whereas the matrix transpose of a matrix Ma

b would be (MT)ab = Mb
a (swap the rows and columns), it is

the covariant transpose (MT)ab = Mb
a that is significant in covariant notation. We quote from Tensor

where M is a general rank-2 tensor while R and S are the "differentials" of (2.1.2),

 (MT)ab = Mba (RT)ab = Rba (ST)ab = Sba
 (MT)ab = Mb

a (RT)ab = Rb
a (ST)ab = Sba

 (MT)ab = Mb
a (RT)ab = Rb

a (ST)ab = Sba
 (MT)ab = Mba (RT)ab = Rba (ST)ab = Sba . (7.9.3)' (2.11.f.1)

Equations in any column can be obtained by lowering one or both indices in the top equation, so that the
covariant transpose MT is a rank-2 tensor if M is a rank-2 tensor.
 For all-up or all-down indices, the two kinds of transposes are the same: (MT)ab = (MT)ab = Mba.
 The covariant transpose has the indices reflected in a vertical line between the indices.
 The following facts involve the covariant transpose,

 det(M) = det(MT) = det(MT) (7.9.7)' (2.11.f.2)

 RRT = RTR = 1 SST = STS = 1 RS = SR = 1
 RT = R-1 = S ST = S-1 = R . (7.9.8)' (2.11.f.3)

The fact that RT = S and ST = R and is just a restatement of (2.1.4) and RS = SR = 1 is (2.1.3). The fact
that det(M) = det(MT) is well known, where one swaps the rows and columns. The fact that det(M) =
det(MT) is proven in (A.1.22).

(g) Linear Dirac Space Operators

Consider these three ways of writing the same real number, where M is a matrix sandwiched between
vector b on the right and transpose vector a on the left,

 aT (Mb) M acts to the right (* * *) [
⎝
⎜
⎛

⎠
⎟
⎞ * * *

 * * *
 * * *

⎝
⎜
⎛

⎠
⎟
⎞ *

 *
 *

]

 (aTM)b M acts to the left, and note that (aTM) = (MTa)T † [(* * *)
⎝
⎜
⎛

⎠
⎟
⎞ * * *

 * * *
 * * *

]
⎝
⎜
⎛

⎠
⎟
⎞ *

 *
 *

 aTM b can think of M acting either to the right or to the left. (2.11.g.1)

Chapter 2: Tensor Algebra

 58

† [(MTa)T]i = (MTa)i = (MT)ijaj = Mj
iaj = ajMj

i = (aTM)i

In writing these equations, one normally thinks of M as being a matrix

 Mi

j = (M[u])ij or M = M[u] .

By default, the matrix elements are taken in the axis-aligned ui basis on both left and right (and this
applies to all indices as discussed at the end of Section 2.4 so that

 (ui)TM (uj) = Σa,b (ui)a Ma

b (uj)b = Σa,b δia Ma
b δjb = Mi

j // = (M[u])ij. (2.11.g.2)

and then M[u] = M. One could, however, do this in some other basis, for example using the tangent base
vectors ei,

 (ei) TM (ej) = Σa,b (ei)a Ma

b (ej)b = Σa,b Ri
a Ma

b Rj
b = (RMRT)ij // = (M[e])ij (2.11.g.3)

and the result is a completely different matrix. In this case the matrices are related by a covariant
similarity transformation by R

 M[e] = R M[u]RT . // M' = RMRT (2.11.g.4)

It is useful to think of the object M as being a basis-independent abstract linear operator which, when
sandwiched between certain basis vectors, has certain matrix elements. Different types of basis vectors
yield different matrices. One could also have mixed basis elements,

 (ui) TM (ej) = Σa,b (ui)aMa

b(ej)b = Σa,b δiaMa
bRj

b = (MRT)ij // = (M[u,e])ij (2.11.g.5)

so in this case we get

 M[u,e] = M[u]RT . (2.11.g.6)

The abstract operator M only becomes a matrix when it is properly sandwiched between basis vectors.

This notion of thinking of the object M as a basis-independent linear operator becomes more pronounced
in the Dirac notation. We restate the above equations as follows, all of which evaluate to the same real
number,

 <a| (M |b>) M acts to the right = <a | Mb >

 (<a|M) |b> M acts to the left, and note that <a|M = <MTa | = <MTa | b >

 <a| M |b> can think of M acting either to the right or to the left. (2.11.g.7)

The space between the vertical bars is inhabited by abstract linear operators like M. The matrix elements
shown above are then

Chapter 2: Tensor Algebra

 59

 <ui | M | uj> = (M[u])ij = Mi

j

 <ei | M | ej> = (M[e])ij = (RMRT)ij

 <ui | M | ej> = (M[u,e])ij = (MRT)ij . // M = M[u] (2.11.g.8)

To emphasize this notion of abstract operator, we shall write the operator in a different font, so M is a
matrix and M is a Dirac-space operator, and then

 <a| M |b> = <a| (M |b>) = <a |M b> = a scalar product of two vectors
 <a| M |b> = (<a|M) |b> = <MTa | b > = a scalar product of two vectors

 <ui | M | uj> = (M[u])ij = Mi

j etc . (2.11.g.9)

Here then is a review of the matrix and Dirac notations,

 a' = (Ma) = (M)a ⇒ (b')T = (Mb)T = bT MT matrix notation
 |a'> = |Ma> = M|a> <b'| = <Mb| = <b|MT . Dirac notation (2.11.g.10)

Then consider the following claim

Fact: <a | M | b> = <b| MT | a> (2.11.g.11)

where both M and MT are the names of abstract linear operators.

Proof:

 <a | M | b> ≡ <a | M b> = ai(Mb)i = ai[Mi

jbj] = ai Mi
j bj

 = bj Mi

j ai = (bT)j (MT)ji ai = (bT)j [MTa]j = <b| MTa> = <b| MT |a> .

Operator M is defined by its action on an arbitrary ket vector M | b> = | M b>
Operator MT is defined by its action on an arbitrary ket vector MT | b> = | MT b>
Notice in the proof that the covariant transpose MT is the correct transpose to use since Mi

j = (MT)ji.

Exercise: Show that w•v is a scalar under any transformation x' = F(x) :

 w'•v' = <w' | v'> = <Rw|Rv> = <w|RTR|v> = <w| 1 |v> = <w|v> = w•v . (2.11.g.12)

In this example R is a matrix, whereas R is the corresponding Dirac space operator. The statement

 RTR = 1 (2.11.g.13)

Chapter 2: Tensor Algebra

 60

is the operator version of our (2.11.f.3) matrix statement

 RTR = 1 (2.11.g.14)

which we verify as follows,

 (RTR)ac = (RT)abRb

c = Rb
a Rb

c = δac // (2.1.9) #1 (2.11.g.15)

and which is valid for any transformation differential matrix Ri

j.

Ways of representing M

One may represent a Dirac operator M in various ways, for example,

 M = Σij | ui> Mi

j <uj|

 = Σij | ei> [M[e]] ij <ej|

 = Σij | ui> [M[u,e]] ij <ej| (2.11.g.16)

as can be verified by closing with the appropriate basis vectors. For example, for the last line above,

 <ua | M | eb> = <ua | { Σij | ui> [M[u,e]] ij <ej|} | eb>

 = Σij <ua | ui> [M[u,e]] ij <ej| eb>

 = Σij δai [M[u,e]] ij δjb

 = [M[u,e]] ab . (2.11.g.17)

When M = 1 we find

 1 = Σij | ui> δij <uj| = Σi | ui><ui| (2.11.g.18)

which is just a statement that the | ui> basis is complete, as discussed more below in section (h).

We can compare the abstract Dirac operator M with the abstract rank-2 "vector" M,

 M = Σij | ui> Mi

j <uj| // Dirac operator

 M = Σij Mi

j ui ⊗ uj // (2.8.10), "vector" in vector space V2
or
 |M> = Σij Mi

j | ui> ⊗ | uj> . (2.11.g.19)

Chapter 2: Tensor Algebra

 61

The first object M is an operator in the Dirac Hilbert Space V.

The second object M or |M> is a vector in the tensor product space V ⊗ V.

M and M are completely different objects, though they both involve the same matrix elements Mi

j. In
each case, we can project out those matrix elements in an appropriate fashion:

 <ua | M | ub> = <ua | { Σij | ui> Mi

j <uj|} | ub> = Ma
b

 [< ua| ⊗ < ub|] | M > = [< ua| ⊗ < ub|] Σij Mi

j | ui> ⊗ | uj> = Ma
b . (2.11.g.20)

Non-square matrices

The above discussion is presented implicitly for a square matrix M, but only small adjustments are needed
for it to apply to a non-square matrix. In this case, in aTM b one thinks of vectors a and b as having
different dimensions. Perhaps b lies in x-space which is Rn while a lies in x'-space which is Rm with m >
n, and then Mi

j is an m x n matrix. The x'-space V' has n basis vectors |u'i> while the x-space V has m
basis vectors |ui>. Then one would have, for example,

 <ui | M | u'j> = Mi

j

 M = Σi=1m Σj=1n | ui> Mi

j <u'j|

 |M> = Σi=1m Σj=1n Mi

j | ui> ⊗ | u'j>

 1' = Σi | u'i><u'i| completeness in V'

 1 = Σi | ui><ui| completeness in V (2.11.g.21)

This is exactly the situation we shall encounter in Chapter 10 where the matrix R is an m x n matrix.

Linearity of M

We emphasize that any Dirac operator like M is a linear operator. This is so because the action of M is
defined in terms of the matrix M which is of course a linear operator. Specifically,

 M | s1a + s2b> = | M(s1a + s2b)> // definition of M

 = | s1Ma + s2 Mb > // matrix algebra

 = | s1Ma> + | s2 Mb > // the ket vector space V is a linear space

 = s1| Ma> + s2| Mb > // the ket vector space V is a linear space

 = s1M| a > + s2M| b > . (2.11.g.22)

Chapter 2: Tensor Algebra

 62

Following the same steps, one finds that M is also linear when it acts to the left on vectors in the dual
space V*,

 < s1a + s2b | M = < MT(s1a + s2b) | = s1 <MTa | + s2 <MTb | = s1 <a |M + s2 <b |M (2.11.g.23)

M acting on tensor product spaces

Tensor product spaces and wedge product spaces (regular and dual) are described in later Chapters of this
document, so our presentation is a little out of order here. We just want to have all material for Dirac
operators collected in one place.

It is possible to extend the definition of M to describe its action on a tensor product space. Suppose |T>
and |S> are elements of V2 = V⊗V (to be discussed in Section 4.1). Calling this extended operator M(2),
we first define it to be a linear operator,

 M(2) [s1 |T> + s2 |S>] ≡ s1M(2) |T> + s2M(2) |S> . // definition

Then we state instructions for how M(2) acts on a vector in V2, using a general expansion for |T>,

 M(2) |T> = M(2) [ΣijTij |ui> ⊗ |uj>] = ΣijTij M(2)[|ui> ⊗ |uj>]

 ≡ ΣijTij M|ui> ⊗ M|uj> // definition

 = ΣijTij |Mui> ⊗ |Muj> .

In general, if | a> and | b> are vectors in V1, then

 M(2) [| a> ⊗ | b>] ≡ M| a> ⊗ M| b> = | Ma> ⊗ | Mb> .

Normally we write M(2) just as M so the nature of M is implied by the space on which it acts. Then

 M [s1 |T> + s2 |S>] ≡ s1M |T> + s1M |S>

 M[| a> ⊗ | b>] ≡ M| a> ⊗ M| b> = | Ma> ⊗ | Mb> . // M acting on V2 (2.11.g.24)

In generalizing the above equations to the tensor product space Vn = V⊗V⊗...V (Chapter 5), the first
equation above stays the same, where then M on the left side means M(n), while the second equation
changes, so

 M [s1 |T> + s2 |S>] ≡ s1M |T> + s1M |S>

 M[| v1> ⊗ | v2> ⊗ ⊗ |vn>] // M acting on Vn [see (5.6.17)]

 ≡ M| v1> ⊗ M| v2> ⊗ ⊗ M|vn> = | Mv1> ⊗ | Mv2> ⊗⊗ |Mvn> . (2.11.g.25)

Chapter 2: Tensor Algebra

 63

Parallel statements apply for the dual space V*n (Chapter 6)

 [s1 <T| + s2 <S|]M ≡ s1 <T|M + s1 <S|M

 [<v1| ⊗ < v2| ⊗⊗ <vn|] M // M acting on V*n [see (6.6.18)]

 ≡ < v1|M ⊗ < v2|M ⊗ ⊗ <vn|M = < MTv1| ⊗ < MTv2| ⊗ ⊗ <MTvn| . (2.11.g.26)

M acting on wedge product spaces

As will be shown in Chapter 7, the last two equation sets above have the same form for action on wedge
product spaces, but ⊗ is replaced by ^, so

 M [s1 |T> + s2 |S>] ≡ s1M |T> + s1M |S>

 M[| v1> ^ | v2> ^ ^ |vn>] // M acting on Ln [see (7.9.d.15)]

 ≡ M| v1> ^ M| v2> ^ ^ M|vn> = | Mv1> ^ | Mv2> ^ ^ |Mvn> . (2.11.g.27)

For the dual space Λn,

 [s1 <T| + s2 <S|]M ≡ s1 <T|M + s1 <S|M

 [<v1| ^ < v2| ^^ <vn|] M // M acting on Λn [see (8.9.d.15)]

 ≡ < v1|M ^ < v2|M ^ ^ <vn|M = < MTv1| ^ < MTv2| ^ ^ <MTvn| . (2.11.g.28)

We give the M definitions above for tensor products and wedge products of vectors, but the equation
numbers "[see (...)]" show the results generalized further to the products of an arbitrary set of tensors.

Special Case R

As a special case of the general matrix M and its Dirac linear operator M, we can consider the
transformation differential matrix R and its corresponding Dirac operator R, where then R|a> = |Ra> .
The matrix R can be non-square as was noted above for M, and this situation will arise in Chapter 10. The
main point is this:

Fact: The operator R is a linear operator with respect to any of the Dirac spaces it acts upon.
 (2.11.g.29)

These spaces could be Vn, V*n, Ln, Λn or any tensor/wedge products of these spaces such as Λn ^ Λm.
For activities in x'-space, the vector space names are V'n, V'*n, L'n, Λ'n .

Chapter 2: Tensor Algebra

 64

(h) Completeness

Let bi be a set of basis vectors for vector space V. Then bi is the dual basis and we have

 δij = bi • bj = (bi)T bj = (* *)⎝
⎛

⎠
⎞ *

 * (2.11.h.1)

where we show the dot product and vector forms of the scalar product.
 By the definition of a basis, any set of basis vectors for vector space V is "complete", which means
that those vectors are sufficient to expand any vector v in V,

 v = Σi=1n vibi where vi = bi • v = (bi)Tv . (2.11.h.2)

One can then write the above equation as

 v = Σi=1n bi [vi] ⎝
⎛

⎠
⎞ *

 * = Σi=1n ⎝
⎛

⎠
⎞ *

 * [vi]

 = Σi=1n bi [(bi)Tv] = Σi=1n ⎝
⎛

⎠
⎞ *

 * [(* *)⎝
⎛

⎠
⎞ *

 *]

 = Σi=1n [bi(bi)T] v = Σi=1n [⎝
⎛

⎠
⎞ *

 * (* *)] ⎝
⎛

⎠
⎞ *

 *

 = { Σi=1n [bi(bi)T]} v = { Σi=1n [⎝
⎛

⎠
⎞ * *

 * *] } ⎝
⎛

⎠
⎞ *

 *

 ≡ M v = ⎝
⎛

⎠
⎞ * *

 * * ⎝
⎛

⎠
⎞ *

 * . (2.11.h.3)

On the right we show the vector/matrix structure of each expression in the simple case of R2. We end up
then with v = M v. Since this must be true for any v in V, it must be that M = 1, the identity matrix, so

 Σi=1n bi(bi)T = 1 (2.11.h.4)

which is the official statement that the basis bi is "complete". To make this statement in terms of the
components of the basis vectors, we can apply (uj)T on the left and (uk) on the right to get

 (uj)T [Σi=1n bi(bi)T] uk = (uj)T 1 uk = (uj)Tuk = uj • uk = δjk
or
 Σi=1n (uj)T [bi(bi)T]uk = δjk
or
 Σi=1n [(uj)T bi] [(bi)T]uk] = δjk
or
 Σi=1n [uj • bi] [bi • uk] = δjk
or
 Σi=1n (bi)j(bi)k = δjk . // like (2.3.5) (2.11.h.5)

We now repeat the above development in the Dirac notation shown on the right,

Chapter 2: Tensor Algebra

 65

 |v> = Σi=1n vi |bi> where vi = <bi| v> (2.11.h.6)

 v = Σi=1n bi [vi] |v> = Σi=1n |bi> [vi]

 = Σi=1n bi [(bi)Tv] = Σi=1n |bi> [<bi | v>]

 = Σi=1n [bi(bi)T] v = Σi=1n [|bi> <bi|] | v>

 = { Σi=1n [bi(bi)T]} v = { Σi=1n |bi> <bi| } | v> . (2.11.h.7)

Completeness expressed in Dirac notation is then

 Σi=1n |bi> <bi| = 1 . (2.11.h.8)

where 1 is the Dirac operator form of the matrix identity matrix 1.

 Applying <uj| on the left and |uk> on the right this becomes

 Σi=1n <uj| bi> <bi|uk> = <uj|uk> = δik
or
 Σi=1n (bi)j(bi)k = δjk (2.11.h.9)

which replicates (2.11.h.5)

Chapter 3: Kronecker Products

 66

3. Outer Products and Kronecker Products

3.1 Outer Products Reviewed: Compatibility of Chapter 1 and Chapter 2

Vectors were unbolded in Chapter 1, but were bolded for clarity in Chapter 2. Here we express all vectors
in unbolded notation. Also, we quietly switch from contravariant (upper) to covariant (lower) tensor
indices.

Chapter 1 developed the idea of the tensor product space V⊗W with elements v⊗w which satisfy a set of
bilinear rules (1.1.5),

 (v1+v2) ⊗ w = (v1⊗w) + (v2⊗w) for all v1,v2 ∈ V and all w ∈ W (1.1.5)
 v ⊗ (w1+w2) = (v⊗w1) + (v⊗w2) for all v ∈ V and all w1, w2 ∈ W
 s(v⊗w) = (sv)⊗w = v⊗(sw) for all v ∈ V and all w ∈ W and all s ∈ K (3.1.1)

The essence of the tensor product is this bilinearity, and there is no requirement to describe the objects
v⊗w in more detail. In the formal sense we are done and fini. However, for "engineering purposes", it is
useful to add more structure to the tensor product by defining "tensor components", and that was the
subject of Chapter 2. We conjured up a way to add components to the theory by defining tensor product
components in terms of the outer product of two vectors,

 (v⊗w)ij ≡ viwj v ∈ V w ∈ W . (2.8.10) (3.1.2)

The components vi and wj can be elements of any field K and the juxtaposition of viwj implies
multiplication in that field (we have in mind that K = R, the real numbers).

The key point: because the function viwj is manifestly bilinear, this extra specification does not conflict
with any of the earlier tensor product "rules". For example we can evaluate,

 [(v1+v2) ⊗ w]ij = (v1+v2)iwj

 (v1⊗w)ij + (v2⊗w)ij = (v1)i wj + (v2)i wj . (3.1.3)

The first ⊗ rule of (3.1.1) says the left sides of these two equations must be equal, but we can see that the
right sides are also equal, so our "tensor componentization" does not conflict with the no-components
theory of Chapter 1. Thus it is that we simply glom this component structure onto the tensor product
concepts of Chapter 1.

We extended the tensor product idea to include the tensor product of k spaces V⊗W⊗...⊗Z with this
associated set of k-multilinear rules,

 (s1v1+s2v2)⊗w⊗ ⊗z = s1 (v1⊗w⊗ ⊗z) + s2 (v2⊗w⊗ ⊗z)
 v ⊗ (s1w1+s2w2)⊗ ...⊗z = s1 (v⊗w1⊗ ⊗z) + s2 (v⊗w2⊗ ⊗z).
 etc. (1.1.16) (3.1.4)

Chapter 3: Kronecker Products

 67

Onto this skeleton we hang a component structure again using the outer product of vectors,

 (v⊗w⊗z⊗....)ijk.... = viwjzk.... (2.8.18) (3.1.5)

The function viwjzk.... is manifestly k-multilinear, so this structural enhancement is compatible with the
general theory of Chapter 1.

We have tried to keep things general up this point by using V⊗W⊗...⊗Z where all the vector spaces can
be different, but now we assume they are all the same,

 Vk ≡ V⊗V⊗....⊗V // k copies, fancy notation ⊗Πi=1

k V (2.11.e.1) (3.1.6)

and this is our main interest, since the elements are then true "tensors" in the sense of Chapter 2. There is
then only one set of basis functions {ei} to worry about, the basis for V. In this case, if a and b transform
as vectors, then a⊗b transforms as a rank-2 tensor and thus provides a name for the outer product tensor
whose components are aibj .

It has already been shown in Section 2.8 (in the components world) how the ⊗ product can combine
tensors into tensors of higher rank using the outer product idea. We had for example for the combination
of a vector with two rank-2 tensors, the following rank-5 tensor

 (K⊗K⊗v)abcde = KabKcd ve . (2.8.7) (3.1.7)

Another example would be this,

 A = a⊗b Aij = (a⊗b)ij = aibj
 B = c⊗d Bij = (c⊗d)ij = cidj (3.1.8)

One can then define the tensor product of A and B in a fairly obvious manner,

 A⊗B ≡ (a⊗b)⊗(c⊗d) = a⊗b⊗c⊗d ∈ V4 . // associative (2.8.22) (3.1.9)

This equation has no indices and so is acceptable in the component-free world of Chapter 1. The
components are then taken in the following obvious manner,

 [A⊗B]ijkl = [a⊗b⊗c⊗d]ijkl = aibjckdl = AijBkl . (3.1.10)

The above lines shows that A⊗B is in fact a rank-4 tensor constructed by taking the outer product of two
rank-2 tensors (or the outer product of four rank-1 tensors). In Section 3.2 we shall have use for an object
defined in this strange manner

 [A⊗B]ik,jl ≡ [A⊗B]ijkl = AijBkl (3.1.11)

Chapter 3: Kronecker Products

 68

and we just mention it here in passing. Note that the indices are shuffled relative to the LHS of (3.1.10).

Using the same method as above, one can construct a rank-6 tensor from the tensor product of three rank-
2 tensors,

 [A⊗B⊗C]abcdef = AabBcdCef (3.1.12)

or from the tensor product of two rank-3 tensors

 [A⊗B]abcdef = AabcBdef . (3.1.13)

In general, one can take the tensor product of any set of tensors to create a new tensor whose rank is the
sum of the ranks of the tensors that were combined by the ⊗ symbol. If A,B,C... are arbitrary tensors,
having multiindices I,J,K (for example I = {i1,i2,i3} if A is rank-3), one could write a general formula for
the components of the tensor product of any number of pure tensor objects in this manner,

 (A ⊗ B ⊗ C ⊗)IJK... = AI BJ CK...... // outer product (3.1.14)

The tensor here is A ⊗ B ⊗ C ⊗, and it is the tensor product and the outer product of the individual
tensors A,B,C.... The equation specifies its components.

3.2 Kronecker Products

The subject here is the tensor product of two linear operators and is included here because it seems
therefore to fit into the topic of "tensor products". This is a stand-alone section and nothing in it is
referenced in later sections of our document. For that reason, a reader uninterested in Kronecker Products
would do well to skip this section and continue into Chapter 4 on the wedge product development. The
energetic reader can regard this section as an exercise in using the covariant tensor product machinery of
Chapter 2.

Let V and X be vector spaces of dimension n and m. Basis(V) = ui Basis(X) = ui
Let W and Y be vector spaces of dimension n' and m' Basis(W) = u'i Basis(Y) = u'i . (3.2.1)

We imagine that vector spaces V,X,W,Y have metric tensors g, g, g', g' which can be used to raise and
lower subscripts in the standard manner shown in (2.2.1). Often one assumes that all these spaces have a
Cartesian metric tensor, so up and down indices are the same, but we shall carry out the development
below in full covariant notation as part of our "exercise".

Rather than use Einstein implied sums, we shall display all sums explicitly in this section.

Consider linear operators S and T such that,

 x = Sv = a vector in X S: V→X xi = Σa=1n Siava i = 1,2..m
 y = Tw = a vector in Y T:W→Y yj = Σb=1n'Tj

bwb j = 1,2..m' . (3.2.2)

Chapter 3: Kronecker Products

 69

Notice that on Sia the first index is an X-space index which can be raised and lowered by metric tensor
g, whereas the second index on Sia is a V-space index which can be raised and lowered by g. So we can
regard Sia as the components of a "cross tensor" involving the spaces X and V. In any equation below,
we are free to change the "tilt" of any contracted index pair in the manner of (2.9.1) because such tilted
index pairs will always be associated with the same metric tensor. Similar comments apply to Tjb.

The linear operator S is represented by matrix Sia which has m rows and n columns (m x n).
The linear operator T is represented by matrix Tjb which has m' rows and n' columns (m' x n').

We want to create a meaning for S⊗T which is the tensor product of these two operators S and T.
A candidate definition for this meaning is the following,

 (S⊗T)(v⊗w) = (Sv)⊗(Tw) . // = (x⊗y) S⊗T : V⊗W → X⊗Y . (3.2.3)

 (S⊗T)| v⊗w> = (S⊗T) |v> ⊗w> = S|v> ⊗ T|w> = |x> ⊗ |y> = |x⊗y> // Dirac notation

Consider the following processing steps,

 (S⊗T)([αv1 + βv2]⊗w) = (S[αv1 + βv2])⊗(Tw) // (3.2.3)

 = (α Sv1+ βSv2) ⊗(Tw) // S:V→X is linear

 = α (Sv1)⊗(Tw) + β(Sv2)⊗(Tw) // using the first ⊗ rule in (3.1.1)

 = α (S⊗T)(v1⊗w) + β (S⊗T)(v2⊗w) . // (3.2.3) used twice (3.2.4)

This shows that (S⊗T)(v⊗w) is linear in v. A similar argument shows it is also linear in w. Thus, the
operator (S⊗T) as defined above is a bilinear operator on V⊗W, and we confirm the essential
characteristic of the tensor product, which is its bilinearity. We accept the candidate definition (3.2.3).
__

Exercise: Compute the action of (S⊗T) on a general element of V⊗W .

Apply (S⊗T) to a general element of V⊗W using tensor expansion like (2.10.3b) and then (3.2.3),

 (S⊗T)[ΣijFij ui⊗u'j] = ΣijFij (S⊗T)(ui⊗u'j) = ΣijFij (Sui)⊗(Tu'j) . (3.2.5)

The action of S on a vector v (and T on w) can be written

 x = (Sv) = Σa[Sv]aua = Σa(ΣbSabvb)ua = Σab(Sabvb)ua

 y = (Tw) = Σc[Tw]cu'c = Σc(ΣdTc
dwd)u'c = Σcd(Tc

dwd)u'c . (3.2.6)

Chapter 3: Kronecker Products

 70

Select v = ui and w = u'j in these last two equations to get,

 (Sui) = ΣabSab(ui)b ua
 (Tu'j) = ΣcdTc

d(u'j)d u'c . (3.2.7)

Then the tensor product appearing in (3.2.5) can be written

 (Sui)⊗(Tu'j) = [ΣabSab(ui)b ua] ⊗ [ΣcdTc

d(u'j)d u'c]

 = Σabcd Sab(ui)bTc

d(u'j)d (ua⊗u'c) (3.2.8)

and so the action of the tensor product operator (S⊗T) is given by,

 (S⊗T)[ΣijFij ui⊗u'j] = ΣijFij (Sui)⊗(Tu'j) // (3.2.3)

 = Σijabcd FijSab(ui)bTc

d(u'j)d (ua⊗u'c) // (3.2.8)

 = Σac { Σijbd FijSab(ui)bTc

d(u'j)d } (ua⊗u'c) // regroup

 = Σac Gac (ua⊗u'c) where Gac = Σijbd FijSab(ui)bTc

d(u'j)d . (3.2.9)

 We have then shown the action of operator S⊗T on a general element of V⊗W :

 (S⊗T) { ΣijFij ui⊗u'j } = Σac Gac (ua⊗u'c) (S⊗T) : V⊗W → X⊗Y

 where Gac = Σijbd Fij Sab (ui)b Tc

d (u'j)d . (3.2.10)

It is useful now to consider the component analysis of the action of S⊗T on a pure element of V⊗W in
the sense of outer products. Then

 (x⊗y) = (S⊗T)(v⊗w) = (Sv)⊗(Tw) (3.2.3)
so
 (x⊗y)ii' = [(S⊗T)(v⊗w)]ii' = [(Sv)⊗(Tw)]ii' . (3.2.11)

The right side of this last equation can be expanded using (3.1.2) and (3.2.2) to get

 [(Sv)⊗(Tw)]ii' = (Sv)i(Tw)i' = (Σj Sijvj)(Σj'Ti'

j'wj')

 = Σjj' SijTi'j' vjwj' = Σjj' SijTi'

j' (v⊗w)jj' . // = (x⊗y)ii' (3.2.12)

so then (3.2.11) may be written

 [(S⊗T)(v⊗w)]ii' = Σjj' [SijTi'

j'] (v⊗w)jj' . // = (x⊗y)ii' (3.2.13)

Chapter 3: Kronecker Products

 71

We now define

 (S⊗T)ii',jj' ≡ SijTi'

j' (3.2.14)

The comma is used to distinguish the left side from the rank-4 tensor (S⊗T)ii'jj' = Sii'Tjj' which is a
different animal.
 Since S and T are (cross) tensors, we can raise and lower indices on the right side of (3.2.14) using
the appropriate metric tensors as discussed below (3.2.1), and then the left side indices follow since this is
a definition. For example.

 (S⊗T)ii',jj' ≡ SijTi'j' . (3.2.15)

This definition was mentioned in (3.1.11) where it was compared to the usual notation used for a rank-4
outer product tensor (S⊗T)iji'j' = SijTi'j'. In (3.2.15) the two first indices of S and T are listed
before the comma while the two second indices appear after the comma.

Installing (3.2.14) into (3.2.13), one gets

 [(S⊗T)(v⊗w)]ii' = Σjj'(S⊗T)ii',jj' (v⊗w)jj' . // = (x⊗y)ii' (3.2.16)

The structure of this equation suggests that we are multiplying a vector (v⊗w) by a matrix (S⊗T), but the
usual summation index is replaced by two summation indices j and j'. In a multiindex notation one might
write the above as

 xI = [(S⊗T)(v⊗w)]I = ΣJ (S⊗T)IJ (v⊗w)J . I = {i,i'} J = {j,j'} (3.2.17)

Is there some way to write S⊗T as a standard matrix with two indices instead of four?

Start with (3.2.16) written as

 (x⊗y)ii' = Σjj' (S⊗T)ii',jj' (v⊗w)jj'
or
 (xiyi') = Σjj' (S⊗T)ii',jj' (vjwj'). (S⊗T)ii',jj' = (SijTi'

j') . (3.2.18)

We want to write this somehow in a form

 q'r = Σs Mrs qs . (3.2.19)

For illustration purposes, assume n = 2 and n' = 3. Then write the components (vjwj') as a single column
vector in this obvious manner, where the w component index moves fastest,

Chapter 3: Kronecker Products

 72

⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞

v1w1

v1w2

v1w3

v2w1

v2w2

v2w3

 =

⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞

q1
q2
q3
q4
q5
q6

 = q with components qs where s = 1,2....n*n' . (3.2.20)

If vjwj' → qs, one can compute s from j,j' as follows: (here 3 = n' = dim(W) for this special case)

 s = (j-1)3 + j' ⇒ (s-1) = (j-1)3 + (j'-1) ⇒
s-1
3 = (j-1) +

j'-1
3

 ⇒ int(
s-1
3) = j-1 and rem (

s-1
3) = j'-1 . (3.2.21)

Thus for general n' we can compute j and j' from s in this way (integer part and remainder)

 j = 1+int(
s-1
n') j' = 1+rem(

s-1
n') s = 1,2....n*n' . (3.2.22)

One can similarly consider xiyi'→ q'r where the column vector q' has m*m' components. The rules here
are analogous to those above,

 i = 1+int(
r-1
m') i' = 1+rem(

r-1
m') r = 1,2...m*m' . (3.2.23)

Therefore, comparing (3.2.19) and (3.2.18), the desired Mrs is given by

 Mrs = (S⊗T)ii',jj' = SijTi'
j' where

 i = 1+int(
r-1
m') j = 1+int(

s-1
n') s = 1,2....n*n'

 i' = 1+rem(
r-1
m') j' = 1+rem(

s-1
n') r = 1,2...m*m' . (3.2.24)

Thus we have reconfigured our multi-index equation xI = ΣJ (S⊗T)I,J (v⊗w)J into an ordinary matrix
equation q'r = Σs Mrs qs where Mrs is given as stated above.
 This matrix Mrs = (S⊗T)ii',jj' = SijTi'

j' is known as the Kronecker product of the matrices
S and T. The subscripts i,i',j'j' are all functions of r and s as shown in (3.2.24).
 Symbolically we write this Kronecker product as M = S⊗T. Normally in writing M = S⊗T one would
imply Ma

b
c
d = SabTc

d which is unrelated to the Kronecker product.

It is a bit tedious to compute and display one of these M matrices by hand, so we let Maple do it for us.
For this example we use the following dimensions m, n, m', n' for the spaces X, V, Y, W :

 S = m x n = 2 x 3 rows = m*m' = 6
 T = m' x n' = 3 x 4 cols = n*n' = 12 (3.2.25)

Chapter 3: Kronecker Products

 73

The code simply does what (3.2.24) says to do:

 (3.2.26)

 (3.2.27)

One should interpret each matrix element of the form SabTcd as SabTc

d -- we don't know how to make
Maple display things this way. If all metric tensors are Cartesian, then (3.2.27) is correct as is.

Staring at the above matrix, one can see that the T submatrix is repeated six times, and one can write this
matrix in a shorthand notation as

 M = ⎝
⎛

⎠
⎞ S11T S12T S13T

 S21T S22T S23T where T =
⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞ T1

1 T1
2 T1

3 T1
4

 T2
1 T2

2 T2
3 T2

4

T3
1 T3

2 T3
3 T3

4
 . (3.2.28)

This provides an easy way to manually construct such matrices. This construction can be understood if we
look back at the M matrix definition,

 Mrs = (S⊗T)ii',jj' = SijTi'

j' where

 i = 1+int(
r-1
m') j = 1+int(

s-1
n') s = 1,2....n*n'

 i' = 1+rem(
r-1
m') j' = 1+rem(

s-1
n') r = 1,2...m*m' . (3.2.24)

Chapter 3: Kronecker Products

 74

The indices i,j on S select a rectangular subregion of the M matrix due to their integer part definitions.
Then within each subregion the i'j' indices run through their full ranges so a copy of matrix T appears in
that subregion, multiplied by the Sij for that subregion.

One is commonly interested in the case where

 S: V→V S = n x n matrix
 T: W→W T = n' x n' matrix (3.2.29)

With n = m = 2 and n' = m' = 2 the above code generates this matrix M,

 (3.2.30)

which can be compared with a result quoted on the (current) wiki tensor product page.

Some other properties

Suppose S1 and S2 are two matrices of the same dimension as S, and T1 and T2 are two matrices of the
same dimension as T. Recall from above,

 (S⊗T)ii',jj' ≡ SijTi'

j' . (3.2.14)

It then follows that

 (S1 + S2) ⊗ T = S1⊗T + S2⊗T
 S ⊗ (T1 + T2) = S⊗T1 + S⊗T2

 (S1 + S2) ⊗ (T1 + T2) = S1⊗T1 + S2⊗T1 + S2⊗T1 + S2⊗T2 (3.2.31)

which is just the statement that S ⊗ T is a bilinear operator. To prove the first line use (3.2.14),

 [(S1 + S2) ⊗ T]ii',jj' = (S1 + S2)ijTi'

j' = (S1)ijTi'
j' + (S2)ijTi'

j'

 = (S1⊗T)ii',jj' + (S2⊗T)ii',jj' . (3.2.32)

Suppose S1 and S2 are both n x n and T1 and T2 are both n' x n' . Then one can write,

 (S1S2)⊗(T1T2) = (S1⊗T1)(S2⊗T2) (3.2.33)

Chapter 3: Kronecker Products

 75

Proof: Again use (3.2.14),

 [(S1S2)⊗(T1T2)]ii',jj' = (S1S2)ij(T1T2)i'j'

 = (S1)ik (S2)kj (T1)i'k' (T2)k'j' = (S1)ik (T1)i'k' (S2)kj(T2)k'j'

 = (S1⊗T1)ii'kk' (S2⊗T2)kk'jj' (3.2.34)

so that in multiindex notation,

 [(S1S2)⊗(T1T2)]IJ = (S1⊗T1)IK(S2⊗T2)KJ . (3.2.35)

Chapter 4: Products of Two Vectors

 76

4. The Wedge Product of 2 vectors built on the Tensor Product

We now back up and reconsider the space V⊗W and its elements v⊗w. The goal of the next two sections
is to establish the parallelism between the vector space V⊗W and the "dual" vector space V*⊗W*. Some
repetition is used to review and reinforce earlier stated facts. Then Sections 4.3 and 4.4 introduce the
wedge product developed in a similar parallel fashion.

At the end of each of the four sections below a selection of equations is re-expressed in Dirac notation.

4.1 The tensor product of 2 vectors in V2

Note: The u'i used below are unrelated to the u'i of Chapter 2.

Basics. Consider two vector spaces V and W (defined over field K) of dimension n and n'. Let

 {ui} = basis of V dim(V) = n v = Σi=1n vi ui = general vector in V vi ∈ K
 {u'i} = basis of W dim(W) = n' w = Σj=1n'wj

 u'j = general vector in W wj ∈ K

 ui = |ui > u'i = |u'i > // Dirac notation

 {ui⊗u'j} = basis for the tensor product space V⊗W dim(V⊗W) = n*n'

 v⊗w = a pure "vector" in the tensor product space V⊗W v⊗w ≠ w⊗v if v ≠ w

 ⊗ : VxW → V⊗W ⊗ : (v,w) ↦ v⊗w (4.1.1)

The last line shows ⊗ as a mapping → between two sets, while ↦ shows how set elements map.

Note that v⊗w ≠ w⊗v. For V≠W, w⊗v does not even make sense since that requires w ∈ V and v ∈ W.
For V = W the objects v⊗w and w⊗v are still different unless v = w.

Outer Product Revisited. The notion of an outer product was discussed in Sections 2.8 and 3.1. We had
for example (where ai and bj are the covariant components of vectors a and b both ∈ V),

 (a ⊗ b)ij = aibj // outer product of two vectors (3.1.8)

 (A ⊗ B)abcd = AabBcd . // outer product of two rank-2 tensors (3.1.10)

The "outer product" of two vectors a and b may be written in vector/matrix notation as follows,

 (a ⊗ b)** = abT =

⎝
⎜
⎛

⎠
⎟
⎞ a1

 a2
 ...

 an

 (b1. b2....bn) =
⎝⎜
⎜⎛

⎠⎟
⎟⎞

 a1b1 a1b2 ...
 a2b1 a2b2 ...

 (a ⊗ b)ij = (abT)ij (4.1.2)

Chapter 4: Products of Two Vectors

 77

The same vector/matrix notation used above can also be used to express the "inner product" (dot product)
appearing in (2.2.5), with the caveat noted below,

 a • b = aTb = (a1. a2....an)

⎝
⎜
⎛

⎠
⎟
⎞ b1

 b2
 ...

 bn

 = Σk=1n akbk = <a | b> (4.1.3)

If the a components are contravariant, the b components must be covariant, and vice versa.

Chapter 1 Tensor Product Revisited. By convention one represents an element of a tensor product space
using the ⊗ symbol. It is a certain kind of "product" between a vector in one vector space and a vector in
another vector space. On can treat ⊗ as an operator ⊗ : VxW → (V⊗W) in the sense that

 ⊗(v,w) = (v) ⊗ (w) = (v⊗w) = element of tensor product space (V⊗W).

Certain ⊗ rules were declared in (1.1.5) which make the tensor product space be a vector space, and
which in an intuitive sense just seem "reasonable",

 (sv) ⊗ w = v ⊗ (sw) = s (v⊗w) // s = scalar (∈ K)
 v ⊗ (w1+ w2) = v⊗w1 + v⊗w2 // left distributive property
 (v1 + v2) ⊗ w = v1⊗w + v2⊗w . // right distributive property (1.1.5) (4.1.4)

In the last two equations, the + on the left represents addition in either W or V, whereas the + on the right
side represents addition in V⊗W. These lines say that multiplication ⊗ "distributes" over addition +. The
scalar rule can be combined with the distributive rules to obtain this equivalent rules restatement:

 v ⊗ (s1w1+ s2w2) = s1(v⊗w1) + s2(v⊗w2) // s1,s2 = scalar (∈ K)
 (s1v1 + s2v2) ⊗ w = s1(v1⊗w)+ s2(v2⊗w) .// s1,s2 = scalar (∈ K) (1.1.7) (4.1.5)

The above rules in effect say that ⊗ defines a "bilinear" operation -- it is linear separately in each of its
operands.

Notice that the following two rules are incorrect:

 v ⊗ w = w ⊗ v // wrong! (unless V = W and v = w)
 (sv) ⊗ (sw) = s(v⊗w) // wrong! (unless s = 1)

As noted in Appendix B the second rule applies to a direct sum ⊕.

Using the correct "rules" above, one may write

 v ⊗ w = (Σiviui)⊗(Σjwjuj') = Σijviwj (ui⊗u'j) (4.1.6)

showing how this pure tensor product vector can be expressed in terms of the basis functions.

Chapter 4: Products of Two Vectors

 78

General tensors in V⊗W and V2. A general "vector" (rank-2 cross tensor) in W⊗V can be written as a
linear combination of the basis vectors, as was shown in (2.10.4),

 T ≡ Σij Tij ui⊗u'j T ∈ V⊗W . Σij ≡ Σi=1nΣj=1n' (4.1.7)

If W = V, we refer to the space V⊗W = V⊗V as V2, and then

 T ≡ Σij Tij ui⊗uj T ∈ V⊗V = V2 . Σij ≡ Σi=1nΣj=1n (4.1.8)

Although we have said T is a "vector" in the abstract sense that a vector space (even a tensor product
vector space) has "vectors" as elements, the usual terminology is to say that T is a "rank-2 tensor" in the
space V2.

Meanings of tensor. The word "tensor" has a weak and a strong meaning. In the weak meaning, a rank-2
tensor is something that has components with two indices like Tij. In the strong meaning, a rank-2 tensor
is a set of components Tij which transform in a certain manner with respect to some underlying
transformation,

 T'ab = Ra

a' Rb
b' Ta'b' Picture A T ∈ V⊗V (2.1.7)

Covariant expansion forms. The rank-2 tensor T can be expanded in various ways as shown in Section
2.10, and each such expansion has its own characteristic coefficients. Here are all four versions of (4.1.7)
obtained using the tilt reversal rule (2.9.1) :

 T ≡ Σij Tij ui⊗u'j T ∈ V⊗W
 T ≡ Σij Ti

j ui⊗u'j
 T ≡ Σij Ti

j
 ui⊗u'j

 T ≡ Σij Tij
 ui⊗u'j . (4.1.9)

Notation Comments:

• In (4.1.9) one could replace Tij by [T(u,u')]ij to be more precise about the meaning of the
coefficients, namely, that they are those which arise when one expands on the basis ui⊗u'j.

• Then in (4.1.8) one could write Tij as [T(u,u)]ij or [T(u)]ij, but in this case Tij is the "default"
notation for expanding on the axis-aligned ui basis vectors as shown back in (2.10.3b).

Chapter 4: Products of Two Vectors

 79

Dot Products. One can define a covariant dot product between two elements of V2 in this manner

 A • B ≡ ΣijAijBij = ΣijAijBij = ΣijBijAij = B • A . (4.1.10)

If A or B is a pure rank-2 tensor, one can write as well

 (a⊗b)•B = ΣijaibjBij

 A•(c⊗d) = ΣijAijcidj

 (a⊗b)•(c⊗d) = Σijaibjcidj = (a•c)(b•d) . (4.1.11)

The last line appears as (2.9.13).

Dirac Notation for Section 4.1 . It seemed best not to clutter that above text with these alternate forms.
The Dirac version of an equation gets a D subscript on its equation number.

 ui = |ui> u'i = |u'i> bases for V and W

 ui⊗u'j = |ui> ⊗ |u' > basis for the tensor product space V⊗W

 v⊗w = |v> ⊗ |w> a pure "vector" in the tensor product space V⊗W (4.1.1)D

 T = |T> = Σij Tij |ui> ⊗ |u'j> rank-2 tensor in V⊗W

 (a ⊗ b)ij = <ui| ⊗ <uj| |a> ⊗ |b> = <ui|a> <uj|b> = aibj outer product

 a • b = <a | b> dot product

 |v> ⊗ |w> = Σijviwj |ui> ⊗ |u'j> expansion of pure vector on basis vectors (4.1.6)D

 T ≡ |T> = Σij Tij |ui> ⊗ |u'j> expansion of a rank-2 tensor (4.1.7)D

 <ua| ⊗ <u'b| |T> = <ua| ⊗ <u'b| Σij Tij |ui> ⊗ |u'j> =

 Σij Tij <ua|ui><u'b|u'j> = Σij Tij δaiδbj = Tab

 <a| ⊗ <b| |c> ⊗ |d> = <a|c><b|d> = Σiaici Σjbjdj = Σijaibjcidj dot product in V2 (4.1.11)D

Chapter 4: Products of Two Vectors

 80

4.2 The tensor product of 2 dual vectors in V*2

The dual space V* of V was discussed in Section 2.11. Space W* is dual to W. We continue our
convention of using Greek or script letters for dual space objects. The current section is basically a
generalization of Section 2.11 to the case where V and W are different vector spaces. We show
corresponding Section 2.11 equations in italics.

Note: The λ'i used below are unrelated to the λ'i of Chapter 2.

Basics. Consider the two dual vector spaces V* and W* (defined over field K) of dimension n and n'. Let

 {λi} = basis of V* dim(V*) = n α = Σi=1n αi λi = general linear functional in V*
 {λ'i} = basis of W* dim(W*) = n' β = Σj=1n'βj λ'j = general linear functional in W*

 λi = (ui)T = <ui| λ'i = (u'i)T = <u'i| // matrix and Dirac notation

 {λi⊗λ'j} = basis for the tensor product space V*⊗W* dim(V*⊗W*) = n*n'

 α⊗β = a pure "vector" in the tensor product space V*⊗W* α⊗β ≠ β⊗α if α ≠ β

 ⊗ : V*xW* → V*⊗W* ⊗ : (α,β) ↦ α⊗β (4.2.1)

Note that α⊗β ≠ β⊗α. For V*≠W*, β⊗α does not even make sense since that requires β ∈ V* and α ∈
W*. For V* = W* the objects α⊗β and β⊗α are still different unless α = β.

Vector expansions in V* and W*. Linear functionals in V* and W* can be written as linear combinations
of the basis functionals,

 α = Σiαiλi α(v) = Σiαiλi(v) α: V → K (2.11.c.8)
 β = Σjβjλ'j β(v) = Σjβjλj'(v) β: W → K . (4.2.2)

The middle column shows the corresponding functions α(v) and β(v), and we now have

 α(ui) = αi (2.11.d.15)
 β(u'j) = βj . (4.2.3)

Basis tensors in V*⊗W*. The basis functionals for V*⊗W* are the λi⊗λ'j where,

 (λi⊗λ'j)(v,w) = λi(v)λ'j(w) = scalar * scalar = scalar ∈ K (2.11.d.13) (4.2.4)

where (recall these are called the "ith coordinate functions")

 λi(v) = vi
 λ'i(w) = wi (2.11.c.5) (4.2.5)

Chapter 4: Products of Two Vectors

 81

so that

 (λi⊗λ'j)(v,w) = viwj . (2.11.d.13) (4.2.6)

This function is manifestly bilinear in its two vector arguments.

The ⊗ Rules for V*⊗W* . The "rules" (1.1.5) for the ⊗ operator in the space V*⊗W* are the same as
those for ⊗ in the space V⊗W, since V*⊗W* is, after all, a tensor product of two spaces,

 (sα) ⊗ β = α ⊗ (sβ) = s (α ⊗ β) s ∈ K, α ∈ V* β ∈ W*
 α ⊗ (β1+ β2) = α ⊗β1 + α ⊗β2 // distributive property
 (α1 + α2) ⊗ β = α1⊗β + α2⊗β . // same idea as above (4.1.4) (4.2.7)

Rank-2 cross-tensor expansion in V*⊗W*. A general functional of the dual tensor product space V*⊗W*

can be written

 T ≡ Σij Tij

 λi⊗λ'j T ∈ V*⊗W* Σij ≡ Σi=1nΣj=1n' (2.11.d.11) (4.2.8)

The Tij here are exactly the same Tij which appear in the V⊗W expansion (4.1.7), T = ΣijTij ui⊗u'j .
Evaluating at a point (v,w) in VxW one gets,

 T(v,w) = Σij Tij (λi⊗λ'j)(v,w) = Σij Tij λi(v) λj'(w) = Σij Tij viwj (2.11.d.8) (4.2.9)

so one may regard T : VxW → K, and T(v,w) as manifestly bilinear in its arguments.

Setting v = ui and w = u'j , one finds that

 T(ui,u'j) = Tij ∈ K (2.11.d.10) (4.2.10)

This may be compared with α(ui) = αi in (4.2.3).

An arbitrary rank-2 tensor functional T can be represented either by its expansion T = ΣijTijλi⊗λ'j or
by the corresponding tensor function T(v,w).

As a special case, consider α ∈ V*and β ∈ W* as shown above. Then,

 α ⊗ β = (Σaαaλa)⊗(Σbβbλ'b) = Σab αaβb λa⊗λ'b ∈ V*⊗W* (4.2.11)

 (α ⊗ β)(v,w) = Σabαaβb(λa⊗λ'b)(v,w) = Σabαaβbλa(v)λb'(w) = Σabαaβbvawb (4.2.12)

which then is just a particular example of (4.2.9). Continuing the above,

 (α ⊗ β)(v,w) = Σabαaβbvawb = [Σaαava][Σbαbwb]

 = α(v) β(w) . (2.11.d.15) (4.2.13)

Chapter 4: Products of Two Vectors

 82

In particular,

 (α ⊗ β)(ui,u'j) = α(ui) β(u'j) = αiβj = (α ⊗ β)ij . (2.11.d.15) (4.2.14)

If it happens that W = V, then W* = V* and we write V*⊗W* = V*⊗V* = V*2. The equations above
then revert to those given in Section 2.11 (referenced in italics above).

The vector spaces V2* and V2*

f

We can regard both T = <T| and T(v,w) = <T|v,w> as representations of the same rank-2 tensor
functional <T| in V*⊗W*. The object T is a bilinear rank-2 tensor functional, whereas T(v,w) is a
bilinear rank-2 tensor function (a Spivak 2-tensor). There is a 1-to-1 correspondence between T and
T(v,w) . We shall say T ∈ V*⊗W* while T(v,w) ∈ (V*⊗W*)f (f = function), and the two spaces are
isomorphic. If W = V, then T ∈ V2* and T(v,w) ∈ V2*

f and V2* and V2*
f are isomorphic.

Fact: The vector space V*2 is equivalent to the vector space V*2f of bilinear functions on V2. (4.2.15)

Dirac Notation for Section 4.2

 λi = (ui)T = <ui| λ'i = (u'i)T = <u'i| bases for V* and W*

 λi⊗λ'j = <ui| ⊗ <u'j| basis for the dual tensor product space V*⊗W*

 α⊗β = <α| ⊗ <β| pure element of V* ⊗W* (4.2.1)D

 α = <α| = Σiαi<ui| α(v) = <α|v> = Σiαi<ui|v> vector functional expansions

 β = <β| = Σiβi<u'i| β(v) = <β|v> = Σiβi<u'i|v> (4.2.2)D

 α(ui) = <α|ui> = αi vector function α(v) evaluated at v = ui
 β(ui) = <α|ui> = βi vector function β(v) evaluated at v = ui (4.2.3)D

 (λi⊗λ'j)(v,w) = <ui| ⊗ <u'j| |v>⊗ |w> = <ui| v><u'j|w> = viwj (4.2.4)D (4.2.5)D

 T = <T| = ΣijTij<ui | ⊗ <u'j| = Σij Tij

 λi ⊗ λ'i rank-2 tensor functional in V*⊗W* (4.2.8)D

 T(v,w) = <T | |v> ⊗ |w> = <T |v,w> rank-2 tensor function for V*⊗W*

 = ΣijTij<ui | ⊗ <u'j| |v> ⊗ |w> = ΣijTij<ui |v> <u'j|w> = ΣijTijviwj (4.2.9)D

 (α ⊗ β)(v,w) = <α | ⊗ <β| |v> ⊗ |w> = <α | v> <β | w> (4.2.13)D

Chapter 4: Products of Two Vectors

 83

4.3 The wedge product of 2 vectors in L2

(a) Definition of the wedge product of 2 vectors and the space L2

Momentarily jumping ahead, consider this equation,

 v ^ w = (v⊗w - w⊗v)/2 . v ∈ V and w ∈ W

If V and W are different vector spaces, this makes no sense since the second term w⊗v implies that w lies
in the left space V and v lies in the right space W. So in our discussion of wedge products, we require that
W = V. This being the case, instead of using letters v and w as representative vectors, we shall use a and
b. Then ui are the basis vectors for both component spaces in the tensor product space V⊗V.

So, we start off by defining the following "wedge product" ("exterior product") of two vectors a,b ∈ V,

 a ^ b ≡ (a⊗b - b⊗a)/2 . dim(V) = n (4.3.1)

Notice therefore that a ^ b is an element of V⊗V = V2, since it is a linear combination of elements of
V⊗V. It is "antisymmetrized" under a ↔ b. Since not all elements of V⊗V can be written this way, the
set of elements a ^ b exist in a subset of V⊗V which we shall call L2, so L2 ⊂ V2. Some authors write L2
as V^V.
 The above definition trivially implies that

 a ^ b = - b ^ a a, b ∈ V (4.3.2)
and
 a ^ a = 0 a ∈ V . (4.3.3)

In (1.1.5) we stated certain scalar and distributive properties of the ⊗ operator. These properties are
passed through to the wedge ^ operator by the above definition. For example,

 (sa) ^ b = [(sa)⊗b - b⊗(sa)]/2 = s [a⊗b - b⊗a]/2 = s (a ^ b) s = scalar

 (a+c) ^ b = [(a+c)⊗b - b⊗(a+c)]/2 = [a⊗b + c⊗b - b⊗a - b⊗c]/2

 = [a⊗b - b⊗a]/2 + [c⊗b - b⊗c]/2 = (a ^ b) + (c ^ b) distributive

and similarly for a ^ (sb) and a ^ (b + c). To summarize, we have a set of ̂ rules as follows:

 (sa) ^ b = s (a ^ b) (a+c) ^ b = (a ^ b) + (c ^ b) s ∈ K
 a ^ (sb) = s (a ^ b) a ^ (b + c) = (a ^ b) + (a ^ c) a,b,c ∈ V . (4.3.4)

The operator ^ is then seen to be "bilinear" over elements of V: it is separately linear in each operand.

Chapter 4: Products of Two Vectors

 84

To more precisely define the space L2, we claim that the most general element T^ of the space L2 can be
written this way,

 T^ = Σij Tij ui ^ uj . Σij ≡ Σi=1n Σj=1n (4.3.5)

where Tij are the expansion coefficients. For example, if Tij = aibj this would be,

 T^ = Σij aibj ui ^ uj = (Σiaiui) ^ (Σjbjuj) = a ^ b (4.3.6)

and then a ^ b is included in L2 for any vectors a and b in V.

We can take the ab component of (4.3.5) as follows

 T^

ab = Σij Tij (ui ^ uj)ab

 = Σij Tij(ui⊗uj - uj⊗ui)ab / 2 = Σij Tij[(ui⊗uj)ab - (uj⊗ui)ab] / 2

 = Σij Tij [uiaujb - ujauib] / 2 = Σij Tij [δia δjb - δja δib] / 2

 = (1/2)[Tab -Tba]

 ⇒ T^

ab = - T^
ba . (4.3.7)

This shows that the expansion (4.3.5) can only represent an antisymmetric rank-2 tensor T^.

One could rearrange the n2 basis vectors of V⊗V into these two groups,

 (ui^ uj) = [ui⊗uj - uj⊗ui]/2 n(n-1)/2 independent elements in this set
 (4.3.8)
 (ui * uj) ≡ [ui⊗uj+ uj⊗ui]/2 n(n)/2 independent elements in this set

for a total of n(n-1)/2+ n(n)/2 = n2 basis vectors. One would say then that L2 is spanned by just the first
set of basis vectors.

It was noted above that L2 is a subset of V2. A stronger statement is that L2 is a subspace of V2. First of
all, L2 is obviously closed under addition of vectors since

 Σij Tij ui ^ uj + Σij T'ij ui ^ uj = Σij (Tij+T'ij) ui ^ uj . (4.3.9)

And if (a ^ b) is an element of L2 then so is s(a ^ b) = (sα) ^ b ∈ L2 . Finally, since a ^ a = 0, L2 includes
the 0 element. So L2 then is a vector space which is a subspace of V2.

Chapter 4: Products of Two Vectors

 85

(b) How big is the space L2 compared to the space V2?

Consider this most general element of L2:

 T^ = Σij Tij (ui ^ uj) = Σi≠ j Tij (ui ^ uj) // (ui ^ ui) = 0

 = Σi<j Tij (ui ^ uj) + Σi>j Tij (ui ^ uj)

 = Σi<j Tij (ui ^ uj) + Σj>i Tji (uj ^ ui) // i↔j in second sum

 = Σi<j Tij (ui ^ uj) - Σi<j Tji (ui ^ uj) // (uj ^ ui) = - (ui ^ uj)

 = Σi<j (Tij - Tji) (ui ^ uj)

 = Σi<j Aij (ui ^ uj) Aij ≡ (Tij - Tji) Aij = - Aji . (4.3.10)

Thus, the number of elements in L2 is equal to the number of antisymmetric n x n matrices A one can
construct which contain elements of field K. An n x n antisymmetric matrix has only n(n-1)/2 places to
insert independent values since the diagonal is all zeros and one triangle is the negative of the other. If the
scalar space K contains N elements (N = ∞ for the reals), one could then construct exactly Nn(n-1)/2
antisymmetric matrices A.

Meanwhile, the most general element of V2 can be written

 T = Σij Tij (ui ⊗ uj) . (4.1.9)

Now each matrix Tij defines an element of V2. Using the same counting method as above, the total
number of elements of V2 is Nn2. We conclude that

elements in L2

elements in V2 =
Nn(n-1)/2

Nn2 = (1/2)
n2 - n

n2 = (1/2) (1 -
1
n) . (4.3.11)

The conclusion is that L2 contains less than half the number of elements in V2. This ratio is of course the
same as the (4.3.8) count ratio of L2 basis vectors to V2 basis vectors: [n(n-1)/2] / [n2] = (n-1)/2n.

Below we use this terminology,

 T^ = Σij Tij (ui ^ uj) = the "symmetric expansion" of T^
 T^ = Σi<j Aij (ui ^ uj) = the "ordered expansion" of T^ .

Chapter 4: Products of Two Vectors

 86

(c) Wedge products and determinants: the geometry connection

From (4.3.6) and (4.3.10) with Tij = aibj we get,

 a ^ b = Σij aibj (ui ^ uj) = Σi<j (aibj- ajbi) (ui ^ uj)

 = Σi<j det ⎝
⎛

⎠
⎞ ai bi

 aj bj (ui^uj) Aij = (aibj- ajbi) = det ⎝
⎛

⎠
⎞ ai bi

 aj bj . (4.3.12)

The determinants which appear here are 2x2 minors of a matrix having n rows and 2 columns. The two
columns are the vectors a and b, each of which has n components. Below that matrix is shown on the left,
and some of the 2x2 minors (row i < row j) are shown in gray on the right:

 (4.3.13)

If V = R2 (so n=2) there is only one term in the sum (4.3.12), the one with i=1 and j=2, so

 a ^ b = det ⎝
⎛

⎠
⎞ a1 b1

 a2 b2 u1^u2 = det(a,b) u1^u2 = [a1b2 - a2b1] u1^u2 . (4.3.14)

If one draws a parallelogram (2-piped) in the x-y plane with edges a and b, one knows that the area of that
2-piped is |a x b| which is then |a1b2 - a2b1| = |det(a,b)|. There is then some connection between the
wedge product of two vectors in R2 and the geometry of R2. Later in (7.5.6) we will show that for V = R3
the triple wedge product of three vectors is given by,

 a ^ b ^ c = det(a,b,c) (u1^ u2^ u3) (4.3.15)

and here det(a,b,c) is the volume of the 3-piped spanned by the vectors a,b,c, so again there is a geometry
connection. However, for R3 the wedge product of two vectors is more complicated. Using the above
expression, we find

 a ^ b = det ⎝
⎛

⎠
⎞ a1 b1

 a2 b2 u1^u2 + ⎝
⎛

⎠
⎞ a1 b1

 a3 b3 u1^u3 + ⎝
⎛

⎠
⎞ a2 b2

 a3 b3 u2^u3

 = [a1b2 - a2b1] u1^u2 + [a3b1 - a1b3] u3^u1 + [a2b3 - a3b2] u2^u3 . (4.3.16)

The coefficients are those which appear in the normal "cross product" of two contravariant vectors,

 a x b = [a1b2 - a2b1] u3 + [a3b1 - a1b3] u2 + [a2b3 - a3b2] u1 .

Chapter 4: Products of Two Vectors

 87

We do not wish, however, to identify for example u1^u2 with u3. After all, u3 is a basis vector in V,
whereas u1^u2 is a vector in the tensor product space V⊗V. One can, on the other hand, define a
correspondence of sorts where one says (each line in cyclic order, and ↔ means "corresponds to")

 u1^u2 ↔ u3
 u2^u3 ↔ u1
 u3^u1 ↔ u2 // = - u1^u3 (4.3.17)

 in which case one can say

 a ^ b = [a1b2 - a2b1] u1^u2 + [a3b1 - a1b3] u3^u1 + [a2b3 - a3b2] u2^u3
↔
 a x b = [a1b2 - a2b1] u3 + [a3b1 - a1b3] u2 + [a2b3 - a3b2] u1 (4.3.18a)

so there is then a correspondence between the wedge product and the cross product in R3. This
correspondence was described by Scottish mathematician William Hodge (1903-1975) around 1941 and
the relationship ↔ is formalized by the Hodge dual star operator *, see Appendix H. For example
*(u1^u2) = u3 and *u3 = u1^ u2 in R3. We can make the correspondence between ^ and x more explicit
by writing ui ^ uj = εijk Ak where for example u1 ^ u2 = ε123 A3 = A3 = *u3 (defines A3 which
suggests area). Then the Hodge correspondence takes this form,

 a ^ b = aibj ui^ uj = aibjεijk Ak = Ak [εkijaibj] = A • (a x b) . (4.3.18b)

For Rn with n > 3 there is no cross product of two vectors, but there is a wedge product. With V = R4 for
example, using the result (4.3.12) stated above,

 a ^ b = det ⎝
⎛

⎠
⎞ a1 b1

 a2 b2 u1^u2 + det⎝
⎛

⎠
⎞ a1 b1

 a3 b3 u1^u3 + det⎝
⎛

⎠
⎞ a1 b1

 a4 b4 u1^u4

 + det⎝
⎛

⎠
⎞ a2 b2

 a3 b3 u2^u3 +det⎝
⎛

⎠
⎞ a2 b2

 a4 b4 u2^u4 + det⎝
⎛

⎠
⎞ a3 b3

 a4 b4 u3^u4 . (4.3.19)

There are enthusiastic workers (e.g. Denker) who recommend deep-sixing the cross product altogether
and replacing it with the wedge product for the study of topics like angular momentum. The wedge
product plays a role in the so-called Clifford algebras, and a very famous such algebra is that involved in
Dirac's relativistic theory of the electron, which theory predicts antiparticles. Elements of this Clifford
algebra are the 4 x 4 "gamma matrices" γμ. This is the same Dirac whose bra-ket notation we are using, so
somehow we have come full circle.

Chapter 4: Products of Two Vectors

 88

(d) Components

For the tensor product of two basis vectors we have these outer product forms,

 (ui⊗u'j)rs = (ui)r(u'j)s = δirδjs // V⊗W
 (ui⊗uj)rs = (ui)r(uj)s = δirδjs // V⊗V = V2 . (4.3.20)

For the wedge product (ui^ uj) we have instead,

 (ui^ uj)rs = (1/2)[ui⊗uj - uj⊗ui]rs = (1/2)[(ui⊗uj)rs - (uj⊗ui)rs] = (1/2)[(ui)r(uj)s - (uj)r(ui)s]

 = (1/2) (δir δjs - δis δjr)

 (ui^ uj)rs = - (ui^ uj)sr = - (uj^ ui)rs . // two forms of antisymmetry (4.3.21)

We now examine the pure wedge product a ^ b using both the symmetric expansion (4.3.5) and the
ordered expansion (4.3.10).

Using the symmetric double sum expansion form (4.3.5) with Tij = aibj one has from (4.3.6) and
(4.3.21),

 (a ^ b)rs = Σij aibj (ui ^ uj)rs = Σij aibj [δirδjs - δjrδis]/2

 = (arbs - asbr)/2 . (4.3.22)

Using the ordered double sum expansion (4.3.10) with Tij = aibj, we find instead

 (a ^ b)rs = Σi<j (aibj- ajbi) (ui ^ uj)rs = Σi<j det ⎝
⎛

⎠
⎞ ai bi

 aj bj (ui ^ uj)rs

 = (1/2) Σ1≤i<j≤n det ⎝
⎛

⎠
⎞ ai bi

 aj bj [δirδjs - δjrδis] . (4.3.23)

For r = s, one clearly has (a ^ b)rs = 0. If r < s, then only the δirδjs term can contribute to the ordered
sum, since this will make i < j , otherwise only the second term contributes. Then using θ(Boolean) = 1 if
true else 0, we can evaluate as follows,

 2(a ^ b)rs = det ⎝
⎛

⎠
⎞ ar br

 as bs θ(r<s) - det ⎝
⎛

⎠
⎞ as bs

 ar br θ(s<r)

 = det ⎝
⎛

⎠
⎞ ar br

 as bs θ(r<s) + det ⎝
⎛

⎠
⎞ ar br

 as bs θ(s<r) // swap rows 2nd term

 = det ⎝
⎛

⎠
⎞ ar br

 as bs [θ(r<s) + θ(s<r)] = det ⎝
⎛

⎠
⎞ ar br

 as bs = arbs - asbr . (4.3.24)

Chapter 4: Products of Two Vectors

 89

Combining the results for r=s and r≠s we get

 (a ^ b)rs = (arbs - asbr)/2 // T^

rs = (Trs- Tsr)/2 = Ars / 2 (4.3.25)

in agreement with (4.3.22) which used the symmetric sum.

We now repeat this comparison for general elements of L2.

Using the symmetric double sum (4.3.5),

 T^

rs = Σij Tij (ui ^ uj)rs = Σij Tij (δir δjs - δis δjr)/2

 = (Trs- Tsr)/2 = Ars/2 . (4.3.26)

Using the ordered double sum (4.3.10),

 T^

rs = Σi<j Aij (ui ^ uj)rs = Σi<j Aij [δirδjs - δjrδis]/2 . (4.3.27)

For r = s one has [..] = 0 so T^

rs
 = 0. Otherwise,

 2 T^

rs
 = Ars θ(r<s) - Asrθ(s<r) = Ars θ(r<s) + Arsθ(s<r)

 = Ars[θ(r<s) + θ(s<r)] = Ars (4.3.28)

with the conclusion that

 T^

rs = Ars/2 for all r,s ∈ (1,n) (4.3.29)

which agrees with (4.3.26) using the symmetric expansion.

(e) Dot Products

Since a^b is an element of V2 as well as of L2, we may use the V2 dot product to write

 (a^b) • (c⊗d) = {(a⊗b-b⊗a)/2}• (c⊗d) = (1/2) [(a⊗b)•(c⊗d) - (b⊗a)•(c⊗d)]

 = [(a•c)(b•d) - (b•c)(a•d)]/2 // (2.9.13) (4.3.30)

with this special case

 (ui^uj) • (c⊗d) = [(ui•c)(uj•d) - (uj•c)(ui•d)]/2 = [cidj - cjdi]/2 . (4.3.31)

The dot product of two-vector wedge products is the same as (4.3.30),

Chapter 4: Products of Two Vectors

 90

 (a^b) • (c^d) = {(a⊗b-b⊗a)/2} • {(c⊗d-d⊗c)/2} =

 = (1/4) [(a⊗b)•(c⊗d) - (b⊗a)•(c⊗d) - (a⊗b)•(d⊗c) + (b⊗a)•(d⊗c)]

 = (1/4) [(a•c)(b•d) - (b•c)(a•d) - (a•d)(b•c) + (b•d)(a•c)]

 = [(a•c)(b•d) - (b•c)(a•d)]/2

 = (a^b) • (c⊗d)

 = (a⊗b) • (c^d) (4.3.32)

so then the special case is the same as (4.3.31),

 (ui^uj) • (c^d) = [cidj - cjdi]/2 . (4.3.33)

Dirac Notation for Section 4.3 (a selection)

Section 4.3 (a)

 |a> ^ |b> = (|a>⊗ |b> - |b>⊗ |a>)/2 (4.3.1)D

 |a> ^ |b> = - |b> ^ |a> (4.3.2)D

 and |a> ^ |a> = 0 (4.3.3)D

 T^ = |T^> = Σij Tij |ui> ^ |uj> (4.3.5)D

 T^

ab = < ua| ⊗ <ub | |T^> = < ua| ⊗ <ub | Σij Tij |ui> ^ |uj>

 = Σij Tij <ua| ⊗ <ub | [|ui> ⊗ |uj> - |uj> ⊗ |ui>]/2

 = Σij Tij [<ua |ui> <ub |uj> - <ua |uj> <ub |ui>]/2

 = Σij Tij [δaiδbj- δajδbi]/2 = (Tab - Tba)/2 = - T^

ba (4.3.7)D

Section 4.3 (b)

 T^ = |T^> = Σi<j Aij |ui> ^ |uj> (4.3.10)D

Chapter 4: Products of Two Vectors

 91

Section 4.3 (c)

 |a> ^ |b> = Σij aibj |ui> ^ |uj> = Σi<j det ⎝
⎛

⎠
⎞ ai bi

 aj bj |ui> ^ |uj> (4.3.12)D

 |a> ^ |b> ^ |c> = det(a,b,c) |u1> ^ |u2> ^ |u3> n = 3 (4.3.15)D

Section 4.3 (d)

 (a ^ b)rs = <ur| ⊗ <us | |a> ^ |b> = <ur| ⊗ <us | (|a>⊗ |b> - |b>⊗ |a>)/2

 = [<ur| ⊗ <us | |a>⊗ |b> - <ur| ⊗ <us | |b>⊗ |a>]/2

 = [<ur |a><us |b> - <ur |b><us |a>]/2 = (arbs - asbr)/2 (4.3.25)D

Section 4.3 (e)

 (ui^uj) • (c⊗d) = [(ui•c)(uj•d) - (uj•c)(ui•d)]/2 = [cidj - cjdi]/2 .

 <ui| ^ <uj| |c>⊗ |d> = (1/2)[<ui| ⊗ <uj| - <uj| ⊗ <ui|] |c>⊗ |d>

 = (1/2)[<ui| c><uj|d> - <uj| c><ui|d>] = (1/2) [cidj - cjdi] (4.3.31)D

Chapter 4: Products of Two Vectors

 92

4.4 The wedge product of 2 dual vectors in Λ2

Section 4.3 considered the wedge product of two vectors in V2. Here we consider the wedge product of
two vectors in the dual space V*2. We mimic the approach of Section 4.3, omitting some details, and we
match equation numbers even though this leaves some "holes" in the sequence.

(a) Definition of the wedge product and the space Λ2

We start off by defining the following wedge product of two vectors (linear functionals) α and β of V*,

 α ^ β ≡ (α ⊗ β - β ⊗ α)/2 . (4.4.1)

Notice therefore that α ^ β is an element of V*⊗V* = V*2, since it is a linear combination of elements of
V*⊗V*. It is "antisymmetrized" under α ↔ β. Since not all elements of V*⊗V* = V*2 can be written this
way, the set of elements α ^ β exist in a subspace of V*2 which we shall call Λ2, so Λ2 ⊂ V*2. Some
authors write Λ2 as V*^V*. The proof that Λ2 is a subspace and not just a subset of V*2 is the same as in
the Section 4.3 (a).

The above definition trivially implies that

 α ^ β = - β ^ α α, β ∈ V* (4.4.2)
and
 α ^ α = 0 α ∈ V* . (4.4.3)

The "rules" for the ^ operator in Λ2 ⊂ V*2 are found just as they were for L2 ⊂ V2, namely :

 (sα) ^ β = s (α ^ β) (α+γ) ^ β = (α ^ β) + (γ ^ β)
 α ^ (sβ) = s (α ^ β) α ^ (β + γ) = (α ^ β) + (α ^ γ) (4.4.4)

where α,β,γ are vectors in V* and s is a scalar in K.

To more precisely define the space Λ2, we claim that the most general element of the space Λ2 can be
written this way (that is, Λ2 is the space spanned by the λi ^ λj basis vectors)

 T^ = Σij Tij λi ^ λj . // λi ^ λj = <ui| ^ <uj| in Dirac notation (4.4.5)

For example, if Tij = αiβj this would be

 T^ = Σij αiβj (λi ^ λj) = (Σiαiλi) ^ (Σjβjλj) = α ^ β (4.4.6)

and then α ^ β is included in Λ2 for any vectors α and β in V*.

Λ2 is spanned by the n(n-1)/2 independent basis vectors (λi^ λj) for i < j. (4.4.8)
Λ2 is a subspace of V*2, just as L2 is a subspace of V2 as shown near (4.3.9). (4.4.9)

Chapter 4: Products of Two Vectors

 93

(b) How big is the space Λ2 compared to the space V*2?

Just as in Section 4.3 (b), we can show that

 T^ = Σij Tij (λi ^ λj)

 = Σi<j Aij (λi ^ λj) Aij ≡ (Tij - Tji) Aij = - Aji (4.4.10)

where Aij is an antisymmetric n x n matrix. Using the same argument presented there, we find

elements in Λ2

elements in V*2 =
Nn(n-1)/2

Nn2 = (1/2)
n2 - n

n2 = (1/2) (1 -
1
n) . (4.4.11)

(c) Wedge products and determinants

From (4.4.6) and (4.4.10) with Tij = αiβj we get,

 α ^ β = Σij αiβj (λi ^ λj) = Σi<j (αiβj- αjβi) (λi ^ λj)

 = Σi<j det ⎝
⎛

⎠
⎞ αi βi

 αj βj (λi ^ λj) Aij = (αiβj- αjβi) = det ⎝
⎛

⎠
⎞ αi βi

 αj βj . (4.4.12)

See Fig (4.3.13) for an interpretation of this sum.

If V* = R2 (so n=2) there is only one term in the sum (4.4.12), the one with i=1 and j=2, so

 α ^ β = det ⎝
⎛

⎠
⎞ α1 β1

 α2 β2 λ1 ^ λ2 = det(α,β) λ1 ^ λ2 = [α1β2 - α2β1] λ1 ^ λ2 . (4.4.14)

For V = R3 the triple wedge product of three vectors is given by,

 α ^ β ^ γ = det(α,β,γ) (λ1 ^ λ2 ^ λ3) (4.4.15)

It does not seem useful to discuss "geometry" in the space of functionals, but we could be wrong.

(d) Tensor Functions

In Section 4.3(d) we discussed components (ui⊗u'j)rs and (ui^uj)rs. In the dual world, the
corresponding objects are the tensor functions (λi⊗λ'j)(vr,ws) and (λi^ λj)(vr,ws) .

For the tensor product of two dual basis vectors we have these tensor functions,

Chapter 4: Products of Two Vectors

 94

 (λi⊗λ'j)(vr,ws) = λi(vr)λ'j(ws) = (vr)i(ws)j // V*⊗W*; r and s are vector labels
 (λi⊗λj)(vr,vs) = λi(vr)λj(vs) = (vr)i(vs)j // V*⊗V*
and
 (λi⊗λ'j)(ur,u's) = (ur)i(u's)j = δriδsj // V*⊗W*
 (λi⊗λj)(ur,us) = (ur)i(us)j = δriδsj . // V*⊗V* (4.4.20)

For the wedge product (λi^ λj) we have instead,

 (λi^ λj)(vr,vs) = [(λi⊗λj)(vr,vs) - (λj⊗λi)(vr,vs)]/2 = [λi(vr)λj(vs) - λj(vr)λi(vs)]/2

 = (1/2) [(vr)i(vs)j - (vr)j(vs)i] // Λ2 = V* ^ V*

 (λi^ λj)(ur,us) = (1/2) [δriδsj - δrjδsi]

 (λi^ λj)(vr,vs) = - (λi^ λj)(vs,vr) = - (λj^ λi)(vr,vs) . // two forms of antisymmetry (4.4.21)

We now examine the pure wedge product α ^ β using both the symmetric expansion (4.4.5) and the
ordered expansion (4.4.10).

Using the symmetric double sum expansion form (4.4.5) with Tij = αiβj one has,

 (α ^ β)(vr,vs) = Σij αiβj (λi ^ λj)(vr,vs) = Σij αiβj [λi(vr)λj(vs) - λj(vr)λi(vs)]/2

 = Σij αiβj[(vr)i(vs)j - (vr)j(vs)i]/2 = [α(vr)β(vs) - α(vs)β(vr)]/2 .

 (α ^ β)(ur,us) = Σij αiβj [δirδjs - δjrδis]/2 = (αrβs - αsβr)/2 . (4.4.22)

where in the last equation we set vr = ur and vs = us and use (2.4.1) that (ur)i = δri .

Using the ordered double sum expansion (4.4.10) with Tij = αiβj, we find instead

 (α ^ β)(vr,vs) = Σi<j (αiβj- αjβi) (λi ^ λj)(vr,vs) = Σi<j det ⎝
⎛

⎠
⎞ αi βi

 αj βj (λi ^ λj)(vr,vs)

 = Σi<j det ⎝
⎛

⎠
⎞ αi βi

 αj βj [λi(vr)λj(vs) - λj(vr)λi(vs)]/2

 = Σi<j det ⎝
⎛

⎠
⎞ αi βi

 αj βj (1/2) det ⎝
⎛

⎠
⎞λi(vr) λj(vr)

 λi(vs) λj(vs) .

 (α ^ β)(ur,us) = Σi<j det ⎝
⎛

⎠
⎞ αi βi

 αj βj (1/2) [δirδjs - δjrδis] . (4.4.23)

where again in the last equation vr = ur and vs = us .

Chapter 4: Products of Two Vectors

 95

Repeating the argument (4.3.24) this becomes

 (α ^ β)(ur,us) = (αrβs - αsβr)/2 // later this will be called [Alt(α⊗β)]rs (4.4.25)

in agreement with (4.4.22) which used the symmetric sum.

We now repeat this comparison for general elements of Λ2.

Using the symmetric double sum (4.4.5),

 T^(vr,vs) = Σij Tij (λi ^ λj)(vr,vs) = Σij Tij [λi(vr)λj(vs) - λj(vr)λi(vs)]/2

 T^(ur,us) = Σij Tij [δirδjs - δjrδis] / 2 = (Trs - Tsr)/2 = Ars/2 . // see (4.4.10) (4.4.26)

Using the ordered double sum (4.4.10),

 T^(ur,us) = Σi<j Aij (λi ^ λj)(ur,us) = Σi<j Aij [δirδjs - δjrδis]/2 . (4.4.27)

For r = s one has [..] = 0 so T^(ur,us) = 0. Otherwise,

 2T^(ur,us) = Ars θ(r<s) - Asrθ(s<r) = Ars θ(r<s) + Arsθ(s<r)

 = Ars[θ(r<s) + θ(s<r)] = Ars (4.4.28)

with the conclusion that

 T^(ur,us) = Ars/2 for all r,s ∈ (1,n) (4.4.29)

in agreement with (4.4.26).

Section 4.3 (e) on dot products like (a^b) • (c⊗d) has no useful analog for functionals.

The vector spaces Λ2 and Λ2

f

Looking at (4.4.21), (4.4.22) and (4.4.26), one sees that (λi^ λj)(vr,vs), (α ^ β)(vr,vs) and T^(vr,vs) are
all antisymmetric bilinear functions of the two arguments vr, vs ∈ V .

In Section 4.3 we declare that the rank-2 tensor T^ = |T^> is antisymmetric (alternating) if T^

ab = - T^
ba .

In similar fashion, we declare that the rank-2 tensor functional T^ = <T^| is antisymmetric (alternating) if
T^(v,v') = - T^(v',v). That is to say, saying that the functional is alternating means that the corresponding
tensor function is alternating.

Chapter 4: Products of Two Vectors

 96

We can regard both T^ = <T^| and T^(v,v') = <T^|v,v'> as representations of the same antisymmetric
rank-2 tensor functional <T^| in V* ^ V* = Λ2. The object T^ is an antisymmetric bilinear rank-2 tensor
functional, whereas T^(v,v') is an antisymmetric bilinear rank-2 tensor function (a Spivak 2-tensor). There
is a 1-to-1 correspondence between T^ and T^(v,v') . We shall say T^ ∈ Λ2 while T^(v,v') ∈ Λ2

f (f =
function), and the two spaces are isomorphic. Therefore,

Fact: The vector space Λ2 is equivalent to the vector space Λ2

f of antisymmetric bilinear functions on
V2. (4.4.34)

This may be compared to our earlier statement for the larger space V*2 = V*⊗V* ,

Fact: The vector space V*2 is equivalent to the vector space V*2f of bilinear functions on V2. (4.2.15)

Dirac Notation for Section 4.4 (a selection)

Section 4.4 (a)

 <α| ^ <β| = (<α| ⊗ <β| - <α| ⊗ <β|)/2 (4.4.1)D

 <α| ^ <β| = - <β| ^ <α| (4.4.2)D

 <α| ^ <α| = 0 (4.4.3)D

 T^ = <T^| = Σij Tij <ui| ^ <uj| // λi = <ui| (4.4.5)D

 T^ = <T^| = Σijαiβj <ui| ^ <uj| = (Σiαi<ui|)(Σjβi<uj|) = <α| ^ <β| (4.4.6)D

Section 4.4 (b)

 T^ = <T^| = Σi<j Aij <ui| ^ <uj| (4.4.10)D

Section 4.4 (c)

 α ^ β = <α| ^ <β| = Σi<j det ⎝
⎛

⎠
⎞ αi βi

 αj βj <ui| ^ <uj| (4.4.12)D

Section 4.4 (d)

 (λi^ λj)(vr,vs) = <ui| ^ <uj| | vr> ⊗ | vs> = (1/2) (<ui| ⊗ <uj| - <uj| ⊗ <ui|) | vr> ⊗ | vs>

 = (1/2) (<ui|vr><uj| vs> - <ui|vs><uj| vr>) = (1/2) [(vr)i(vs)j - (vr)j(vs)i] (4.4.21)D

Chapter 5: Tensor Products

 97

5. The Tensor Product of k vectors : the vector spaces Vk and T(V)

Our task is now to generalize the tensor product from V2 to Vk, where

 Vk ≡ V⊗V⊗ ⊗V . // tensor product of k vector spaces, each one is V (5.1)

We are setting up for a parallel treatment in Chapter 6 where ⊗ becomes ^, so certain rather obvious
statements will be made here to allow for comparison later with the wedge product.

5.1 Pure elements, basis elements, and dimension of Vk

A generic pure ("decomposable") element of Vk is this tensor product of k vectors,

 v1 ⊗ v2 ⊗⊗ vk all vi ∈ V (5.1.1)

 = |v1> ⊗ |v2> ... ⊗ |vk> = |v1,v2, ... vk> . // Dirac notation

Since ⊗ is associative by (2.8.21), one can install parentheses anywhere in (5.1.1) without altering the
meaning of the object, for example, v1 ⊗ (v2 ⊗ v3) ⊗⊗ vk = v1 ⊗ v2 ⊗ v3 ⊗⊗ vk .

The basis elements of Vk are (these ui are those of Section 2.4),

 ui1⊗ ui2⊗ uik = |ui1> ⊗ |ui2> ... ⊗ |uik> = | ui1, ui2 ...uik> . (5.1.2)

In (5.1.1) and (5.1.2) the subscripts are labels, not components. The components of these two tensor
objects are given by the (2.8.17) outer product form,

 (v1 ⊗ v2 ⊗⊗ vk)j1j2...jk = (v1)j1 (v2)j2 (vk)jk (5.1.3)

 (ui1⊗ ui2⊗ uik)j1j2...jk = (ui1)j1 (ui2)j2 (uik)jk = δi1
j1 δi2

j2 δik
jk . (5.1.4)

If n = dim(V), the total number of such basis elements is nk, so

 dim(Vk) = nk. (5.1.5)

In the full set of tensor-product basis elements shown in (5.1.2), two or more of the uir might be the
same. This will always be the case if k > n where n ≡ dim(V). For example, for k = 3 and n = 2 one such
element would be u1 ⊗ u1 ⊗ u2 ≠ 0.

In Dirac notation, we can write (5.1.3) and (5.1.4) as

 < uj1, uj2 ...,ujk | v1,v2, ...vk> = < uj1|v1>< uj2|v2>...< ujk|vk> = (v1)j1 (v2)j2 (vk)jk (5.1.3)D

 < uj1, uj2,ujk | ui1,ui2, ... uik> = δi1
j1 δi2

j2 δik
jk . // <uJ|uI> = δJI . (5.1.4)D

Chapter 5: Tensor Products

 98

5.2 Tensor Expansion for a tensor in Vk ; the ordinary multiindex

Note: This section is subset of Section 2.10 (b) with new equation numbers and with Dirac notation
equations added at the end.

A rank-k tensor T in Vk has this general expansion on the ur basis,

 T = Σi1i2....ik Ti1i2....ik (ui1⊗ ui2⊗ uik) . (5.2.1)

As expected,

 [T]j1j2...jk = Σi1i2....ik Ti1i2....ik (ui1⊗ ui2⊗ uik)j1j2...jk

 = Σi1i2....ik Ti1i2....ik (δi1

j1 δi2
j2 δik

jk) = Tj1j2...jk . (5.2.2)

The coefficients Ti1i2....ik can be projected out from T as in (2.10.19),

 (ui1⊗ui2⊗... ⊗uik) • T = Ti1i2...ik (5.2.3)

with an appropriate generalization of the dot product • to the space Vk = V⊗V...⊗V,

 (v1⊗v2...⊗vk) • (u1⊗u2...⊗uk) ≡ Σi1i2....ik (v1⊗v2...⊗vk)i1i2....ik (u1⊗u2...⊗uk)i1i2....ik

 = Σi1i2....ik (v1)i1(v2)i2... (vk)ik (u1)i1(u2)i2... (uk)ik // outer products

 = (v1 • u1) (v2 • u2) (vk • uk) . // = (v1)1(v2)2 ...(vk)k (5.2.4)

Using the notion of a multiindex I (an ordinary multiindex),

 I ≡ i1, i2,ik // each is ranges 1,2....n n = dim(V) (5.2.5)

and a shorthand notation for the basis vectors

 uI ≡ ui1⊗ ui2⊗ uik uI ≡ ui1 ⊗ ui2⊗ uik (5.2.6)

the expansion (5.2.1) can be stated in the following compact form,

 T = ΣI TI uI . (5.2.1) (5.2.7)

and the coefficients TI can be projected out according to (5.2.3),

 uI • T = TI . (5.2.3) (5.2.8)

Chapter 5: Tensor Products

 99

The Dirac notation restatements of selected equations above are ,

 |T> = Σi1i2....ik Ti1i2....ik | ui1, ui2,uik> . (5.2.1)D

 [T]j1j2...jk = < uj1, uj2,ujk | T>

 = Σi1i2....ik Ti1i2....ik < uj1, uj2,ujk | ui1, ui2,uik>

 = Σi1i2....ik Ti1i2....ik (δi1

j1 δi2
j2 δik

jk) = Tj1j2...jk (5.2.2)D
or
 [T]J = <uJ|T> = ΣITI <uJ|uI> = ΣITI δJI = TJ .

 (ui1⊗ui2⊗... ⊗uik) • T = <ui1, ui2, ...uik | T> = Ti1i2...ik // = T(ui1, ui2, ...uik) (5.2.3)D

 <v1,v2...vk| u1,u2...uk> = <v1|u1><v1|u1>...<vk|uk> = (v1)1(v2)3 ...(vk)k (5.2.4)D

 |T> = ΣI TI |uI> (5.2.7)D

 <uI| T> = TI . (5.2.8)D

5.3 Rules for product of k vectors

The tensor product of k vectors is "k-multilinear" meaning it is linear in each of its k factors. This was
discussed in (1.1.16) and later in (3.1.4). For example,

 v1⊗(v2 + v'2)⊗v3⊗.....⊗vk = v1⊗v2⊗v3⊗⊗vk + v1⊗v'2⊗v3⊗⊗vk

 v1⊗(sv2)⊗v3⊗⊗ vk = s(v1⊗v2⊗v3⊗⊗vk) s = scalar (5.3.1)

Here we show linearity in the 2nd factor. All the other factors have similar equations. We impose this k-
multilinearity by fiat with the result that:

Fact: The space Vk is a vector space. (5.3.2)

The proof of this fact follows that of the text near (1.1.9). For example, the "0" in Vk is represented by
(5.1.1) with one or more vectors being 0, since for example,

 v1⊗0⊗⊗vk = v1⊗(v2 - v2)⊗⊗vk = v1⊗v2⊗⊗vk - v1⊗v2⊗⊗vk = 0 . (5.3.3)

"Vector multiplication" is distributive over scalar addition (here the "vector" is v1⊗v2⊗⊗vk), as one
finds applying the rules (5.3.1),

Chapter 5: Tensor Products

 100

 (s1 + s2)(v1⊗v2⊗⊗vk) = [(s1+s2)v1]⊗v2⊗⊗vk = [s1v1+s2v1]⊗v2⊗⊗vk (5.3.4)

 = s1(v1⊗v2⊗⊗vk)+ s2(v1⊗v2⊗⊗vk) s1,s2 ∈ K

and multiplication by a scalar is distributive over "vector addition",

 s[(v1⊗v2⊗⊗vk) + (v'1⊗v'2⊗⊗v'k)] = s (v1⊗v2⊗⊗vk) + s (v'1⊗v'2⊗⊗v'k) . (5.3.5)

All the above equations are meaningful for any positive integer k, regardless of the value n = dim(V).

5.4 The Tensor Algebra T(V)

Direct Sums

A direct sum of two vector spaces Z = V⊕W is a new vector space and has elements v⊕w. Similarly, a
direct sum of three vector spaces Z = V⊕W⊕X is a new vector space with elements v⊕w⊕x. The idea
can be applied to any number of vector spaces. Below we use Z = V0⊕V1⊕V2⊕ The reader unfamiliar
with direct sums will find a detailed description in Appendix B including a simple "tall vector" method of
visualizing such spaces.

The Tensor Algebra

Normally one does not add apples and oranges, so one does not add items of the form a⊗b ∈ V2 to those
of the form a⊗b⊗c ∈ V3. However (as Denker notes) fruit salad is great, and so we could define a very
large vector space of the form

 T(V) ≡ V0 ⊕ V ⊕ V2 ⊕ V3 ⊕ = Σ⊕

k=0
∞ Vk . (5.4.1)

Here V0 = the space of scalars, V1 = V the space of vectors, V2 = V⊗V = the space of rank-2 tensors,
and so on. The most general element t of the space T(V) has the form

 t = s ⊕ ΣiTi ui ⊕ Σij Tij ui⊗uj ⊕ Σijk Tijk ui⊗uj⊗uk + s ∈ K (5.4.2)

with all coefficients in a field K.

Fact: This large space T(V) is in fact itself a vector space. (5.4.3)

We know this is true since T(V) = Σ⊕

k=0
∞ Vk and we showed in (5.3.2) that each Vk is a vector space.

For example, the "0" element in T(V) is the direct sum of the "0" elements of all the Vk. See Appendix B
for more detail.

To show that T(V) is an algebra, we must show that it is closed under both addition and multiplication. It
should be clear to the reader that T(V) is closed under addition and has the right scalar rule. For example,
if k1 and s are scalars,

Chapter 5: Tensor Products

 101

 k1 ⊕ a ⊕ b⊗c ⊕ f⊗g⊗h = sum of 4 elements of T(V) = an element of T(V)

 s(k1 ⊕ a ⊕ b⊗c ⊕ f⊗g⊗h) = (sk1) ⊕ (sa) ⊕ (sb)⊗c ⊕ f⊗(sg)⊗h = element of T(V) .
 (5.4.4)
This additive closure is of course necessary for T(V) be a vector space.

The space is also closed under the multiplication operation ⊗. For example

 (b⊗c)⊗(f⊗g⊗h) = b⊗c⊗f⊗g⊗h = ∈ V5 = ∈ T(V) . // (b⊗c) ∈ V2 , (f⊗g⊗h) ∈ V3 (5.4.5)

Here we have used the associative property (2.8.21) applied to vectors. This closure claim is stated more
generally in (5.6.6).

For later comparison with the corresponding wedge picture, here we have:

 Object lin comb is Rank(grade) Space
 s scalar ∈ K 0 V0

 a vector 1 V1

 a⊗b rank-2 tensor 2 V2

 a⊗b⊗c rank-3 tensor 3 V3

 a⊗b⊗c⊗d rank-4 tensor 4 V4

 a⊗b⊗c⊗d.... rank-k tensor k Vk

 arbitrary element of T(V) multivector mixed T(V) (5.4.6)

Since T(V) is closed under the operations ⊕ and ⊗, it is "an algebra" (the space Vk alone is not an algebra
because it is not closed under ⊗). The T(V) algebra is different from that of the reals due to its definition
as a direct sum of vector spaces. The elements of T(V) have different "grades" as shown in the right
column above, and T(V) is known therefore as a "graded algebra". The grade here is just the tensor rank.
Sometimes T(V) is called "the tensor algebra" over V, see for example Benn and Tucker page 3.
 Any linear combination of a set of tensor products of k vectors is a rank-k tensor. More generally, a
rank-k tensor has the form shown in (5.2.1). A multivector is any linear combination of rank-k tensors
for any mixed values of k

The dimensionality of the space T(V) is as follows, where n = dim(V),

 dim[T(V)] = 1 + n + n2 + n3 + ... = ∞ (5.4.7)

Here are a few Dirac notation restatements of equations above

Chapter 5: Tensor Products

 102

 k1 ⊕ |a> ⊕ |b,c> ⊕ |f,g,h> = sum of 4 elements of T(V) = an element of T(V) (5.4.4)D

 s(k1 ⊕ |a> ⊕ |b,c> ⊕ |f,g,h>) = (sk1) ⊕ |sa> ⊕ |sb,c> ⊕ |f,sg,h> = element of T(V) .

 |b,c>⊗ |f,g,h> = |b,c,f,g,h> = ∈ V5 = ∈ T(V) . // |b,c> ∈ V2 , |f,g,h> ∈ V3 (5.4.5)D

5.5 Comments about tensors

The following fact is doubtless obvious to the reader, but we feel it is worth stating explicitly. First,
suppose Tij are the components of a rank-2 tensor. Define Qij ≡ Tji. Then Q is also a rank-2 tensor
(although one different from T if T is not symmetric). Here is a formal proof of this claim:

 transformation (2.1.7) i↔j and a↔b reorder
 (T = rank-2 tensor) ⇒ T'ij = Ri

aRj
bTab ⇒ T'ji = Rj

bRi
aTba = Ri

a Rj
bTba

 ⇒ Q'ij = T'ji = Ri

a Rj
bQab ⇒ (Q = rank-2 tensor) (5.5.1)

In similar fashion the reader can verify the following :

Fact: If Ti1i2....ik are the components of a rank-k tensor, then Tj1j2....jk are the also components
of a rank-k tensor, where the {jn} are any permutation of the {in}. The permuted tensor is in general a
different rank-k tensor from the unpermuted one. (5.5.2)

Corollary: Any linear combination of permutations of Ti1i2....ik is a rank-k tensor. (5.5.3)

Example: If Tij is a rank-2 tensor, then so is Aij = (Tij - Tji). Thus, the Aij shown in (4.3.10) is a
rank-2 tensor given that Tij is a rank-2 tensor.

5.6 The Tensor Product of two or more tensors in T(V)

The tensor algebra T(V) shown in (5.4.1) is closed under both ⊕ and ⊗. It seems evident how one would
add two tensors of T(V) of the form (5.4.2), but how would one multiply two tensors?

During this set of steps, we try to gracefully transition into multiindex notation by doing a "real-time
translation" for each line.

Consider two tensors of rank k and k' expanded as in (5.2.1),

 T = Σi1i2....ik Ti1i2....ik (ui1⊗ ui2⊗ uik) . rank k, T ∈ Vk (5.6.1)
 ΣITIuI

 S = Σj1j2....jk' Sj1j2....jk' (uj1⊗ uj2⊗ ujk') rank k', S ∈ Vk' . (5.6.2)
 ΣJSJuJ

Chapter 5: Tensor Products

 103

Multiplying these together with ⊗ one gets, using the rules (5.3.1),

T⊗S = [Σi1i2....ikTi1i2....ik(ui1⊗ ui2⊗ uik)]⊗[Σj1j2....jk'Sj1j2....jk'(uj1⊗ uj2⊗ujk')]
 [ΣITIuI] ⊗ [ΣJSJuJ]

(a) = Σi1i2....ik Σj1j2....jk'Ti1i2....ik Sj1j2....jk'(ui1⊗ ui2⊗ uik) ⊗ (uj1⊗ uj2⊗ ujk')
 ΣI,JTISJ(uI) ⊗ (uJ)

(b) = Σi1i2....ikj1j2....jk'Ti1i2....ik Sj1j2....jk'(ui1⊗ ui2⊗ uik⊗ uj1⊗ uj2⊗ ujk')
 ΣI,JTISJ(uI ⊗ uJ)

(c) = Σi1i2....ikik+1ik+2....ik+k' Ti1i2....ik Sik+1ik+2....ik+k' (ui1⊗ ui2⊗ uik+k') .
 ΣI,I'TISI'(uI ⊗ uI')

(d) = Σi1i2....ikik+1ik+2....ik+k' [T⊗S]i1i2....ik ik+1ik+2....ik+k' (ui1⊗ ui2⊗ uik+k') .
 ΣI,I'[T⊗S]I,I'(uI ⊗ uI')

(u) = Σi1i2...ik+k' [T⊗S]i1i2...ik+k' (ui1⊗ ui2⊗ uik+k') . (5.6.3)
 ΣI (T⊗S)I uI . // italic I's

Comparing lines one sees that

 I ≡ i1, i2...ik I' ≡ ik+1, ik+2,ik+k' I ≡ I, I' = i1,i2...ik+k'
 uI ≡ (ui1⊗ ui2⊗ uik) uI' ≡ (uik+1⊗...⊗uik+k') uI ≡ (ui1⊗ ui2⊗ uik+k') . (5.6.4)

Notice that the (2.8.21) associativity of ⊗ is used going from (a) to (b). In step (c) we renamed the
dummy jr summation indices so that j1 = ik+1 , j2 = ik+2 and so on. Step (d) uses the outer product form
(3.1.14) to replace TI SI' = (T⊗S)I,I' = (T⊗S)I .

The conclusion is that

 T⊗S = ΣI (T⊗S)I uI I ≡ I, I' = i1,i2...ik+k', uI ≡ (ui1⊗ ui2⊗ uik+k') . (5.6.5)

Since the uI are basis vectors in Vk+k', we have shown that:

 T ∈ Vk and S ∈ Vk' ⇒ T⊗S ∈ Vk+k' ⊂ T(V) . (5.6.6)

Thus we have strengthened the claim made in (5.4.5) that T(V) is closed under the operation ⊗.

We shall now undertake the tensor product of three tensors T,S,R of ranks k,k',k" by mimicking the above
set of steps, but leaning more heavily now on multiindex notation (no training wheels here),

Chapter 5: Tensor Products

 104

 T⊗S⊗R = [ΣITIuI]⊗[ΣJSJuJ]⊗[ΣKSKuK]

(a) = ΣI,J,K TISJRK (uI) ⊗ (uJ) ⊗ (uK)

(b) = ΣI,J,K TISJRK (uI ⊗ uJ ⊗ uK) // associative of ⊗ used here

(d) = ΣI,I',I" TISI'RI" (uI ⊗ uI' ⊗ uI") // rename multiindices J→I',K→I"

 I ≡ i1, i2...ik I' ≡ ik+1, ik+2,ik+k' I" ≡ ik+k'+1, ik+k'+2,ik+k'+k"
 uI ≡ (ui1⊗....⊗ uik) uI' ≡ (uik+1⊗...⊗ uik+k') uI" ≡ (uik+k'+1⊗...⊗ uik+k'+k")

(e) = ΣI (T⊗S⊗R)I uI uI ≡ (ui1⊗....⊗ uik+k'+k") I ≡ I, I',I" = i1,i2...ik+k'+k" (5.6.7)

Now the outer product form is TISI'RI" = (T⊗S⊗R)I,I',I" = (T⊗S⊗R)I .

The conclusion is this:

 T⊗S⊗R = ΣI (T⊗S⊗R)IuI I ≡ I, I',I" = i1,i2...ik+k'+k" uI ≡ (ui1⊗....⊗ uik+k'+k") . (5.6.8)

Since the uI are basis vectors in Vk+k'+k", we have shown that:

 T ∈ Vk and S ∈ Vk' and R ∈ Vk" ⇒ T⊗S⊗R ∈ Vk+k'+k" ⊂ T(V) . (5.6.9)

To develop a more systematic approach, consider the first three tensors in a product of tensors,

 T1 = tensor of rank k1 I1 = {i1, i2.....ik1}
 T2 = tensor of rank k2 I2 = {ik1+1, ik1+2.....ik1+k2}
 T3 = tensor of rank k3 I3 = {ik1+k2+1, ik1+k2+2.....ik1+k2+k3} . (5.6.10)

Define the following "cumulative ranks",

 κ1 = k1
 κ2 = k1+ k2
 κ3 = k1+ k2 + k3
 ...
 κN = k1 + k2 + ... + kN = Σi=1N ki . (5.6.11)

Then rewrite and extend (5.6.10),

Chapter 5: Tensor Products

 105

 T1 = tensor of rank k1 I1 = {i1, i2.....iκ1}
 T2 = tensor of rank k2 I2 = {iκ1+1, iκ1+2.....iκ2}
 T3 = tensor of rank k3 I3 = {iκ2+1, iκ2+2.....iκ3}
 ...
 Ts = tensor of rank ks Is = {iκs-1+1, iκs-1+2.....iκs}
 ...
 TN = tensor of rank kN IN = {iκN-1+1,iκN-1+2.....iκN} . (5.6.12)

In this notation, and generalizing the above development for the tensor product of three tensors, we find
the following expansion for the tensor product of N tensors of T(V),

 T1⊗T2⊗...⊗TN = ΣI (T1⊗T2....⊗TN)I uI
 (5.6.13)
 where uI = ui1⊗ ui2⊗ uik1+k2+...+kN = ui1⊗ ui2⊗ uκN

 and (T1⊗T2....⊗TN)I = T1
I1T2

I2 TN
IN .

The rank of this product tensor is then κ = Σi=1N ki and the tensor is an element of Vκ ⊂ T(V). In Dirac
notation, one rewrites (5.6.13) as

 | T1,T2....TN> = | T1⊗T2....⊗TN> = |T1>⊗|T2>...⊗|TN> = ΣI (T1⊗T2....⊗TN)I |uI> . (5.6.13)D

Example 1: The tensor product of two rank-1 tensors.

 T⊗S = Σi1i2[Ti1 Si2] (ui1⊗ ui2) = Σij TiSj (ui⊗uj) = Σij (T⊗S)ij (ui⊗uj)

 (T⊗S)ab = Σij TiSj (ui⊗uj)ab = Σij TiSj δiaδjb = TaSb (5.6.14)

Example 2: The tensor product of two rank-2 tensors.

 T⊗S = Σi1i2i3i4 Ti1i2 Si3i4 (ui1⊗ ui2 ⊗ ui3⊗ ui4)

 (T⊗S)abcd = TabScd (5.6.15)

In both examples the evaluation of components produces the expected outer product forms.

Special cases of the tensor product T⊗S.

Assume T and S have rank k and k'.

If S = κ' ∈ K = a scalar, then rank(S) = k' = 0 and (5.6.3) (c) reads,

Chapter 5: Tensor Products

 106

 T⊗S = Σi1i2....ikj1j2....jk'Ti1i2....ik Sj1j2....jk'(ui1⊗ ui2⊗ uik⊗ uj1⊗ uj2⊗ ujk')

 → Σi1i2....ikTi1i2....ik (κ') (ui1⊗ ui2⊗ uik) = κ'T
and

 S⊗T = Σj1j2....jk'i1i2....ik Sj1j2....jk'Ti1i2....ik(uj1⊗ uj2⊗ ujk'⊗ ui1⊗ ui2⊗ uik)

 → Σi1i2....ik (κ') Ti1i2....ik (ui1⊗ ui2⊗ uik) = κ'T

so we find that T⊗S = S⊗T = κ'T .

If T = κ and S = κ', the result above would be T⊗S = κκ' and S⊗T = κ'κ and so T⊗S = S⊗T = κκ'. Thus,

 T⊗S = κ⊗S = S⊗T = S⊗κ = κS if T = κ ∈ V0

 T⊗S = T⊗κ' = S⊗T = κ'⊗T = κ'T if S = κ' ∈ V0

 T⊗S = κ⊗κ' = S⊗T = κ'⊗κ = κκ' if T,S = κ,κ' ∈ V0 . (5.6.16)

All equations above can be written in Dirac notation, for example,

 |T>⊗|S> = [ΣITI|uI>] ⊗ [ΣI'SI'|uI'>] = ΣI,I'TISI'|uI>⊗|uI'> = ΣI (T⊗S)I |uI> (5.6.5)D

 |T> ∈ Vk and |S> ∈ Vk' ⇒ |T⊗S> = |T>⊗|S> ∈ Vk+k' ⊂ T(V) . (5.6.6)D

Operators on the tensor product space

Recall from above the following tensor product space vector,

 | T1,T2....TN> = | T1⊗T2....⊗TN> = |T1> ⊗ |T2>...⊗ |TN> (5.6.13)D

which is an element of the tensor product space Vk1 ⊗ Vk2 ⊗...⊗ VkN. The action of a linear operator P
on such a tensor product vector is defined in terms of its action in the spaces from which the tensor
product is composed,

 P [|T1> ⊗ |T2>...⊗ |TN>] = P |T1> ⊗ P |T2>...⊗ P |TN> . (5.6.17)

Chapter 6: Dual Tensor Products

 107

6. The Tensor Product of k dual vectors : the vector spaces V*k and T(V*)

Every equation in Chapter 5 can be converted to an appropriate equation of Chapter 6 using this simple
set of translation rules:

1. |X> → <X| and <Y| → |Y>. That is, reverse all Dirac bras and kets.

2. Swap lower and upper indices, indices. eg. ui → ui, Tij → Tij (really: reverse all tilts).

3. |vi> → <αi| // use Greek/script names for functionals; vi → αi

4. Vk → V*k // space goes to dual space

5. < T | v1,v2.....vk > = T(v1,v2.....vk) = a tensor function (a new item) (6.1)

In general, translation of a Chapter 5 equation to Chapter 6 is most easily done if the Chapter 5 equation
is first stated in Dirac notation.

We could end Chapter 6 right here, allowing the reader to apply the above rules, but that seems
unsportsmanlike, so we proceed with a partial mimicry of Chapter 5.

6.1 Pure elements, basis elements, and dimension of V*k

A generic pure ("decomposable") element of V*k is this tensor product of k functionals,

 α1 ⊗ α2 ⊗⊗ αk . all αi ∈ V* (6.1.1)

 = <α1| ⊗ <α2| ... ⊗ <αk| = <α1,α2, ... αk| . // Dirac notation

Since ⊗ is associative by (2.8.21), one can install parentheses anywhere in (6.1.1) without altering the
meaning of the object, for example, α1 ⊗ (α2 ⊗ α3) ⊗⊗ αk = α1 ⊗ α2 ⊗ a3 ⊗⊗ αk .

The basis elements of V*k are (these ui are those of Section 2.4),

 λi1⊗ λi2⊗ λik = <ui1| ⊗ <ui2| ... ⊗ <uik| = < ui1, ui2 ...uik| . (6.1.2)

The subscripts in (6.1.1) and the superscripts in (6.1.2) are labels, not components.

Equations corresponding to (5.1.3) and (5.1.4) are these

 (λj1⊗ λj2⊗ λjk)(v1,v2.....vk) = λj1(v1) λj2(v2)λjk(vk) = (v1)j1 (v2)j2 (vk)jk (6.1.3)

 (λj1⊗ λj2⊗ λjk)(ui1,ui2...uik) = λj1(ui1) λj2(ui2)λjk(uik) = δj1i1 δj2i2 δjkik . (6.1.4)

Chapter 6: Dual Tensor Products

 108

If n = dim(V), the total number of such basis elements is nk, so

 dim(V*k) = nk. (6.1.5)

In the full set of dual tensor-product basis elements shown in (6.1.2), two or more of the λir might be the
same. This will always be the case if k > n where n ≡ dim(V*). For example, for k = 3 and n = 2 one such
element would be λ1 ⊗ λ1 ⊗ λ2 ≠ 0.

In Dirac notation, we can write (6.1.3) and (6.1.4) as

 <λj1, λj2...λjk | v1, v2 ...,vk > = <λj1|v1> <λj2|v1>... <λjk|v1> = (v1)j1 (v2)j2...(vk)jk (6.1.3)D

 <λj1, λj2...λjk | ui1, ui2 ...,uik > = <λj1|ui1> <λj2|ui2>...<λjk|uik> = δj1i1 δj2i2...δjkik . (6.1.4)D

6.2 Tensor Expansion for a tensor in V*k ; the ordinary multiindex

We apply our translation rules to get this dense translation of Section 5.2 :

 <T| = Σi1i2....ik Ti1i2....ik < ui1, ui2,uik| . tensor functional (6.2.1)

 <T| = ΣI TI <uI| <uI| = < ui1, ui2,uik | <T| uI> = TI (6.2.2)

 T = Σi1i2....ik Ti1i2....ik (λi1⊗ λi2⊗ λik) . (6.2.3)

 T = ΣI TI λI λI ≡ λi1⊗ λi2⊗ λik (6.2.4)

 T • (ui1⊗ui2⊗... ⊗uik) = <T| ui1, ui2,uik> = Ti1i2...ik

 = T(ui1, ui2,uik) (6.2.5)

 T • uI = <T|uI> = TI = T(uI) (6.2.6)

 T • (v1⊗v2⊗... ⊗vk) = <T| v1, v2,vk> = T(v1, v2,vk) tensor function (6.2.7)

 T • vZ = <T|vZ> = T(vz) Z = 1,2..k (6.2.8)

6.3 Rules for product of k vectors

The tensor product of k vectors is "k-multilinear" meaning it is linear in each of its k factors. This was
discussed in (1.1.16) and later in (3.1.4). For example,

 α1⊗(α2 + α'2)⊗α3⊗.....⊗αk = α1⊗α2⊗α3⊗⊗αk + α1⊗α'2⊗α3⊗⊗αk

 α1⊗(sα2)⊗α3⊗⊗ αk = s(α1⊗α2⊗α3⊗⊗αk) s = scalar . (6.3.1)

Chapter 6: Dual Tensor Products

 109

Here we show linearity in the 2nd factor. All the other factors have similar equations. We impose this k-
multilinearity by fiat with the result that:

Fact: The space V*k is a vector space. (6.3.2)

Proof: Repeat the discussion of Section 5.3 with all vi→ αi, meaning |vi> → <αi| .

6.4 The Tensor Algebra T(V*)

 T(V*) ≡ V*0 ⊕ V* ⊕ V*2 ⊕ V*3 ⊕ = Σ⊕

k=1
∞ V*k . (6.4.1)

Here V*0 = the space of scalars, V*1 = V the space of dual vectors, V*2 = V*⊗*V = the space of rank-2
dual tensors, and so on (tensor = functional). The most general element t of the space T(V*) has the form

 τ = s ⊕ ΣiTi λi ⊕ Σij Tij λi⊗λj ⊕ Σijk Tijk λi⊗λj⊗λk + s ∈ K (6.4.2)

with all coefficients in a field K.

Fact: This large space T(V*) is in fact itself a vector space. (6.4.3)

The proof is the same as that shown in Section 5.4 with a,b,c,d,e,f replaced by Greek letters. For example

 k1 ⊕ α ⊕ β⊗κ ⊕ ρ⊗σ⊗η = sum of 4 elements of T(V*) = an element of T(V*)

 s(k1 ⊕ <α| ⊕ <β,κ| ⊕ <ρ,σ,η|) = (sk1) ⊕ (s<α|) ⊕ (s<β,κ|) ⊕ (s<ρ,σ,η|) = an element of T(V*)
 (6.4.4)
For later comparison with the corresponding dual wedge picture, here we have:

 Object lin comb is Rank(grade) Space
 s scalar ∈ K 0 V*0

 α dual vector 1 V*1

 α⊗β dual rank-2 tensor 2 V*2

 α⊗β⊗γ dual rank-3 tensor 3 V*3

 α⊗β⊗γ⊗δ dual rank-4 tensor 4 V*4

 α⊗β⊗γ⊗δ.... dual rank-k tensor k V*k

 arbitrary element of T(V*) dual multivector mixed T(V*) (6.4.6)

All objects listed in the left column are tensor functionals, but we just call them tensors above and below.
 Any linear combination of a set of tensor products of k dual vectors is a dual rank-k tensor. More
generally, a dual rank-k tensor has the form shown in (6.2.3). A dual multivector is any linear
combination of dual rank-k tensors for any mixed values of k .

Chapter 6: Dual Tensor Products

 110

The dimensionality of the space T(V*) is as follows, where n = dim(V*),

 dim[T(V*)] = 1 + n + n2 + n3 + ... = ∞ (6.4.7)

6.5 Comments about Tensor Functions

For every rank-k tensor functional <T| = T in V*k there exists a corresponding tensor function:

 T(v1, v2,vk) = <T| v1,v2...vk> // T(vZ) = <T|vZ>

 T(ui1, ui2,uik) = <T| ui1, ui2,uik> = Ti1i2...ik // (6.2.5) (6.5.1)

There is a simple one-to-one relationship between the rank-k tensors |T> of Vk and the rank-k tensor
functionals <T| of V*k and the rank-k tensor functions T(vZ) of V*k. These functions are manifestly k-
multilinear since | v1,v2...vk> = | v1>⊗| v2>...⊗| vk> is k-multilinear. That is to say, each V space in the
tensor product Vk = V⊗V ...⊗V is a linear (vector) space.

Fact: The vector space V*k is equivalent to the vector space V*kf of k-multilinear functions on Vk.
 (6.5.2)
This is the generalization of Fact (4.2.15) from k = 2 to k = k.

The point made in Section 5.5 about tensors remaining tensors if their indices are shuffled around is
reflected in the space of tensor functions: if T(v1,v2,vk) is a rank-k tensor function, then so is the
function T(vi1, vi2,vik) where the arguments are any permutation of v1,v2,vk .

6.6 The Tensor Product of two or more tensors in T(V*)

Were we to write out the full detailed development of Section 5.6, it would begin as follows :

Consider two tensor functionals of rank k and k' expanded as in (6.2.3),

 T = Σi1i2....ik Ti1i2....ik λi1 ⊗ λi2⊗ λik rank k, T ∈ V*k

 S = Σj1j2....jk' Sj1j2....jk' λj1⊗ λj2⊗ λjk' rank k', S ∈ V*k' . (6.6.1)

In multiindex and then Dirac notation these equations say

 T = ΣI TI λI or <T| = ΣI TI <uI |
 S = ΣI SI λI or <S| = ΣJ SJ <uJ | (6.6.2)

and the tensor product of interest is

 T⊗S = <T| ⊗ <S| . (6.6.3)

Chapter 6: Dual Tensor Products

 111

The entire development proceeds as shown in Section 5.6 but with the translation rules outlined at the
start of Chapter 6, in particular, that all bra-kets are reversed. One then finds for the tensor product of a
rank-k tensor functional with a rank-k' one,

 T⊗S = ΣI,J TISJ λI⊗λJ = ΣI (T⊗S)I λI (T⊗S)I = TISI' (6.6.4)
 I = {i1, i2, .. ik+k'} λI ≡ λi1⊗ λi2⊗ λik+k'
 I = {i1, i2, .. ik} I' = {ik+1, ik+2, .. ik+k'}

which compare to the non-dual (5.6.5) (recall that uI = <uI| and λI = <uI|)

 T⊗S = ΣI (T⊗S)I uI . (5.6.5)

A triple tensor product is then

 T⊗S⊗R = ΣI,J,K TISJRK

 λI⊗λJ⊗λK = ΣI (T⊗S⊗R)I λI (T⊗S⊗R)I = TISI'RI" (6.6.5)
 I = {i1, i2, .. ik+k'+k"} λI ≡ λi1⊗ λi2⊗ λik+k'+k"
 I = {i1, i2, .. ik} I' = {ik+1, ik+2, .. ik+k'} I" = {ik+k'+1, ik+k'+2, .. ik+k'+k"} .

For an arbitrary set of tensor functionals Ti of rank ki the tensor product is

 T1⊗T2⊗...⊗TN = ΣI [(T1)I1(T2)I2 (TN)IN] λI = ΣI (T1⊗T2....⊗TN)I λI
 (6.6.6)
 Ti = tensor functional of rank ki , Ii = multiindex range of ir values for tensor Ti
 I1 = {i1, i2.....ik1}, I2 = {ik1+1, ik1+2.....ik1+k2}, etc.
 I = I1 ∪ I2 ∪ IN = {i1, i2......ik1+k2+...kN}
 λI ≡ λi1⊗ λi2⊗ λik1+k2+...+kN (6.6.7)

where the resulting tensor has a rank equal to the sum of the ranks of the combined tensors.

In Dirac notation, equation (6.6.6) is written,

 < T1,T2....TN| = < T1⊗T2....⊗TN | = <T1| ⊗<T2|⊗ ...⊗<TN| = ΣI (T1⊗T2....⊗TN)I <uI| (6.6.8)

which is just the Dirac transpose (plus tilt reversal) of the equation (5.6.13)D of Chapter 5.

It is understood here that each bra space fits the rank of its tensor, and one could write <Ti| = ki<Ti| to
make this fact more explicit. Then (6.6.8) would read

 k1<T1| ⊗ k2<T2 |⊗ ...⊗ kN<TN| = ΣI (T1⊗T2....⊗TN)I κN<uI| κN = k1+k2+...+kN . (6.6.9)

Consider now the following generic tensor product ket,

Chapter 6: Dual Tensor Products

 112

 |v1,v2...vk1>k1 ⊗ |vk1+1,vk1+2...vk1+k2>k2 ⊗

 = |vI1>k1 ⊗ |vI2>k2 ⊗ ⊗ |vIN>kN

 = |vI> κN

 = | v1,v2,v3,v4vκN> . (6.6.10)

If we close the bra (6.6.9) with this ket, we obtain the simple rule for the tensor product of the
corresponding tensor functions,

 < T1⊗T2....⊗TN | v1,v2 ...vκN>

 = [k1<T1| ⊗ k2<T2 |⊗ ...⊗ kN<TN|] [|vI1>k1 ⊗ |vI2>k2 ⊗ ⊗ |vIN>kN]

 = k1<T1|vI1>k1 * k2<T2|vI2>k2 * kN<TN|vIN>kN

 = T1(vI1) T2(vI2) TN(vIN) (6.6.11)
or
 (T1⊗T2....⊗TN)(v1,v2vκN) = (T1⊗T2....⊗TN)(vI1,vI2 ...vIN)

 = T1(vI1) T2(vI2) TN(vIN) . (6.6.12)

Example: For N = 2 and k1= k and k2 = k' : (this appears on Spivak p 75)

 (T⊗S)(v1,v2....vk, vk+1....vk+k') = T(v1,v2....vk) S(vk+1,vk+2....vk+k') . (6.6.13)

Example: For N = 3 and k1= k and k2 = k' and k3 = k" :

 (T⊗S⊗R)(v1, v2, ... vk+k'+k")

 T(v1,v2....vk) S(vk+1,vk+2....vk+k')R(vk+k'+1,vk+k'+2....vk+k'+k") . (6.6.14)

Here is an alternate proof of (6.6.12), independent of Chapter 5, where we make use of the dense
multiindex notation :

Chapter 6: Dual Tensor Products

 113

Let

 Ti = tensor of rank ki Ii = multiindex range of ir values for tensor Ti
 I1 = {i1, i2.....ik1}, I2 = {ik1+1, ik1+2.....ik1+k2}, etc. (6.6.15)

 Then we have

 T1⊗T2⊗...⊗TN = ΣI1I2...IN (T1)I1(T2)I2 ...(TN)IN λI1⊗λI2⊗...⊗λIN (6.6.16)

 (T1⊗T2⊗...⊗TN)(vI1, vI2 ... vIN)

 = ΣI1I2...IN (T1)I1(T2)I2 ...(TN)IN (λI1⊗λI2⊗...⊗λIN)(vI1, vI2 ... vIN)

 = ΣI1I2...IN (T1)I1(T2)I2 ...(TN)IN (vI1)I1(vI2)I2 ... (vIN)IN

 = [ΣI1(T1)I1(vI1)I1] [ΣI2(T2)I2(vI2)I1] ... [ΣIN(T2)IN(vIN)IN]

 = T1(vI1) T2(vI2) TN(vIN) . (6.6.17)

Operators on the tensor product space

Recall from (6.6.8) the following tensor product space vector,

 < T1,T2....TN| = < T1⊗T2....⊗TN | = <T1| ⊗<T2|⊗ ...⊗<TN| (6.6.8)

which is an element of the tensor product space V*k1 ⊗ V*k2 ⊗...⊗ V*kN. The action of a linear operator
Q on such a tensor product vector is defined in terms of its action in the spaces from which the tensor
product is composed,

 [<T1| ⊗<T2|⊗ ...⊗<TN|] Q = <T1| Q ⊗<T2| Q ⊗ ...⊗ <TN| Q (6.6.18)

This equation is the transpose of (5.6.17) if we set Q = PT .

Chapter 7: Wedge Products

 114

7. The Wedge Product of k vectors : the vector spaces Lk and L(V)

Wedge products and the spaces Lk and L(V) to be defined below were developed by Hermann Grassmann
(1809-1877) in the 1840's. The algebra of these spaces is now called the exterior algebra and the wedge
products are alternately called exterior products. Grassmann more or less invented the notions of linear
algebra and vector spaces -- the so-called "modern algebra" did not exist. Other people were involved, but
he was a very major pioneer. His work, naturally, was unappreciated at that time.

7.1 Definition of the wedge product of k vectors

We wish to define the wedge product of k vectors vi ∈ V,

 v1^ v2^ ^ vk . // |v1> ^ |v2> ^ ^ |vk>

Wedge products of this form (and their linear combinations) inhabit a vector space we call Lk.

We now impose the requirement that this wedge product must change sign when any two vectors are
swapped. This property is injected into the wedge product theory, it does not fall out from it.

One motivation for the requirement relates to geometry. We showed in (4.3.14) that a ^ b = det(a,b)
u1^u2 where det(a,b) is the signed area of the 2-piped (parallelogram) spanned by a and b. Then b ^ a =
[-det(a,b)] u1^u2 has the same area but of opposite sign. One associates this sign with the "orientation"
of the area in exactly the same sense that a x b and b x a represent areas of opposite sign.
 So b ^ a = - a ^ b reflects the change in orientation, as suggested by these drawings from Suter p 7,

 a ̂ b b ^ a

 (7.1.1)

For R3, as shown in (4.3.15), one associates a^b^c with a 3-piped whose "orientation" is determined by
the sign of the volume det(a,b,c), which one can associate with the "handedness" of the 3-piped. For a k-
piped it is hard to imagine "handedness", but it is easy to talk about orientation as the sign of det(a,b,c....)
where swapping any two vectors changes the sign of the "volume".

This sign-change requirement leads to the following candidate definition for the wedge product of k
vectors in V (the jr are vector labels),

Chapter 7: Wedge Products

 115

 vj1^ vj2^ ^ vjk = (1/k!) ΣP (-1)S(P) (vjP(1) ⊗ vjP(2) ⊗ ⊗ vjP(k))

 = (1/k!) [(vj1 ⊗ vj2 ⊗ ⊗ vjk) + all signed permutations]

 = Alt(vj1 ⊗ vj2 ⊗ ⊗ vjk) . (7.1.2)

An explanation of the ΣP (-1)S(P) notation is presented in Section A.1: the sum is over all permutations P
of [1,2..k], S(P) is the number of index swaps required to get from [1,2..k] to P[1,2..k], and (-1)S(P) is the
parity of permutation P.
 The important Alt operator is described generically in Section A.2 and is then applied to tensors in
Section A.5. The definition of the Alt operator on the last line in (7.1.2) is the expression on the right side
of the first line. The Alt operator definition for all authors includes a (1/k!) factor so that Alt(f) = f if the
object f is already totally antisymmetric, (A.2.16). However, the (1/k!) factor appearing on the first line of
(7.1.2) in the definition of the wedge product varies from author to author.
 From our viewpoint, this (1/k!) normalization factor is just a convention that many authors use.
However, Benn & Tucker (p 11 bottom and p 5 footnote) and Conrad (p 13 top) argue that the (1/k!) is in
fact the "correct" normalization to be consistent with more elegant methods of defining the wedge
product, as briefly reviewed in our Chapter 9. For other authors like Spivak, the (1/k!) on the first line of
(7.1.2) is replaced by 1, resulting in

 vj1^ vj2^ ^ vjk = ΣP (-1)S(P) (vjP(1) ⊗ vjP(2) ⊗ ⊗ vjP(k))

 = (vj1 ⊗ vj2 ⊗ ⊗ vjk) + all signed permutations

 = k! Alt(vj1 ⊗ vj2 ⊗ ⊗ vjk) . (7.1.2)Spivak

The implications of this Spivak normalization are described in Section 7.9(g) below. Notice that when the
(1/k!) is present, (7.1.2) gives v1 ^ v2 = (1/2)(v1⊗v2 - v2⊗v1) which is the form already assumed in
(4.3.1) and (4.4.1). But Spivak would say v1^ v2 = v1⊗v2 - v2⊗v1.
 Almost everything one does with the wedge product is unaffected by the normalization choice.

For the purposes of this section, we simplify (7.1.2) by taking jr → r to get,

 v1^ v2^ ^ vk = (1/k!) ΣP (-1)S(P) (vP(1)⊗ vP(2)⊗ ⊗ vP(k))

 = (1/k!) [(v1 ⊗ v2 ⊗ ⊗ vk) + all signed permutations] .

 = Alt(v1 ⊗ v2 ⊗ ⊗ vk)

 = (1/k!) Σi1i2...ik εi1i2...ik (vi1 ⊗ vi2 ⊗ ⊗ vik) ir = 1 to k . (7.1.3)

We have added a fourth line using the permutation tensor εi1i2...ik . This tensor is described in Section
A.6 and the equivalence of the first and fourth forms above is shown in (A.6.8).

Chapter 7: Wedge Products

 116

Our approach here is that v1^ v2^ ^ vk is defined in terms of v1⊗v2⊗ ⊗vk . In Section 9.1 it is
shown how v1^ v2^ ^ vk can be defined perhaps more elegantly in the language of modern algebra.

Examples

 v1^ v2 = (1/2!) Σa,b =12 εab va ⊗ vb // 2! = 2 terms

 = (v1 ⊗ v2 - v2 ⊗ v1)/2 // agrees with (4.3.1) (7.1.4)

 v1 ^ v2 ^ v3 = (1/3!) Σa,b,c =13 εabc va ⊗ vb ⊗ vc // 3! = 6 terms

 = (v1⊗v2⊗v3 - v1⊗v3⊗v2 + v3⊗v1⊗v2 - v3⊗v2⊗v1 + v2⊗v3⊗v1 - v2⊗v1⊗v3)/6 . (7.1.5)

7.2 Properties of the wedge product of k vectors

1. The sums in (7.1.2) and (7.1.3) have k! terms. (7.2.1)

Since there are k! permutations P of {1,2..k} (including the identity permutation) there are k! terms in the
ΣP sums in (7.1.2) and (7.1.3). Because εi1i2...ik vanishes whenever two or more indices are the same,
the ε tensor has k! non-zero components (k for the first index, (k-1) for the second index, and so on).
Thus, the second sum in (7.1.3) has k! terms (not kk), just like the first sum.

2. The wedge product is k-multilinear. (7.2.2)

It is by-fiat axiom that the wedge product of k vectors is k-multilinear and therefore satisfies these rules,

 v1^(v2 + v'2)^v3^.....^vk = v1^v2^v3^^vk + v1^v'2^v3^^vk
 v1^(sv2)^v3^^ vk = s(v1^v2^v3^^vk) s,r = scalar ∈ K
or
 v1^(rv2 + sv'2)^v3^.....^vk = r(v1^v2^v3^^vk) + s(v1^v'2^v3^^vk) . (7.2.3)

Here we show the rules just for the 2 position, but k-multilinear means these rules must apply to all the
vector positions. These rules cannot be derived from the similar tensor product rules (5.3.1) except in the
case k = 2 as was shown in (4.3.4).

Our candidate expansions (7.1.2) and (7.1.3) satisfy (7.2.3) because they are k-multilinear:

 v1^ (rv2 + sv'2) ^ ^ vk = (1/k!) ΣP (-1)S(P) (vP(1)⊗ [rvP(2)+ sv'P(2)] ⊗ ⊗ vP(k))

 = (1/k!) ΣP (-1)S(P) { r(vP(1)⊗ vP(2)⊗ ⊗ vP(k)) + s(vP(1)⊗ v'P(2)⊗ ⊗ vP(k)) } // (5.3.1)

 = r(1/k!) ΣP (-1)S(P)(vP(1)⊗ vP(2)⊗ ⊗ vP(k)) + s(1/k!) ΣP (-1)S(P)(vP(1)⊗ v'P(2)⊗ ⊗ vP(k))

Chapter 7: Wedge Products

 117

 = r(v1^v2^v3^^vk) + s(v1^v'2^v3^^vk) .

or equivalently

 Alt(v1⊗(rv2 + sv'2)⊗v3^⊗vk) = r Alt(v1⊗v2⊗v3^⊗vk)+ sAlt(v1⊗v'2⊗v3^⊗vk) .

Above we have used the fact that the ⊗ product is k-multilinear (also by fiat) as declared in (5.3.1).

3. The wedge product changes sign if any vector pair is swapped. (7.2.4)

Consider the last line of (7.1.2) which in effect says,

 Tj1j2...jk = [Alt(F)]j1j2...jk or T = Alt(F)

where
 Tj1j2...jk ≡ vj1 ^ vj2 ^ ^ vjk
 Fj1j2...jk ≡ vj1 ⊗ vj2 ⊗ ⊗ vjk .

But we know from (A.5.9) that Tj1j2...jk ≡ [Alt(F)]j1j2...jk is totally antisymmetric in the indices.
Therefore vj1^ vj2^ ^ vjk is totally antisymmetric in the labels, and so changes sign if any pair of
labels is swapped.

Comment: From (7.2.2) the pure vector wedge product v1^ v2^ ^ vk is k-multilinear in the vi, and so
is the underlying tensor product v1⊗v2⊗ ⊗vk.

4. Wedge product of vectors vanishes if any two vectors are the same.

 Given a sign change (7.2.4) for any pair swap of vectors in the wedge product, we know that

 v1^ v2^ ^ vk = 0 if any two (or more) vectors are the same. (7.2.5)

Proof: For example,

 a ≡ v2^ v1^ ^ vk = - v1^ v2^ ^ vk = -a; if 1 = 2 then a = -a so a = 0 .

5. Wedge product vanishes if vectors are linearly dependent. (7.2.6)

It was just shown that the wedge product vanishes if any two vectors are the same. It is also true that the
wedge product v1^ v2^ ^ vk vanishes if the vectors vi are linearly dependent. Linear dependence
means one can write at least one vector in the set as a linear combination of the others, so perhaps
 v2 = (Σi≠2 aivi). Then

 v1^ v2^ ^ vk = v1^ (Σi≠2 aivi) ^ ^ vk

Chapter 7: Wedge Products

 118

 = Σi≠2 ai (v1^ vi ^ ^ vk) . // since ^ is k-multilinear, see (7.2.3)

The sum Σi≠2 requires that index i be some other index appearing in (v1^ vi ^ ^ vk), but then one has
two indices the same and by (7.2.5) it follows that (v1^ vi ^ ^ vk) = 0 for each term in the sum. QED

[Grassmann also invented the notion of linear independence.]

6. Wedge product vanishes if k > n . (7.2.7)

If dim(V) = n, there can be at most n linearly independent vectors in V. If k > n, any set of k vectors vi
must be linearly dependent. Thus, by (7.2.6) the wedge product of any set of k vectors must vanish if k >
n. Therefore for a given vector space V of dimension n, the only wedge products of interest are those for k
= 1,2,3....n. For example, for n = 2 and k = 3 one has e1 ^ e1 ^ e2 = 0.

7. Components. From (7.1.2) we find

 (vj1^ vj2^ ^ vjk)i1i2...ik = (1/k!) ΣP (-1)S(P) (vjP(1) ⊗ vjP(2) ⊗ ⊗ vjP(k))i1i2...ik

 = (1/k!) ΣP (-1)S(P) (vjP(1))i1(vjP(2))i2 ... (vjP(k))ik // outer product form

 = (1/k!) ΣP (-1)S(P) (vj1)iP(1)(vj2)iP(2) ... (vjk)iP(k) // (A.1.19) with Ma

b = (vja)ib

 = (1/k!) det[(vj*)i*] . // (A.1.19) (7.2.8)

As noted earlier, in the Spivak normalization the factor (1/k!) is replaced by 1.

Fact: (vj1^vj2^...^vjk)i1i2...ik is totally antisymmetric in both the labels jr and the indices ir. (7.2.9)

Proof: We already know from (7.2.4) that (vj1^ vj2^ ^ vjk)i1i2...ik is totally antisymmetric in the
labels jr. For antisymmetry on the ir, we give two arguments. We can take components of (7.1.2) to get

 (vj1^ vj2^ ^ vjk)i1i2...ik = [Alt(vj1 ⊗ vj2 ⊗ ⊗ vjk)]i1i2...ik

which we think of as saying Ti1i2...ik ≡ [Alt(F)]i1i2...ik. According to (A.5.9) Ti1i2...ik is totally
antisymmetric in the ir indices. Alternatively, (vj1^ vj2^ ^ vjk)i1i2...ik = (1/k!) det[(vj*)i*] is
totally antisymmetric on the ir because the det changes sign when any two rows or columns are swapped.

8. Associative Property of the wedge product.

This topic is addressed below in (7.9.2) where the need first arises. The conclusion there is that the wedge
product is fully associative. For example, (v1^ v2)^ v3 = v1^ (v2^ v3) = v1^ v2^ v3 .

Chapter 7: Wedge Products

 119

7.3 The vector space Lk and its basis

Lk is the space whose elements are all linear combinations of wedge products of k vectors of V. (7.3.1)

A more precise name for this space is Lk(V) but we call it Lk.

Lk is a vector space (7.3.2)

Fact (5.3.2) showed that Vk is a vector space where the 0 element could be any Vk element such as
v1⊗0⊗⊗vk. Lk is a vector space by a similar argument. It is closed under addition, scalars work
correctly according to the rules (7.2.3), and the 0 element can be any element such as v1^0^^vk as the
reader can verify looking for example at (7.1.5).
 A key point is that it is the imposition of the k-multilinear wedge product rules (7.2.3) that makes Lk
be a vector space. We had a similar situation in Chapter 5 where the imposition of the k-multilinear tensor
product rules (5.3.1) made Vk be a vector space.

Basis elements for Lk

Consider the following objects in Lk obtained by wedging together k basis elements of V, where each ujr
is selected from the set of n available for V (which has dimension n),

 (uj1 ^ uj2 ^ ^ ujk) . (7.3.3)

Of these putative nk objects, only n*(n-1)*...*(n-k+1) = n!/(n-k)! are non-zero by (7.2.5) because all the
others have at least two vectors the same. Thus we can assume that all the labels jr are different.

Now there exists a unique permutation P of the all-different labels jr such that

 [j1, j2....jk] = P[i1, i2....ik] where i1 < i2 < < ik . (7.3.4)

If this permutation involves S(P) pairwise swaps of indices, then

 (uj1 ^ uj2 ^ ^ ujk) = (-1)S(P) (ui1 ^ ui2 ^ ^ uik) where i1 < i2 < < ik (7.3.5)

because from (7.2.4) each pairwise swap of vectors in a wedge product creates a minus sign. Since there
are k! possible permutations P, there are k! equations like (7.3.5) which relate different objects to the
same object (ui1 ^ ui2 ^ ^ uik) which has i1 < i2 < < ik .Thus, if we want to count the number of
independent basis elements of Lk, we have to divide our earlier count of n!/(n-k)! non-vanishing objects

by k!. The conclusion is that there are ⎝
⎛

⎠
⎞ n

 k independent basis elements for Lk and they can be taken to

have this form,

 (ui1 ^ ui2 ^ ^ uik) where i1 < i2 < < ik ⎝
⎛

⎠
⎞ n

 k basis elements (7.3.6)

Chapter 7: Wedge Products

 120

Examples: (7.3.7)

• For k = 3 and n ≥ 5, the following k! = 3! basis elements involving u1, u3 and u5 are all equal to the one
ordered element u1^u3^u5 with a + or - sign :

 u1^u3^u5 = (-1)0 u1^u3^u5 = +u1^u3^u5 135
 u1^u5^u3 = (-1)1 u1^u3^u5 = - u1^u3^u5 153→135
 u3^u1^u5 = (-1)1 u1^u3^u5 = - u1^u3^u5 315 →135
 u3^u5^u1 = (-1)2 u1^u3^u5 = +u1^u3^u5 351→315→135
 u5^u1^u3 = (-1)2 u1^u3^u5 = +u1^u3^u5 513→153→135
 u5^u3^u1 = (-1)3 u1^u3^u5 = - u1^u3^u5 531→513→153→135

• For k = 2 and n = 3, the 3 basis elements are u1^u2, u1^u3, u2^u3 and ⎝
⎛

⎠
⎞ 3

 2 = 3.

Fact: (uj1 ^ uj2 ^ ^ ujk) = Alt(uj1 ⊗ uj2 ⊗ ⊗ ujk) u^J = Alt(uJ) (7.3.8)

This is a special case of (7.1.2) with v→u. The right shows equivalent multiindex notation.

Components of the basis elements for Lk

Now reconsider the basis vectors of the vector space Lk ,

 (uj1 ^ uj2 ^ ^ ujk) . (7.3.3)

The components are given from (7.2.8) with v = u as [recall (ui)j = δij] ,

 (uj1^ uj2^ ^ ujk)i1i2...ik

 = (1/k!) ΣP (-1)S(P) δjP(1)

i1δjP(2)
i2 δjP(k)

ik

 = (1/k!) ΣP (-1)S(P) δj1

iP(1)δj2
iP(2) ... δjk

iP(k) // (A.1.19) with Ma
b = δja

ib

 = (1/k!) det[δj*
i*] . (u^J)I = (1/k!) det(δJI) (7.3.9)

Once again, in Spivak normalization (1/k!) → 1.

Then (7.2.9) applied to v = u shows that,

Fact: (uj1^uj2^...^ujk)i1i2...ik is totally antisymmetric in both the labels jr and the indices ir. (7.3.10)

We saw an example of both antisymmetries for k = 2 back in equation (4.3.21),

Chapter 7: Wedge Products

 121

 (ui^ uj)rs = - (ui^ uj)sr = - (uj^ ui)rs . // two forms of antisymmetry (4.3.21)

Either form in (7.3.9) can be expressed in our usual informal notation,

 (uj1 ^ uj2 ^ ^ ujk)i1i2...ik = (1/k!) [δj1

i1 δj2
i2...δjk

ik + signed permutations] . (7.3.11)

Example:

 3! (uj1 ^ uj2 ^ uj3)i1i2i3 = det
⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞ δj1

i1 δj1
i2 δj1

i3
 δj2

i1 δj2
i2 δj2

i3
 δj3

i1 fj3
i2 fj3

i3
 = det

⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞ δj1

i1 δj2
i1 δj3

i1
 δj1

i2 δj2
i2 δj3

i2
 δj1

i3 δj2
i3 δj3

i3

 ≡ det (δj1j2j3
i1i2i3)

 = det(δJI) . // in multiindex notation (7.3.12)

7.4 Tensor Expansions for a tensor in Lk

Recall now the tensor expansion for a most-general tensor T in Vk,

 T = Σi1i2....ik Ti1i2....ik (ui1⊗ ui2⊗⊗ uik) . T∈ Vk (5.2.1) (7.4.1)

It has been shown in (7.3.10) that (ui1^ ui2^^ uik)j1j2...jk is totally symmetric in both the ir and jr
indices. This object then meets the conditions of Fact (A.8.27) which states that AltI = AltJ when applied
to such an object. Consider then this most-general object in Lk which has a similar look to (7.4.1) and for
which we explicitly display the tensor components,

 Σi1i2....ik Ti1i2....ik (ui1^ ui2^^ uik)j1j2...jk

 = Σi1i2....ik Ti1i2....ik AltI[(ui1⊗ ui2⊗⊗ uik)j1j2...jk] // (7.3.8)

 = Σi1i2....ik Ti1i2....ik AltI[δi1

j1 δi2
j2 δik

jk] // (5.1.4)

 = Σi1i2....ik Ti1i2....ik AltJ[δi1

j1 δi2
j2 δik

jk] // (A.8.30)

 = AltJ[Σi1i2....ik Ti1i2....ik δi1

j1 δi2
j2 δik

jk // (A.5.10) Alt is linear

 = AltJ(Tj1j2...jk) = Alt(Tj1j2...jk) // no ambiguity

 = (1/k!) ΣP (-1)S(P) TjP(1)jP(2)...jP(k) // def of Alt (A.5.3b)

 = [Alt(T)]j1j2...jk // (A.5.3c)

 ≡ [T^]j1j2...jk (7.4.2)

Chapter 7: Wedge Products

 122

where we define this notation,

 T^ ≡ Alt(T) . (7.4.3)

 From (7.4.2) we then have the following fully general element of Lk,

 T^ = Σi1i2....ik Ti1i2....ik (ui1^ ui2^^ uik) . T^ ∈ Lk (7.4.4)

We refer to this type of expansion as a symmetric expansion, and we know it is redundant since the
symmetric sum includes each true basis vector k! times.

According to (A.5.9), we know from (7.4.3) that

Fact: T^

i1i2....ik is a totally antisymmetric tensor. (7.4.5)

Therefore,

Fact: The space Lk is the space of all totally antisymmetric rank-k tensors T^. To say that T^ is totally
antisymmetric means that T^

i1i2....ik is totally antisymmetric. (7.4.6)

In contrast, the space Vk is the space of all rank-k tensors T, so Lk ⊂ Vk.

Since the set (ui1 ^ ui2 ^ ^ uik) with 1 ≤ i1 < i2 < < ik ≤ n forms a complete basis for Lk, as
discussed below (7.3.3), it must be possible to express T^ in the following manner

 T^ = Σ1≤i1<i2<....<ik≤n Ai1i2...ik (ui1 ^ ui2 ^ ^ uik) . (7.4.7)

Example: If n = 3 and k = 2, then

 T^ = Σ1≤i1<i2≤3 Ai1i2 (ui1^ ui2) = A12 (u1^u2) + A13 (u1^u3) + A23 (u2^u3) . (7.4.8)

What then is the connection between the Ai1i2...ik of (7.4.7) and the Ti1i2...ik of (7.4.4)?

Start with the symmetric form (7.4.4),

 T^ = Σi1i2...ik Ti1i2...ik (ui1 ^ ui2 ^ ^ uik) ir = 1,2..n

 = Σi1≠i2≠...≠ik Ti1i2...ik (ui1 ^ ui2 ^ ^ uik) . // (7.2.5) (7.4.9)

Partition the summation space as follows (1 ≤ ir ≤ n),

 Σi1≠i2≠...≠ik = [Σi1<i2<...<ik + Σi2<i1<...<ik + many similar reorderings] . (7.4.10)

Chapter 7: Wedge Products

 123

The total sum can be written in this manner, using the permutation sum notation,

 Σi1≠i2≠...≠ik = ΣP ΣiP(1)<iP(2)<...<iP(k) (7.4.11)

where P are the k! permutations of the k integers [1,2,...k].

Using the form (7.4.11), the sum (7.4.9) may be rewritten as,

 T^ = ΣP ΣiP(1)<iP(2)<...<iP(k) Ti1i2...ik (ui1 ^ ui2 ^ ^ uik) . (7.4.12)

In (A.9.1) it is shown that,

 ΣP [ΣiP(1)<iP(2)<...<iP(k)] fi1i2...ik = Σi1<i2<...<ik [ΣP fiP(1))iP(2)...iP(k)] . (A.9.1)

That is to say, in the ΣP permutation sum, the permutation operators P can be moved from the summation
index subscripts to the summand index subscripts. One then has from (7.4.12),

 T^ = Σi1<i2<...<ik ΣP [TiP(1)iP(2)...iP(k) (uiP(1) ^ uiP(2) ^ ^uiP(k))] . (7.4.13)

But we know from (7.3.5) that

 (uiP(1) ^ uiP(2) ^ ^uiP(k)) = (-1)S(P) (ui1 ^ ui2 ^ ^ uik) (7.4.14)

where S(P) is the number of swaps associated with permutation P. Thus,

 T^ = Σi1<i2<...<ik [ΣP (-1)S(P) TiP(1)iP(2)...iP(k)] (ui1 ^ ui2 ^ ^ uik) (7.4.15)

which we can compare with the ordered sum (7.4.7),

 T^ = Σi1<i2<....<ik Ai1i2...ik (ui1 ^ ui2 ^ ^ uik) . (7.4.7)

Thus, since the basis is complete, the relation between the A and T coefficients is given by

 Ai1i2...ik = ΣP (-1)S(P) TiP(1)iP(2)...iP(k) i1 < i2 < < ik

 = [Ti1i2...ik + all signed permutations] // k! terms

 = k! [Alt(T)]i1i2...ik . // (A.5.3) def of Alt
or
 A = k!Alt(T) = k! T^. // (7.4.3) (7.4.16)

Chapter 7: Wedge Products

 124

The Ai1i2...ik appear in the expansion (7.4.7) only for index values 1 ≤ i1 < i2 < < ik ≤ n, but we
can interpret (7.4.16) as defining Ai1i2...ik for all index values. Since A = k! T^ , (7.4.5) shows that

Fact: Ai1i2...ik and T^

i1i2...ik are both totally antisymmetric tensors. (7.4.17)

Comment: Ti1i2...ik and Ai1i2...ik are both rank-k tensors, see (5.5.3).

Examples: (relating the A and T coefficients)

 Aab = Tab - Tba // as in (4.3.10) k = 2

 Aabc = Tabc - Tacb + Tcab - Tcba + Tbca - Tbac

 k = 3 (7.4.18)

Vector Case. For k = 1, we find that

 T = Σi1Ti1 ui1 // (5.2.1)
 T^ = Σi1Ti1 ui1 // (7.4.4) ⇒ T^ = T (7.4.19)

so for a vector there is no distinction between T^ and T (and in fact V1 = L1).

7.5 Various expansions for the wedge product of k vectors

The symmetric expansion for the wedge product of k vectors is very straightforward. Let

 Ti1i2...ik = (v1)i1 (v2)i2 ... (vk)ik = (v1 ⊗ v2 ⊗⊗ vk)i1i2...ik
or (7.5.1)
 T = (v1 ⊗ v2 ⊗⊗ vk) .

Then the symmetric expansion (7.4.4) gives,

 T^ = Σi1i2...ik Ti1i2...ik (ui1 ^ ui2 ^ ^ uik) (7.4.4)

 = Σi1i2...ik (v1)i1 (v2)i2 ... (vk)ik (ui1 ^ ui2 ^ ^ uik) // (7.5.1) (7.5.2)

 = [Σi1(v1)i1ui1] ^ [Σi2(v2)i2 ui2] ^ ^ [Σik (vk)ik uik] // ^ is multilinear

 = v1 ^ v2 ^ ... ^ vk . (7.5.3)

This pure tensor T^ = v1 ^ v2 ^ ... ^ vk is an element of Lk .

Expressing v1 ^ v2 ^ ... ^ vk in terms of the ordered expansion is more complicated. One must first
compute the tensor A as in (7.4.16),

Chapter 7: Wedge Products

 125

 (1/k!) A = Alt(T) = Alt(v1⊗v2⊗.....⊗vk) = T^ = (v1 ^ v2 ^ ... ^ vk) . (7.5.4)

Then the ordered expansion (7.4.7) can be written in a battery of ways,

 v1 ^ v2 ^ ... ^ vk = // v1 ^ v2 ^ ... ^ vk ∈ Lk

(a) = Σi1<i2<....<ik Ai1i2...ik (ui1 ^ ui2 ^ ^ uik) // (7.4.7)

(b) = Σi1<i2<....<ik k! [Alt(v1⊗v2⊗...⊗vk)]i1i2...ik (ui1 ^ ui2 ^ ^ uik) // (7.5.4)

(c) = Σi1<i2<....<ik k! [v1 ^ v2 ^ ... ^ vk]i1i2...ik (ui1 ^ ui2 ^ ^ uik) // (7.1.3)

(d) = Σi1<i2<....<ik det[(v*)i*] (ui1 ^ ui2 ^ ^ uik) // (7.2.8) with jr → r

(e) = Σi1<i2<....<ik det

⎝⎜
⎜⎛

⎠⎟
⎟⎞

(v1)i1 (v1)i2 ... (v1)ik
(v2)i1 (v2)i2 ... (v2)ik

...
(vk)i1 (vk)i2 ... (vk)ik

 (ui1 ^ ui2 ^ ^ uik)

and with a transposes matrix

(f) = Σi1<i2<....<ik det

⎝⎜
⎜⎛

⎠⎟
⎟⎞

(v1)i1 (v2)i1 ... (vk)i1
(v1)i2 (v2)i2 ... (vk)i2

...
(v1)ik (v2)ik ... (vk)ik

 (ui1 ^ ui2 ^ ^ uik)

(g) = Σi1i2...ik (v1)i1 (v2)i2 ... (vk)ik (ui1 ^ ui2 ^ ^ uik) // (7.5.2) (7.5.5)

where we throw in the symmetric sum at the end. Remember that, since generally dim(V) = n > k, the
determinant in (f) is a full-width minor of matrix M = [v1, v2.....vk]. If k = n, the minor is the full matrix.

Example : Suppose k = n = 3. Then the following sum (form (f)) has only one term in which i1= 1, i2= 2
and i3= 3,

 v1 ^ v2 ^ v3 = Σ1≤i1<i2<i3<3 det
⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞(v1)i1 (v2)i1 (v3)i1

(v1)i2 (v2)i2 (v3)i2
(v1)i3 (v2)i3 (v3)i3

 (ui1 ^ ui2 ^ ui3)

 = det[v1, v2, v3] (u1 ^ u2 ^ u3) (7.5.6)

as quoted in (4.3.15).

Chapter 7: Wedge Products

 126

Example : Here are the above expressions for k = 2 and general n ≥ k :

(a) v1 ^ v2 = Σi1<ik Ai1i2 (ui1 ^ ui2)

(b) = Σi1<i2 2! [Alt(v1⊗v2)]i1i2 (ui1 ^ ui2)

(c) = Σi1<i2 2! (v1 ^ v2)i1i2 (ui1 ^ ui2)

(d) = Σi1<i2 det[(v*)i*] (ui1 ^ ui2)

(e) = Σi1<i2 det
⎝
⎜
⎛

⎠
⎟
⎞ (v1)i1 (v1)i2

 (v2)i1 (v2)i2 (ui1 ^ ui2)

(f) = Σi1<i2 det
⎝
⎜
⎛

⎠
⎟
⎞ (v1)i1 (v2)i1

 (v1)i2 (v2)i2 (ui1 ^ ui2) = Σi1<i2 [(v1)i1(v2)i2 - (v2)i1(v1)i2] (ui1 ^ ui2)

(g) = Σi1i2 (v1)i1 (v2)i2 (ui1 ^ ui2) = [Σi1(v1)i1ui1] ^ [Σi2(v2)i2 ui2] = v1 ^ v2 (7.5.7)

Result (f) matches that shown in (4.3.12),

 a ^ b = Σij aibj (ui ^ uj) = Σi<j (aibj- ajbi) (ui ^ uj) = Σi<j Aij (ui ^ uj)

 = Σi<j det ⎝
⎛

⎠
⎞ ai bi

 aj bj (ui^uj) Aij = (aibj- ajbi) = det ⎝
⎛

⎠
⎞ ai bi

 aj bj . (4.3.12)

7.6 Number of elements in Lk compared with Vk.

We know from (5.1.5) and (7.3.6) that,

 dim(Vk) = nk // number of basis elements of Vk (5.1.5)

 dim(Lk) = ⎝
⎛

⎠
⎞ n

 k // number of basis elements of Lk (7.3.6)

If the number of elements of field K is N (N → ∞ for K= reals), then the generalization of (4.3.11) is,

 ratio =
elements of Lk

elements of Vk =
⎝
⎛

⎠
⎞ n

 k N

nkN =
⎝
⎛

⎠
⎞ n

 k

nk = ⎝
⎛

⎠
⎞ n

 k / nk . (7.6.1)

For a given n, this is a strongly decreasing function of k. For example, for n = 10 we can plot the log of
the ratio for k = 0 to 10,

Chapter 7: Wedge Products

 127

 (7.6.2)

For example, when k = n = 10, ratio = ⎝
⎛

⎠
⎞ 10

 10 / 1010 = 10-10 and L10 has only one non-zero element.

7.7 Multiindex notation

In this section, multiindex versions of equations are shown in red.

Multiindexing is done in two different ways. First, for the symmetric expansion (7.4.4) :

 T^ = Σi1i2...ik Ti1i2...ik (ui1 ^ ui2 ^ ^ uik) (7.4.4)

 T^ = ΣI TI u^I where u^I ≡ ui1 ^ ui2 ^ ^ uik TI ≡ Ti1i2...ik

 and I ≡ {i1, i2,.... ik} with 1 ≤ ir ≤ n = ordinary multiindex, n = dim(V) . (7.7.1)

The more significant notation involves the ordered expansion (7.4.7) which has only one term for each
linearly independent basis element. Note our use of Σ'I (prime) to indicate an ordered multiindex
summation :

 T^ = Σi1<i2<....<ik Ai1i2...ik (ui1 ^ ui2 ^ ^ uik) (7.4.7)

 T^ = Σ'I AI u^I where u^I ≡ ui1 ^ ui2 ^ ^ uik AI ≡ Ai1i2...ik

 and I ≡ {i1, i2,.... ik} with 1 ≤ i1< i2<....< ik ≤ n = ordered multiindex, n = dim(V) . (7.7.2)

Here are some unofficial multiindex notations for other equations developed above:

Chapter 7: Wedge Products

 128

 T^ = v1 ^ v2 ^ ... ^ vk T^ = (^vZ) (7.5.3)

 Ti1i2...ik = (v1)i1 (v2)i2 ... (vk)ik ≡ (vZ)I TI = (vZ)I (7.5.1)

with the idea that Z = 1,2...k . Continuing on,

 T^ = Σi1i2...ik (v1)i1 (v2)i2 ... (vk)ik (ui1 ^ ui2 ^ ^ uik) T^ = ΣI (vZ)I u^I (7.5.2)

 A = k! Alt(v1⊗v2⊗...⊗vk) A = k! Alt(⊗vZ) (7.5.4)

 v1 ^ v2 ^ ... ^ vk = Σi1<i2<....<ik k![Alt(v1⊗v2⊗...⊗vk)]i1i2...ik (ui1 ^ ui2 ^ ^ uik) (7.5.5b)

 (^vZ) = Σ'I k! Alt(⊗vZ)I u^I

 Ai1i2...ik = det

⎝⎜
⎜⎛

⎠⎟
⎟⎞

(v1)i1 (v2)i1 ... (vk)i1
(v1)i2 (v2)i2 ... (vk)i2

...
(v1)ik (v2)ik ... (vk)ik

 AI = det(vZI) (7.5.5a+f)

 v1^ v2^ ^ vk = Σi1<i2<....<ik det

⎝⎜
⎜⎛

⎠⎟
⎟⎞

(v1)i1 (v2)i1 ... (vk)i1
(v1)i2 (v2)i2 ... (vk)i2

...
(v1)ik (v2)ik ... (vk)ik

 (ui1 ^ ui2 ^ ^ uik). (7.5.5f)

 (^vZ) = Σ'I det(vZI) u^I

7.8 The Exterior Algebra L(V)

We now construct the graded algebra L(V) in analogy with that of T(V) in (5.4.1).

Define a large vector space of the form (this is "the exterior algebra on V")

 L(V) ≡ L0 ⊕ L1 ⊕ L2 ⊕ L3 + // L(V) = Σ⊕

k=0
∞ Lk (7.8.1)

Here L0 = the space of scalars, L1 = V the space of vectors, L2 = V ^ V ⊂ V2 the space of antisymmetric
rank-2 tensors (7.4.6), and so on. The most general element of the space L(V) would have the form

 X = s ⊕ ΣiTi ui ⊕ Σij Tij ui^uj ⊕ Σijk Tijk ui^uj^uk + // symmetric
or
 X = s ⊕ ΣiTi ui ⊕ Σi<j Aij ui^uj ⊕ Σi<j<k Aijk ui^uj^uk + // ordered (7.8.2)

The direct sum ⊕ is described in Appendix B.

Chapter 7: Wedge Products

 129

Associativity of the Wedge Product

We have carefully managed to avoid this topic in all that has transpired above. Nothing so far has been
assumed concerning associativity of the ^ operator. In (2.8.21) it was stated that the ⊗ operator is
associative, and this was "proved" in our outer product approach to ⊗, but for the formal approaches of
Chapter 1 it is an axiom that ⊗ is associative.
 Once we define the space L(V) above, we must face the issue of wedge products of the form
(ui^uj)^uk and more generally (v1^v2)^v3. These products arise when we multiply an element of L2 by
an element of L1. Notice that our grandiose expansion (7.1.3) says nothing about (v1^v2)^v3. All it says is
this:

 v1^ v2^ v3 = (v1⊗v2⊗v3 - v1⊗v3⊗v2 + v3⊗v1⊗v2 - v3⊗v2⊗v1 + v2⊗v3⊗v1 - v2⊗v1⊗v3)/6

 v1^ v2 = (v1⊗v2 - v2⊗v1)/2 . (7.8.3)

The product (v1^v2)^v3 = (1/2)(v1⊗v2 - v2⊗v1) ^ v3 is the wedge product of an antisymmetric rank-2
tensor and a vector and up to this point we have no idea how to evaluate such an creature.

Now is the time, then, to add a new axiom to the wedge product theory. We declare that,

Fact: The wedge product of k vectors v1^ v2^ ^ vk can be "associated" in any manner without altering
the meaning of the product. By this we mean that parentheses can be added in any manner without
altering the object. (7.8.4)

What this in effect does is define an array of new objects to be the same as v1^ v2^ ^ v6 . For example,

 (v1^ v2)^ v3^ v4^ v5^ v6 ≡ v1^ v2^ v3^ v4^ v5^ v6
 v1^ (v2^ v3) ^ v4^ v5^ v6 ≡ v1^ v2^ v3^ v4^ v5^ v6
 v1^ (v2^ v3 ^ v4) ^ v5^ v6 ≡ v1^ v2^ v3^ v4^ v5^ v6
 v1^ (v2^ v3 ^ v4) ^ (v5^ v6) ≡ v1^ v2^ v3^ v4^ v5^ v6 // multiple ()
 (v1^ v2^ v3) ^ (v4^ v5^ v6) ≡ v1^ v2^ v3^ v4^ v5^ v6
 (v1^ v2) ^ (v3^ v4) ^ (v5^ v6) ≡ v1^ v2^ v3^ v4^ v5^ v6 . (7.8.5)

Given these definitions, it follows that nested parenthesis are also allowed. For example,

 v1^ (v2^ (v3^ v4)^ v5)^ v6 = v1^ (v2^ v3^ v4^ v5)^ v6 = v1^ v2^ v3^ v4^ v5^ v6 . (7.8.6)

Since tensors like T^ can be expanded on (ej1 ^ ej2 ^ ^ ejk), and since one may associate this wedge
product arbitrarily as claimed in (7.8.4), one easily shows that :

Fact: The wedge product of N general tensors A^^B^^C^.... can be "associated" in any manner without
altering the meaning of the product. By this we mean that parentheses can be added in any manner
without altering the object. (7.8.7)

Chapter 7: Wedge Products

 130

This fact then extends the claim (7.8.4) made for N vectors, and is exactly analogous to the similar
axiomatic statement for ⊗ associativity made in (2.8.21).

Example: In (7.7.1) multiindex notation, consider three L(V) tensors T^, S^, R^ of rank k,k',k" :

 (T^ ^ S^) ^ R^ = ((ΣITIu^I) ^ (ΣJSJu^J)) ^ (ΣKRKu^K)

 = ΣITIΣJSJ { (u^I ^ u^J) ^ (ΣKRKu^K) } // rules (7.2.3)

 = ΣITIΣJSJΣKRK (u^I ^ u^J) ^ (u^K) // rules (7.2.3) again

 = ΣIJKTISJRK (u^I ^ u^J ^ u^K) // detail shown below

 = (ΣITIu^I) ^ (ΣJSJu^J) ^ (ΣKRKu^K) // rules (7.2.3) again

 = T^ ^ S^ ^ R^ .

Our example shows that for arbitrary L(V) tensors, (T^ ^ S^) ^ R^ = T^ ^ S^ ^ R^.

Here we illuminate the key detail above:

 (uI ^ uJ) ^ uK = ((ui1^ ui1^...^ uik) ^ (uj1^ uj1^...^ ujk')) ^ (uk1^ uk1^...^ ukk")
 = (ui1^ ui1^...^ uik ^ uj1^ uj1^...^ ujk') ^ (uk1^ uk1^...^ ukk")
 = ui1^ ui1^...^ uik ^ uj1^ uj1^...^ ujk' ^ uk1^ uk1^...^ ukk"
 = (ui1^ ui1^...^ uik) ^ (uj1^ uj1^...^ ujk') ^ (uk1^ uk1^...^ ukk")
 = (uI ^ uJ ^ uK) .

In each step above the rule (7.8.4) for vectors (applied to basis vectors) is used.

Having faced up to the issue of associativity, we now resume the discussion of L(V).

Fact: This large space L(V) is in fact itself a vector space. (7.8.8)

We know this is true since L(V) = Σ⊕

k=0
∞ Lk and we showed in (7.3.2) that each Lk is a vector space. For

example, the "0" element in L(V) is the direct sum of the "0" elements of all the Lk. See Appendix B for
more detail.

To show that L(V) is an algebra, we must show that it is closed under both addition and multiplication. It
should be clear to the reader that L(V) is closed under addition and has the right scalar rule. For example,
if k1 and s are scalars,

 k1 ⊕ a ⊕ b^c ⊕ f^g^h = sum of 4 elements of L(V) = an element of L(V)

 s(k1 ⊕ a ⊕ b^c ⊕ f^g^h) = (sk1) ⊕ (sb) ^c ⊕ f^(sg)^h = element of L(V) (7.8.9)

Chapter 7: Wedge Products

 131

This additive closure is of course necessary for L(V) be a vector space.

The space is also closed under the multiplication operation ^. For example

 (b^c)^(f^g^h) = b^c^f^g^h = ∈ L5 = ∈ L(V) . // (b^c) ∈ L2 (f^g^h) ∈ L3 (7.8.10)

Here we have used the associative property (7.8.4). This closure claim is stated more generally below
(7.9.a.6).

One then makes the following definitions with regard to the space L(V), where n = dim(V) :

 Object Name any blade lincomb: Grade(rank): Space
 s 0-blade scalar ∈ K 0 L0

 a 1-blade vector 1 L1

 a^b 2-blade bivector 2 L2
 a^b^c 3-blade trivector 3 L3
 a^b^c^d 4-blade quadvector 4 L4

 a^b^c^d^.... k-blade k-vector k Lk

 a^b^c^d^.... n-blade n-vector n Ln

 arbitrary element of L(V) multivector mixed L(V) (7.8.11)

Since L(V) is closed under the operations ⊕ and ^, it is "an algebra" (the space Lk alone is not an algebra
because it is not closed under ^). The L(V) algebra is different from that of the reals due to its definition
as a sum of vector spaces. The elements of L(V) have different "grades" as shown above, so L(V) is a
"graded algebra". Sometimes L(V) is called "the exterior tensor algebra" over V.
 A k-blade is a pure wedge product of k vectors, whereas a k-vector is any linear combination of k-
blades. A multivector is any linear combination of k-vectors for any mixed values of k.
 Note that

 s1(a^b) ⊕ s2(c^d) = (s1a)^b ⊕ (s2c)^d = (a'^b) ⊕ (c'^d) // 2-blades
 s1(a^b) ⊕ s2(c^d^e) = (s1a)^b ⊕ (s2c)^d^e = (a'^b) ⊕ (c'^d^e) // multivector

so it is also correct to say that a k-vector is any sum of k-blades, and a multivector is any sum of k-
vectors. That is, any linear combination can be written as a sum as shown in the above examples.
 Unlike in Tensor World, in Wedge World the above list (7.8.11) is finite for a given n = dim(V). For
k = n there is exactly one linearly independent basis vector which is the ordered wedge product of all the
basis vectors of V. For k > n, all wedge products vanish since the vectors in the wedge product are
linearly dependent, see (7.2.6). The dimensionality of the space L(V) is as follows, based on (7.8.1) and
(B.10)',

 dim[L(V)] = dim[L0 ⊕ L1 ⊕ L2 ⊕ L3 +] = dim(L0) + dim(L1) + dim(L2) + dim(L3) + ...

Chapter 7: Wedge Products

 132

but for dim(V) = n this series truncates with Ln and we find from (7.3.6),

 dim[L(V)] = 1 + n + ⎝
⎛

⎠
⎞ n

 2 + ⎝
⎛

⎠
⎞ n

 3 + ... + ⎝
⎛

⎠
⎞ n

 n = Σk=0n ⎝
⎛

⎠
⎞ n

 k = 2n = a finite number (7.8.12)

7.9 The Wedge Product of two or more tensors in L(V)

(a) Wedge Product of two tensors T^ and S^

Here we shall mimic the developmental approach used in Section 5.6 for the tensor product. As before,
we quietly "break in" the multiindex notation.

The symmetric expansions (7.4.4) of T^ and S^ are given by,

 T^ = Σi1i2....ik Ti1i2....ik (ui1^ ui2^ uik) rank k, T^ ∈ Lk (7.9.a.1)
 ΣITIu^I

 S^ = Σj1j2....jk' Sj1j2....jk' (uj1^ uj2^ ujk') rank k', S^ ∈ Lk' . (7.9.a.2)
 ΣJSJu^J

We form the wedge product of these two tensors in a manner similar to (5.6.3) :

T^^S^= [Σi1i2....ikTi1i2....ik (ui1^ ui2^ uik)]^[Σj1j2....jk' Sj1j2....jk'(uj1^ uj2^ ujk')]
 [ΣITIu^I] ^ [ΣJTJu^J]

(a) = Σi1i2....ik Σj1j2....jk'Ti1i2....ik Sj1j2....jk'(ui1^ ui2^ uik) ^ (uj1^ uj2^ ujk')
 ΣI,JTISJ(u^I) ^ (u^J)

(b) = Σi1i2....ikj1j2....jk'Ti1i2....ik Sj1j2....jk'(ui1^ ui2^ uik^ uj1^ uj2^ ujk')
 ΣI,JTISJ(u^I ^ u^J)

(c) = Σi1i2....ikik+1ik+2....ik+k'[Ti1i2....ik Sik+1ik+2....ik+k'] (ui1^ ui2^ uik+k')
 ΣI,I'TISI'(u^I ^ u^I')

(d) = Σi1i2....ikik+1ik+2....ik+k'[T⊗S]i1i2...ik ik+1ik+2....ik+k' (ui1^ ui2^ uik+k')
 ΣI,I'[T⊗S]I,I'(u^I ^ u^I')

(e) = Σi1i2....ik+k'[T⊗S]i1i2...ik+k'(ui1^ ui2^ uik+k') . (7.9.a.3)
 ΣI (T⊗S)I u^I

Comparing lines one sees that

Chapter 7: Wedge Products

 133

 I ≡ i1, i2...ik I' ≡ ik+1, ik+2,ik+k' I ≡ I, I' = i1,i2...ik+k'
 u^I ≡ (ui1^ ui2^ uik) u^I' ≡ (uik+1^...^uik+k') u^I ≡ (ui1^ ui2^ uik+k') (7.9.a.4)

Notice that the (7.8.4) vector associativity of ^ is used going from (a) to (b).

The conclusion is that

 T^^ S^ = ΣI (T⊗S)I u^I I ≡ I, I' = i1,i2...ik+k', u^I ≡ (ui1^ ui2^ uik+k') . (7.9.a.5)

Since the u^I are basis vectors in Lk+k', we have shown that:

 T^ ∈ Lk and S^ ∈ Lk' ⇒ T^^ S^ ∈ Lk+k' ⊂ L(V) . (7.9.a.6)

Thus we have strengthened the claim made in (7.8.10) that L(V) is closed under the operation ^.

Recall now from (7.3.8) the relationship between u^I and uI,

 (ui1 ^ ui2 ^ ^ uik) = Alt(ui1 ⊗ ui2 ⊗ ⊗ uik)
 u^I = Alt(uI) (7.3.8)

and (5.6.5) for the expansion of the tensor product T⊗S,

 T⊗S = ΣI (T⊗S)I uI I ≡ I, I' = i1,i2...ik+k', uI ≡ (ui1⊗ ui2⊗ uik+k') . (5.6.5)

Applying Alt to this last equation (with component indices J),

 [Alt(T⊗S)]J = AltJ [(T⊗S)J] // (A.5.3c)

 = AltJ [ΣI (T⊗S)I(uI)J] // component J of (5.6.5) quoted just above

 = ΣI (T⊗S)I AltJ [(uI)J] // (A.5.10) that Alt is linear

 = ΣI (T⊗S)I AltI [(uI)J] // (A.8.31), (uI)J has factored form (ui1)j1(ui2)j2 ...

 = ΣI (T⊗S)I (u^I)J // (7.3.8) quoted just above

 = [ΣI (T⊗S)I (u^I)] J

 = (T^^ S^)J // (7.9.a.5)

so we end up with the following elegant and compact way to write the wedge product of two tensors,

 T^^ S^ = Alt(T⊗S) . // see Sec (g) below for this result in Spivak normalization (7.9.a.7)

Chapter 7: Wedge Products

 134

Concealing the AltI and AltJ details one can get the correct result with this sequence,

 Alt(T⊗S) = Alt(ΣI (T⊗S)I uI) = ΣI (T⊗S)IAlt(uI) = ΣI (T⊗S)I(u^I) = T^^ S^ .

The components of (7.9.a.7) are,

 [T^^ S^]J = [Alt(T⊗S)]J

 =
1

(k+k')! ΣP(-1)S(P) (T⊗S)P(J) // (A.5.3a)

 =
1

(k+k')! ΣP(-1)S(P) TP(J)SP(J') . // see e.g. (5.6.15) (7.9.a.8)

This last line is an explicit instruction for computing the components of the tensor T^^ S^ . We have
added this new notation,

 TP(I) ≡ TiP(1)iP(2)...iP(k) for I = i1, i2...ik (7.9.a.9)

Example: Let S and T both be rank-2 tensors so k = k' = 2 . Then

 [T^^ S^]I = [T^^ S^]i1i2i3i4 = (1/4!) ΣP(-1)S(P)TiP(1)iP(2)SiP(3)iP(4)

 = (1/24) [Ti1i2Si3i4 - Ti2i1Si3i4 + Ti2i3Si1i4 - Ti2i3Si4i1 + 20 more terms] . (7.9.a.10)

Here as elsewhere we show in red the indices to be swapped to make the next term. From (7.9.c.6) below,

 T^^ S^ = (-1)2*2 S^^ T^ = S^^ T^. (7.9.a.11)

(b) Special cases of the wedge product T^^ S^

Assume T^ and S^ have rank k and k'.
If S = κ' ∈ K = a scalar, then rank(S) = k' = 0 and (7.9.a.3) (b) reads,

 T^^ S^ = Σi1i2....ikj1j2....jk'Ti1i2....ik Sj1j2....jk' (ui1^ ui2^ uik^ uj1^ uj2^ ujk')

 → Σi1i2....ikTi1i2....ik (κ') (ui1^ ui2^ uik) = κ'T (7.9.b.1)
and

 S^^ T^ = Σj1j2....jk'i1i2....ik Sj1j2....jk' Ti1i2....ik(uj1^ uj2^ ujk'^ ui1^ ui2^ uik)

 → Σi1i2....ik (κ') Ti1i2....ik (ui1^ ui2^ uik) = κ'T (7.9.b.2)

Chapter 7: Wedge Products

 135

so we find that T^S = S^T = κ'T .

If T = κ and S = κ', the result above would be T^^S^ = κκ' and S^^T^ = κ'κ and so T^^S^ = S^^T^ = κκ'.
Thus,

 T^^S^ = κ^S^ = S^^T^ = S^^κ = κS^ if T^ = κ ∈ V0

 T^^S^ = T^^κ' = S^^T^ = κ'^T^ = κ'T^ if S^ = κ' ∈ V0

 T^^S^ = κ^κ' = S^^T^ = κ'^κ = κκ' if T^,S^ = κ,κ' ∈ V0 (7.9.b.3)

These special case results are the same as those for T⊗S shown in (5.6.16). When T is rank-0 or rank-1
we can write T^ = T according to (7.4.19), but we continue to use T^.

(c) Commutivity Rule for the Wedge Product of two tensors T^ and S^

Recall the expansion of T^^ S^ from (7.9.a.3) item (b),

 T^^ S^ = Σi1i2....ikj1j2....jk'Ti1i2....ik Sj1j2....jk'(ui1^ ui2^ uik^ uj1^ uj2^ ujk')
 ΣI,J TI SJ (u^I ^ u^J) (7.9.c.1)

Swapping T↔S, k↔k' and i ↔ j gives the following form for the wedge product S^^T^ ,

 S^^T^ = Σj1j2....jk'i1i2....ikSj1j2....jk' Ti1i2....ik (uj1^ uj2^ ujk'^ ui1^ ui2^ uik)
 ΣJ,I SJTI (u^J ^ u^I)

 = Σi1i2....ikj1j2....jk' Ti1i2....ik Sj1j2....jk'(uj1^ uj2^ ujk'^ ui1^ ui2^ uik)
 ΣI,J TISJ (u^J ^ u^I) . (7.9.c.2)

Equations (7.9.c.1) and (7.9.c.2) are identical except for the last factor involving the basis vectors.
Consider the basis vector factor appearing in (7.9.c.2),

 (u^J ^ u^I) = (uj1^ uj2^ ujk'^ ui1^ ui2^ uik) . (7.9.c.3)

To make this match the basis factor in (7.9.c.1), we have to slide all the red basis vectors to the left
through all the black basis vectors. Each time a red passes through a black, we pick up a minus sign due
to the rule (7.2.4). Thus,

 (uj1^ uj2^ ujk'^ ui1^ ui2^ uik) = (-1)k' ui1 ^ (uj1^ uj2^ ujk'^ ui2^ uik)

 = (-1)k' (-1)k' ui1 ^ ui2 ^ (uj1^ uj2^ ujk'^ uik) = etc. =

 = [(-1)k']k (ui1^ ui2^ uik ^ uj1^ uj2^ ujk') . (7.9.c.4)

Chapter 7: Wedge Products

 136

Therefore,

 (u^J ^ u^I) = (-1)kk' (u^I ^ u^J) . (7.9.c.5)

Inserting this result into (7.9.c.2) gives

 S^^ T^ = (-1)kk'T^^ S^ ranks of the two tensors are k and k' . (7.9.c.6)

Since the commutivity sign is a function of the ranks (grades) of the tensors, this statement is sometimes
referred to as "graded commutivity". The wedge product of two tensors commutes if kk' is even, and
anticommutes if kk' is odd.

Using (7.9.a.7) the above becomes.

 Alt(S⊗T) = (-1)kk'Alt(T⊗S) . (7.9.c.7)

Example: If k = k' = 1, (-1)kk' = -1 and we recover the simple rule for vectors,

 S^^T^ = - T^^S^ // S and T are rank-1 tensors (vectors) (7.9.c.8)

as first stated in (4.3.2). One must keep in mind that the result S^^T^ = - T^^S^ is not valid for arbitrary
tensors S^ and T^.

Examples:
If k = 0 so T = κ, rule (7.9.c.6) says S^^T^ = T^^S^, consistent with (7.9.b.3) line 1.
If k=k'=0 so T = κ and S = κ', rule (7.9.c.6) again says S^^T^ = T^^S^, consistent with (7.9.b.3) line 3.
 (7.9.c.9)
(d) Wedge Product of three or more tensors

Mimicking (5.6.7) we write

 T^^S^^R^ = [ΣITIu^I]^[ΣJ SJu^J]^[ΣK RKu^K]

(a) = ΣI,J,K TISJRK (u^I) ^ (u^J) ^ (u^K)

(b) = ΣI,J,K TISJRK (u^I ^ u^J ^ u^K) // associative of ^ used here

(d) = ΣI,I',I" TISI'RI" (u^I ^ u^I' ^ u^I") // rename multiindices J→I',K→I"

 I ≡ i1, i2...ik I' ≡ ik+1, ik+2,ik+k' I" ≡ ik+k'+1, ik+k'+2,ik+k'+k"
 u^I ≡ (ui1^....^ uik) u^I' ≡ (uik+1^...^uik+k') u^I" ≡ (uik+k'+1^...^uik+k'+k")

(e) = ΣI (T⊗S⊗R)I u^I u^I ≡ (ui1^....^ uik+k'+k") I ≡ I, I',I" = i1,i2...ik+k'+k" (7.9.d.1)

Chapter 7: Wedge Products

 137

The outer product form is TISI'RI" = (T⊗S⊗R)I,I',I" = (T⊗S⊗R)I .

The conclusion is then,

 T^^S^^R^ = ΣI (T⊗S⊗R)Iu^I I ≡ I, I',I" = i1,i2...ik+k'+k" , u^I ≡ (ui1^....^ uik+k'+k") (7.9.d.2)

Since the u^I are basis vectors in Lk+k'+k", we have shown that:

 T^ ∈ Lk and S^ ∈ Lk' and R^ ∈ Lk" ⇒ T^^S^^R^ ∈ Lk+k'+k" ⊂ L(V) . (7.9.d.3)

We now mimic the sequence of steps above (7.9.a.7) :

 [Alt(T⊗S⊗R)]J = AltJ [(T⊗S⊗R)J] // (A.5.3b)

 = AltJ [ΣI (T⊗S⊗R)I(uI)J] // component J of (5.6.8) T⊗S⊗R = ΣI (T⊗S⊗R)I uI

 = ΣI (T⊗S⊗R)I AltJ [(uI)J] // (A.5.10) that Alt is linear

 = ΣI (T⊗S⊗R)I AltI [(uI)J] // (A.8.31) since (uI)J has factored form

 = ΣI (T⊗S⊗R)I (u^I)J // (7.3.8)

 = [ΣI (T⊗S⊗R)I (u^I)] J

 = (T^^ S^^ R^)J // (7.9.d.2)
so

 T^^ S^^ R^ = Alt(T⊗S⊗R) (7.9.d.4)

and then

 [T^^ S^^ R^]I = [Alt(T⊗S⊗R)]I

 =
1

(k+k'+k")! ΣP (-1)S(P) (T⊗S⊗R)P(I) // (A.5.3)

 =
1

(k+k'+k")! ΣP (-1)S(P) TP(I)SP(I')RP(I") (7.9.d.5)

which gives instructions for how to compute the components of T^^S^^R^ .

Chapter 7: Wedge Products

 138

Using the systematic notation outlined in (5.6.10) through (5.6.12), and generalizing the above
development for the wedge product of three tensors, we find the following expansion for the wedge
product of N tensors of L(V),

 (T1)^^(T2)^^...^(TN)^ = ΣI (T1

I1T2
I2 TN

IN) u^I = ΣI (T1⊗T2....⊗TN)I u^I

 where u^I = ui1^ ui2^ uik1+k2+...+kN = ui1^ ui2^ uiκ, κ = Σi=1N ki

 and (T1⊗T2....⊗TN)I = T1
I1T2

I2 TN
IN . (7.9.d.6)

The rank of this product tensor is then κ = Σi=1N ki and the tensor is an element of Lκ ⊂ L(V). Notice that
if κ > n, the tensor product (7.9.d.6) vanishes since there are then > n factors in u^I so one or more are
then duplicated,

 (T1)^^(T2)^^...^(TN)^ = 0 if κ = Σi=1N ki ≥ n+1 . (7.9.d.7)

For example, if all the tensors are the same tensor T^ of rank k, then

 T^

N ≡ T^^T^^...^T^ = 0 if Nk ≥ n+1 or N ≥ (n+1)/k . (7.9.d.8)

If N ≥ (n+1), then N ≥ (n+1)/k for any k ≥ 1. Thus

 T^

N = 0 for any N ≥ n+1 assuming k ≠ 0. (7.9.d.9)

Recall (5.6.13),

 T1⊗T2⊗...⊗TN = ΣI (T1I1T2

I2 TN
IN) uI = ΣI (T1⊗T2....⊗TN)I uI . (5.6.13)

Repeating the sequence above (7.9.d.4) for a longer product, we find that

 (T1)^^(T2)^^...^(TN)^ = Alt(T1⊗T2⊗...⊗TN) . (7.9.d.10)

Components of this tensor are computed as follows:

 [(T1)^^(T2)^^...^(TN)^]I = [Alt(T1⊗T2⊗...⊗TN)]I

 =
1
κ! ΣP(-1)S(P) (T1⊗T2⊗...⊗TN)P(I) // (A.5.3), κ = Σi=1N ki

 =
1
κ! ΣP(-1)S(P) T1

P(I1)T2
P(I2)TN

P(IN) (7.9.d.11)

 where T1

P(I1) ≡ T1
iP(1)iP(2)...iP(k) for I1 = i1, i2...iκ1

 T2
P(I2) ≡ T2

iP(κ1+1)iP(κ1+2)...iP(κ2) for I2 ={iκ1+1, iκ1+2.....iκ2}

 etc. // see (5.6.10 thru 12) for details

Chapter 7: Wedge Products

 139

In the Dirac notation of Section 2.11 one can write (7.9.d.10) as

 | (T1)^> ^ | (T2)^> ^ ... ^ | (TN)^> = Alt (| T1> ⊗ | T2> ⊗ ... ⊗ | TN>) . (7.9.d.12)

It is shown in (C.4.14) that "pre-antisymmetrization makes no difference", so the above may also be
written

 | (T1)^> ^ | (T2)^> ^ ... ^ | (TN)^> = Alt (| (T1)^> ⊗ | (T2)^> ⊗ ... ⊗ | (TN)^>) . (7.9.d.13)

Both sides of this equation are elements of the wedge product space Lk1+k2+..+kN , but they are also both
elements of the larger tensor product space Vk1 ⊗ Vk2 ⊗...⊗ VkN . The action of linear operator P on a
tensor product space vector is defined in the obvious manner, as in (5.6.17),

 P [| (T1)^> ⊗ | (T2)^> ⊗ ... ⊗ | (T2)^>] = P | (T1)^> ⊗ P | (T2)^> ⊗ ... ⊗ P | (T2)^> . (7.9.d.14)

In other words, the action of P on the larger space is defined in terms of its action on the spaces which
make up the tensor product. This result holds as well for the wedge product of N tensors,

 P [| (T1)^> ^ | (T2)^> ^ ... ^ | (T2)^>] = P | (T1)^> ^ P | (T2)^> ^ ... ^ P | (T2)^> (7.9.d.15)

Proof: P [| (T1)^> ^ | (T2)^> ^ ... ^ | (T2)^>] = P [Alt (| (T1)^> ⊗ | (T2)^> ⊗ ... ⊗ | (T2)^>)]

 = Alt [P (| (T1)^> ⊗ | (T2)^> ⊗ ... ⊗ | (T2)^>)]

 = Alt [(P | (T1)^> ⊗ P | (T2)^> ⊗ ... ⊗ P | (T2)^>)]

 = P | (T1)^> ^ P | (T2)^> ^ ... ^ P | (T2)^> .

(e) Commutativity Rule for product of N tensors

Consider an example where we have a wedge product of 9 tensors. The u^I basis function groups are

 u^I1 ^ u^I2 ^ u^I3 ^ u^I4 ^ u^I5 ^ u^I6 ^ u^I7 ^ u^I8^ u^I9 (7.9.e.1)

which goes with

 (T1)^ ^ (T2)^ ^ (T3)^ ^ (T4)^ ^ (T5)^ ^ (T6)^ ^ (T7)^ ^ (T8)^ ^ (T9)^ . (7.9.e.2)

The sign caused by swapping (T3)^ ↔ (T7)^ will be the same as the sign swapping u^I3 ↔ u^I7 in the
basis function. We do it one step at a time, first sliding the group u^I7 to the left using (7.9.c.5),

Chapter 7: Wedge Products

 140

 u^I1 ^ u^I2 ^ u^I3 ^ u^I4 ^ u^I5 ^ u^I6 ^ u^I7 ^ u^I8^ u^I9

 = u^I1 ^ u^I2 ^ u^I3 ^ u^I4 ^ u^I5 ^ u^I7 ^ u^I6 ^ u^I8^ u^I9 (-1)k6k7

 = u^I1 ^ u^I2 ^ u^I3 ^ u^I4 ^ u^I7 ^ u^I5 ^ u^I6 ^ u^I8^ u^I9 (-1)(k6+k5)k7

 = u^I1 ^ u^I2 ^ u^I3 ^ u^I7 ^ u^I4 ^ u^I5 ^ u^I6 ^ u^I8^ u^I9 (-1)(k6+k5+k4)k7

 = u^I1 ^ u^I2 ^ u^I7 ^ u^I3 ^ u^I4 ^ u^I5 ^ u^I6 ^ u^I8^ u^I9 (-1)(k6+k5+k4+k3)k7 .
 (7.9.e.3)
Now with this as a starting point, we slide u^I3 to the right, one group at a time,

 u^I1 ^ u^I2 ^ u^I7 ^ u^I3 ^ u^I4 ^ u^I5 ^ u^I6 ^ u^I8^ u^I9

 = u^I1 ^ u^I2 ^ u^I7 ^ u^I4 ^ u^I3 ^ u^I5 ^ u^I6 ^ u^I8^ u^I9 (-1)k3k4

 = u^I1 ^ u^I2 ^ u^I7 ^ u^I4 ^ u^I5 ^ u^I3 ^ u^I6 ^ u^I8^ u^I9 (-1)k3(k4+k5)

 = u^I1 ^ u^I2 ^ u^I7 ^ u^I4 ^ u^I5 ^ u^I6 ^ u^I3 ^ u^I8^ u^I9 (-1)k3(k4+k5+k6)
 (7.9.e.4)

and now we have successfully swapped u^I3 ↔ u^I7 so also (T3)^ ↔ (T7)^. The total sign is

 sign = (-1)m where m = (k6+ k5+ k4+ k3)k7 + (k4+k5+k6)k3

 = (k4+k5+k6)(k3+k7)+ k3k7 . (7.9.e.5)

Based on this result, we claim that :

Fact: In a product of tensors (T1)^^(T2)^^(T3)^.... of rank k1, k2, k3 ... , if two tensors are swapped
(Tr)^ ↔ (Ts)^ (with r < s), the resulting tensor incurs the following sign relative to the starting tensor,

 sign = (-1)m where m = (kr+1+kr+2 ...+ks-1)(kr+ks) + krks . (7.9.e.6)

 Corollary: If the sum of the ranks of the two swapped tensor is even, in effect m = krks . (7.9.e.7)

Example 1:

 (T1)^ ^ (T2)^ ^ (T3)^ = (-1)m (T2)^ ^ (T1)^ ^ (T3)^ r = 1 s = 2

 m = (0)(k1+k2) + k1k2 = k1k2 (-1)m = (-1)k1k2 (7.9.e.8)

which is consistent with (7.9.c.6) saying T1 ^ T2 = (-1)k1k2 T2 ^ T1 .

Chapter 7: Wedge Products

 141

Example 2:

 (T1)^ ^ (T2)^ ^ (T3)^ = (-1)m (T3)^ ^ (T2)^ ^ (T1)^ r = 1 s = 3

 m = (k2)(k1+k3) + k1k3 = k1k2 + k1k3 + k2k3 (-1)m = (-1)k1k2+k1k3+k2k3 (7.9.e.9)

This result can be obtained as well by direct pairwise swapping using (7.9.c.6) and the associativity of ^,

 (T1)^ ^ (T2)^ ^ (T3)^ = (-1)k1k2 (T2)^ ^ (T1)^ ^ (T3)^ = (-1)k1k2 (-1)k1k3 (T2)^ ^ (T3)^ ^ (T1)^

 = (-1)k1k2 (-1)k1k3 (-1)k2k3 (T3)^ ^ (T2)^ ^ (T1)^ (7.9.e.10)

Example 3: Suppose all the tensors are vectors with rank = 1. Then the sum of the ranks of any two
tensors is 2, which is even, so the Corollary above says m = krks = 1*1 = 1, so swapping any two of these
tensors produces a minus sign,

 phase = (-1)m = - 1 where m ≈ krks = 1*1 = 1

in agreement with the basic vector swap rule (7.2.4). (7.9.e.11)

(f) Theorems from Appendix C : pre-antisymmetrization makes no difference

We showed above that one can form wedge products of elements of L(V) in this manner (in Spivak
normalization, the right sides of these equations incur factorials as shown in Section (g) below),

 T^^ S^ = Alt(T⊗S) . (7.9.a.7)

 T^^S^^R^ = Alt(T⊗S⊗R) (7.9.d.4)

 (T1)^^(T2)^^...^(TN)^ = Alt(T1⊗T2⊗...⊗TN) (7.9.d.7)

where the operator Alt acts on the tensor indices which are not displayed in the above compact notation.

 For example

 T^^ S^ = Alt(T⊗S)

means, in multiindex notation,

 (T^^ S^)I = AltI [(T⊗S)I] = AltI [TISI'] =
1

(k+k')! ΣP(-1)S(P) TP(I)SP(I') .

A very simple case is the following (recall for vectors that a = a^)

Chapter 7: Wedge Products

 142

 (a ^ b)i1i2 = Alt [(a⊗b)i1i2] = Alt [ai1bi2] =
1

(1+1)! ΣP(-1)S(P) aiP(1) biP(2)

 = (1/2) [ai1bi2 - ai2bi1] = (1/2) [(a⊗b)i1i2 - (b⊗a)i1i2]

 = { (1/2) [(a⊗b) - (b⊗a)]}i1i2

which replicates our Chapter 4 statement that

 a ^ b = [a⊗b- b⊗a]/2 . (4.3.1)

Appendix C uses the rearrangement theorem in three separate Theorems to show that

 T^^ S^ = Alt(T⊗S) = Alt(T^⊗S) = Alt(T⊗S^) = Alt(T^⊗S^) . (7.9.f.1)
 Theorem One Theorem Two Theorem Three
Recall that

 T^ ≡ Alt(T) (7.4.3)

so that T^ is a totally antisymmetric tensor. What (7.9.f.1) says is that Alt(T⊗S) provides total
antisymmetrization on all tensor indices, so pre-antisymmetrizing either or both tensors makes no
difference. A similar statement applies to working with totally symmetric tensors. So we have,

 Alt[T⊗S] = Alt[T^⊗S] = Alt[T⊗S^] = Alt[T^⊗S^]
 where T^ = Alt(T) S^ = Alt(S) (C.4.1)

 Sym[T⊗S] = Sym[Ts⊗S] = Sym[T⊗Ss] = Sym[Ts⊗Ss]
 where Ts = Sym(T) Ss = Sym(S) . (C.4.2)

These can of course be rewritten as

 Alt[T⊗S] = Alt[Alt(T)⊗S] = Alt[T⊗Alt(S)] = Alt[Alt(T)⊗Alt(S)] (C.4.3)

 Sym[T⊗S] = Sym[Sym(T)⊗S] = Sym[T⊗Sym(S)] = Sym[Sym(T)⊗Sym(S)] . (C.4.4)

Similarly Appendix C shows that

 T^^S^^R^ = Alt(T⊗S⊗R) = Alt(T^⊗S⊗R) = Alt(T⊗S^⊗R) = Alt(T⊗S⊗R^)
 = Alt(T^⊗S^⊗R)= Alt(T^⊗S⊗R^)= Alt(T⊗S^⊗R^)
 = Alt(T^⊗S^⊗R^) . (7.9.f.2)

Adding ^ subscripts inside an Alt expression changes nothing. Here is another example:

 T^^S^^R^ = Alt(T⊗S⊗R) = Alt((T⊗S)⊗R) = Alt((T⊗S)^⊗R) = Alt(Alt(T⊗S)⊗R) . (7.9.f.3)

Chapter 7: Wedge Products

 143

(g) Spivak Normalization

Spivak's definition of the Alt operator is the same as ours and the same as Benn & Tucker's, but the latter
authors write the Alt operator in an elaborate script font as . Our wedge product normalization is
the same as Benn & Tucker's but differs from that of Spivak, a difference which we now explore.

Suppose we were to omit the (1/k!) normalization factor in the definition of the wedge product of k
vectors, so that (7.1.2) would become

 vj1^ vj2^ ^ vjk = 1 ΣP (-1)S(P) (vjP(1) ⊗ vjP(2) ⊗ ⊗ vjP(k))

 = 1 [(vj1 ⊗ vj2 ⊗ ⊗ vjk) + all signed permutations]

 = k! Alt(vj1 ⊗ vj2 ⊗ ⊗ vjk) . (7.1.2)S

A convenient way to understand this change is that everything stays the same but Spivak's wedge
products are "bigger than" ours.

In particular,

 a ^ b = 1[a⊗b - b⊗a] . // no factor of 1/2 (4.3.1)S

We show all factors that are different from our normalization in red. Earlier equations converted to Spivak
normalization are shown below with a subscript S added to the earlier equation number. For example,
equation (7.2.8) becomes

 (vj1^ vj2^ ^ vjk)i1i2...ik = 1 det[(vj*)i*] (7.2.8)S

and correspondingly

 (uj1^ uj2^ ^ ujk)i1i2...ik = 1 det[δj*

i*] = 1 det(δJI) . (7.3.9)S

Our Lk basis vectors of (7.3.8) become

 (ui1^ ui2^^ uik) = k! Alt(ui1⊗ ui2⊗⊗ uik)
or
 u^I = k!Alt(uI) . (7.3.8)S

where recall that the Alt operator (A.5.3) always contains an internal factor (1/k!) which is required so
AltT = T if the tensor T is already totally antisymmetric.

Chapter 7: Wedge Products

 144

The tensor expansion for T^ ∈ Lk is still given by (7.4.4),

 T^ = Σi1i2....ik Ti1i2....ik (ui1^ ui2^^ uik) . (7.4.4)S

and of course the corresponding tensor expansion of T ∈ Vk is also unaltered,

 T = Σi1i2....ik Ti1i2....ik (ui1⊗ ui2⊗ uik) . (7.4.1)

The reader is thus reminded of the difference between tensors T^ and T in our notation.

Then the new (7.4.2) is,

 Σi1i2....ik Ti1i2....ik (ui1^ ui2^^ uik)j1j2...jk

 = Σi1i2....ik Ti1i2....ik k! AltI[(ui1⊗ ui2⊗⊗ uik)j1j2...jk] // (7.3.8)

 = Σi1i2....ik Ti1i2....ik k! AltI[δi1

j1 δi2
j2 δik

jk] // (5.1.4)

 = k! Σi1i2....ik Ti1i2....ik AltJ[δi1

j1 δi2
j2 δik

jk] // (A.8.30)

 = k! AltJ[Σi1i2....ik Ti1i2....ik δi1

j1 δi2
j2 δik

jk // (A.5.10) Alt is linear

 = k! AltJ(Tj1j2...jk) = Alt(Tj1j2...jk) // no ambiguity

 = 1 ΣP (-1)S(P) TjP(1)jP(2)...jP(k) // def of Alt (A.5.3b)

 = k! [Alt(T)]j1j2...jk // (A.5.3c)

 ≡ [T^]j1j2...jk (7.4.2)S

with the result (rank T = k, rank S = k')

 T^ ≡ k!Alt(T) and S^ ≡ k'!Alt(S) . (7.4.3)S

The wedge product development of Section 7.9 (a) goes through with no change to give the result

 T^^ S^ = ΣI (T⊗S)I u^I I ≡ I, I' = i1,i2...ik+k', u^I ≡ (ui1^ ui2^ uik+k') . (7.9.a.5)S

But then we find

Chapter 7: Wedge Products

 145

 Alt(T⊗S)J = AltJ(T⊗S)J = ΣI (T⊗S)IAltJ(uI)J // (5.6.5) and (A.5.10) that Alt is linear

 = ΣI (T⊗S)IAltI(uI)J // use (A.8.27) since (uI)J is totally antisymmetric in I and J

 = ΣI (T⊗S)I
1

(k+k')! (u^I)J // (7.3.8)S above with k → k+k'

 =
1

(k+k')! (T^^ S^)J // (7.9.a.5)S above

so
 T^^ S^ = (k+k')! Alt(T⊗S) . (7.9.a.7)S

The fact that "pre-antisymmetrizing makes no difference" is unaltered, so we still have

 Alt(T⊗S) = Alt(Alt(T)⊗Alt(S)) . (C.4.3)

Then using T^ ≡ k!Alt(T) and S^ ≡ k'!Alt(T) we end up with

 T^^ S^ = (k+k')! Alt(T⊗S) = (k+k')! Alt(Alt(T)⊗Alt(S))

 =
(k+k')!
k! k'! Alt(T^⊗S^) T^ ∈ Lk and S^ ∈ Lk' . (7.9.g.1)

By the same analysis, we would find for a triple product in the Spivak normalization,

 T^^ S^^ R^ = (k+k'+k")! Alt(T⊗S⊗R)

 =
(k+k'+k")!
k! k'!k"! Alt(T^⊗S^⊗R^) T^ ∈ Lk , S^ ∈ Lk', R^ ∈ Lk" . (7.9.g.2)

Spivak uses lower-case Greek letters for elements of Lk, so the above two equations appear as

 Spivak page 79

 Spivak page 80

Actually, Spivak never talks about rank-k tensors and Lk, only rank-k tensor functions which he calls "k-
tensors" and which we will associate with the dual space Λk in Chapter 8, and that is what the Greek
objects are in the above. But if he did talk about rank-k tensors and Lk, the above in red would be his
normalization. We shall of course reprise this topic in Chapter 8.

Chapter 7: Wedge Products

 146

One advantage of the Spivak normalization is that vector wedge products don't have the annoying 1/k! so
that, for example, there is no overall 1/3! in the following,

 v1 ^ v2 ^ v3 = v1⊗v2⊗v3 - v1⊗v3⊗v2 + v3⊗v1⊗v2 - v3⊗v2⊗v1 + v2⊗v3⊗v1 - v2⊗v1⊗v3

 (7.1.5)S

The disadvantage, which seems a large one to us, is all the extra factorials in the wedge products of
multiple tensors, and the fact that T^ = k!Alt(T) instead of the simpler T^ = Alt(T).

Chapter 8: Dual Wedge Products

 147

8. The Wedge Product of k dual vectors : the vector spaces Λk and Λ(V)

Comment: This Chapter 8 is a partial copy, paste and edit version of Chapter 7 -- a translation from non-
dual to dual. See our similar comment at the start of Chapter 6. Since Chapter 7 is so long, here in Chapter
8 we shall delete all material that is basically unchanged from the non-dual Chapter 7. We also delete
most "comments" and examples. Just as in going from Chapter 5 to Chapter 6, the notion of tensor
components is replaced by the notion of tensor functions. The equation numbers for Chapter 8 match
those of Chapter 7, and deletions thus cause "holes" in the sequence for Chapter 8.

8.1 Definition of the wedge product of k dual vectors

We wish to define the wedge product of k dual vectors αi ∈ V*,

 α1^ α2^ ^ αk . // <α1| ^ <α2| ^ ^ <αk|

Wedge products of this form (and their linear combinations) inhabit a vector space we call Λk(V) or Λk.

We now impose the requirement that this wedge product must change sign when any two vectors are
swapped. This property is injected into the wedge product theory, it does not fall out from it.

This sign-change requirement leads to the following candidate definition for the wedge product of k
vectors in V (the jr are vector labels),

 αj1^ αj2^ ^ αjk = (1/k!) ΣP (-1)S(P) (αP(j1)⊗ αP(j2)⊗ ⊗ αP(jk))

 = (1/k!) [(αj1 ⊗ αj2 ⊗ ⊗ αjk) + all signed permutations]

 = Alt(αj1 ⊗ αj2 ⊗ ⊗ αjk) . (8.1.2)

For the purposes of this section, we simplify things by taking jr → r so (8.1.2) becomes,

 α1^ α2^ ^ αk = (1/k!) ΣP (-1)S(P) (αP(1)⊗ αP(2)⊗ ⊗ αP(k))

 = (1/k!) [(α1 ⊗ α2 ⊗ ⊗ αk) + all signed permutations] .

 = Alt(α1 ⊗ α2 ⊗ ⊗ αk)

 = (1/k!) Σi1i2...ik εi1i2...ik (αi1 ⊗ αi2 ⊗ ⊗ αik) ir = 1 to k (8.1.3)

where (1/k!) is a normalization factor. In Spivak normalization, the (1/k!) factors above are all replaced
by 1, see discussion in Section 8.9 (g) below.

Chapter 8: Dual Wedge Products

 148

8.2 Properties of the wedge product of k dual vectors

Where there is no comment on an item, see the the parallel item in Chapter 7.

1. The sums in (8.1.2) and (8.1.3) have k! terms. (8.2.1)

2. The wedge product is k-multilinear. (8.2.2)

It is by-fiat axiom that the wedge product of k vectors is k-multilinear and therefore satisfies these rules,

 α1^(α2 + α'2)^α3^.....^αk = α1^α2^α3^^αk + α1^α'2^α3^^αk
 α1^(sα2)^α3^^ αk = s(α1^α2^α3^^αk) s,r= scalar ∈ K
or
 α1^(rα2 + sα'2)^α3^.....^αk = r(α1^α2^α3^^αk) + s(α1^α'2^α3^^αk) . (8.2.3)

Here we show the rules just for the 2 position, but k-multilinear means these rules must apply to all the
vector positions. These rules cannot be derived from the similar tensor product rules (6.3.1).

3. The wedge product changes sign if any vector pair is swapped. (8.2.4)

4. Wedge product of vectors vanishes if any two vectors are the same.

 Given a sign change (8.2.4) for any pair swap of vectors in the wedge product, we know that

 α1^ α2^ ^ αk = 0 if any two (or more) vectors are the same. (8.2.5)

5. Wedge product vanishes if vectors are linearly dependent. (8.2.6)

6. Wedge product vanishes if k > n . (8.2.7)

7. Components. For the dual space, we consider tensor functions in place of tensor components, so

 (αj1^ αj2^ ^ αjk)(vi1,vi2.....vik) α^J (vI)

 = (1/k!) ΣP (-1)S(P) (αjP(1)⊗ αjP(2)⊗ ⊗ αjP(k))(vi1,vi2.....vik) // (8.1.2)

 = (1/k!) ΣP (-1)S(P) (αjP(1))(vi1) (αjP(2))(vi2) ... (αjP(k))(vik) // (6.6.17) for vectors

 = (1/k!) det [αj*(vi*)] . // (A.1.17) (1/k!) det [αJ(vI)] (8.2.8a)

Evaluating at the basis vectors then gives,

 (αj1^ αj2^ ^ αjk)(ui1,ui2.....uik) = (1/k!) det [αj*(ui*)] α^J (uI)

 = (1/k!) det [(αj*)i*] . // see (2.11.c.9) (1/k!) det [(αJ)I] (8.2.8b)

Chapter 8: Dual Wedge Products

 149

In the last equation, the αr are rank-1 functionals. We know that each such functional is associated with a
unique vector αr in V which appears in (2.11.a.4), αr(v) = <αr | v> = αr • v. Thus, we can form a tensor
in Vk called (αj1^ αj2^ ^ αjk) . For this rank-k tensor we have

 (αj1^ αj2^ ^ αjk)i1i2..ik = (αj1^ αj2^ ^ αjk)(ui1,ui2.....uik) // (6.5.1)

 = (1/k!) det [(αj*)i*] . // (8.2.8b) (8.2.8c)

In the Spivak normalization the factor (1/k!) in equations (8.2.8) is replaced by 1.

Fact: (αj1^αj2^...^αjk)(vi1,vi2....vik) is totally antisymmetric in both the labels jr and the labels ir.
 (8.2.9)

Proof: Antisymmetry on the jr follows from (8.2.4), while antisymmetry on ir follows from (8.2.8a)
(determinant changes sign if any two rows or columns are swapped).

8. Associative Property of the wedge product.

For example, (α1^ α2)^ α3 = α1^ (α2^ α3) = α1^ α2^ a3 .

8.3 The vector space Λk and its basis

Λk is the space whose elements are all linear combinations of wedge products of k vectors of V*. (8.3.1)

A more precise name for this space is Λk(V) but we just call it Λk.

It seems useful at this point to compare our vector space names with those of Spivak:

Names of spaces. [TA = totally antisymmetric = alternating]

 us Spivak
 tensor product spaces
 Vk -- space of rank-k tensors, T = |T>, Ti1i2....ik

 V*k -- dual space of k-multilinear tensor functionals on V, T = <T|
 V*kf Tk(V) space of k-multilinear tensor functions on V, T(v) = <T|v>

 wedge product spaces
 Lk -- space of TA rank-k tensors, T^, T^

i1i2....ik
 Λk -- dual space of TA k-multilinear tensor functionals on V, T^
 Λk

f Λk(V) space of TA k-multilinear tensor functions on V, T^(v) (8.3.1a)

Chapter 8: Dual Wedge Products

 150

Sjamaar refers to the last space as AkV (2006) and Ak(V) in his 2015 update. We wanted to end up with
the name Λk for the last space to agree with Spivak, Benn & Tucker, Conrad and others, and this led to
the non-Greek Lk for the corresponding non-dual wedge space.

We now go down the list of items in Section 7.3, adapting them as needed. Again, where there is no
comment on an item below, please see the the parallel item in Chapter 7. Multiindex versions of some
equations appear on the right below in red.

Λk is a vector space (8.3.2)

Basis elements for Λk

Consider the following objects in Λk obtained by wedging together k basis elements of V*, where each λi
is selected from the set of n available for V* (which has dimension n),

 (λj1 ^ λj2 ^ ^ λjk) . (8.3.3)

There are ⎝
⎛

⎠
⎞ n

 k independent basis elements for Λk and they all have this form

 (λi1 ^ λi2 ^ ^ λik) where i1 < i2 < < ik ⎝
⎛

⎠
⎞ n

 k basis elements (8.3.6)

Fact: (λi1 ^ λi2 ^ ^ λik) = Alt(λi1⊗ λi2⊗ ⊗λik) λ^I = Alt(λI) (8.3.8)

This is just a special case of (8.1.2).

Components of the basis elements for Λk .

Now reconsider the basis vectors of the vector space Λk ,

 (λj1 ^ λj2 ^ ^ λjk) . (8.3.3)

For this dual space Λk, we consider tensor functions in place of tensor components, so we then have these
special cases of (8.2.8a) and (8.2.8b),

 (λj1 ^ λj2 ^ ^ λjk)(vi1,vi2.....vik) λ^J (vI)

 = (1/k!) ΣP (-1)S(P) (λjP(1) ⊗ λjP(2)⊗ ⊗ λjP(k))(vi1,vi2.....vik)

 = (1/k!) ΣP (-1)S(P) (λjP(1))(vi1) (λjP(2))(vi2) ... (λjP(k))(vik) // (6.6.17) for vectors

 = (1/k!) ΣP (-1)S(P)(vi1)jP(1)(vi2)jP(2) ... (vik)jP(k) // (2.11.c.5)

 = (1/k!) det [(vi*)j*] . // (A.1.19) (1/k!) det [(vI)J] (8.3.9a)

Chapter 8: Dual Wedge Products

 151

Evaluation at the basis vectors then gives,

 (λj1 ^ λj2 ^ ^ λjk)(ui1,ui2.....uik) = (1/k!) det [(ui*)j*] λ^J (vI)

 = (1/k!) det [δi*

j*] // see (2.6.8) (um)n = δmn (1/k!) det [δIJ] (8.3.9b)

Once again, in Spivak normalization (1/k!) → 1 for equations (8.3.9). Looking at det [(vi*)j*] above
we immediately conclude that,

Fact: (λj1 ^ λj2 ^ ^ λjk)(vi1,vi2....vik) is totally antisymmetric in both the labels jr and the labels ir.
 (8.3.10)
We saw an example of both antisymmetries for k = 2 back in equation (4.4.21),

 (λi^ λj)(vr,vs) = - (λi^ λj)(vs,vr) = - (λj^ λi)(vr,vs) // two forms of antisymmetry (4.4.21)

Equation (8.3.9b) can be expressed in our usual informal notation,

 (λj1 ^ λj2 ^ ^ λjk)(ui1,ui2....uik) = (1/k!) [δj1i1 δj2i2...δjkik + signed permutations]
 (8.3.11)
Example: [see (7.3.12)]

 3!(λj1 ^ λj2^ λj3)(ui1,ui2,ui3) = 3! λ^J(uI) = det(δJI) = det (δj1j2j3i1i2i3) (8.3.12)

8.4 Tensor Expansions for a dual tensor in Λk

Recall now the tensor expansion for a most-general tensor T in V*k ,

 T = Σi1i2....ik Ti1i2....ik (λi1 ⊗ λi2⊗ λik) T ∈ V*k (6.2.3) (8.4.1)

where Ti1i2....ik are some general coefficients.

Consider then the similar-looking most-general object in Λk, evaluated at (vj1,vj2....vjk),

 Σi1i2....ik Ti1i2....ik (λi1 ^ λi2^ λik)(vj1,vj2....vjk)

 = Σi1i2....ik Ti1i2....ik AltI(λi1 ⊗ λi2⊗ λik)(vj1,vj2....vjk) // (8.3.8)

 = Σi1i2....ik Ti1i2....ik AltJ(λi1 ⊗ λi2⊗ λik)(vj1,vj2....vjk) // (8.2.9) and (A.8.27)

 = AltJ[Σi1i2....ik Ti1i2....ik (λi1 ⊗ λi2⊗ λik)(vj1,vj2....vjk)] // (A.5.10), Alt is linear

 = AltJT(vj1,vj2....vjk) = [AltJ(T)](vj1,vj2....vjk) = [Alt(T)](vj1,vj2....vjk) // (8.4.1)

 ≡ T^(vj1,vj2....vjk) . (8.4.2)

Chapter 8: Dual Wedge Products

 152

Here we define this functional (dual-space) notation,

 T^ ≡ Alt(T) (8.4.3)

which is really this statement about tensor functions,

 T^(vj1,vj2....vjk) ≡ [Alt(T)] (vj1,vj2....vjk) . (8.4.3a)

 From (8.4.2) we then have the following fully general element of Λk,

 T^ = Σi1i2....ik Ti1i2....ik (λi1 ^ λi2^ λik) . (8.4.4)

We refer to this type of expansion as a symmetric expansion, and we know it is redundant since the
symmetric sum includes each true basis vector k! times.

According to (A.8.9), we know from (8.4.3a) and (8.2.2) that

Fact: T^(vi1,vi2....vik) is a totally antisymmetric k-multilinear tensor function. (8.4.5)

Therefore,

Fact: The space Λk is the space of all totally antisymmetric k-multilinear rank-k tensors T^. To say that
T^ is totally antisymmetric means that T^(vi1,vi2....vik) is a totally antisymmetric tensor function.
 (8.4.6)

In contrast, the space V*k is the space of all k-multilinear rank-k tensors T, so Λk ⊂ V*k.

Since the set (λi1^ λi2^ λik) with 1 ≤ i1 < i2 < < ik ≤ n forms a complete basis for Λk, as
discussed above in (8.3.6), it must be possible to express T^ in the following manner

 T^ = Σ1≤i1<i2<....<ik≤n Ai1i2...ik (λi1 ^ λi2^ λik) . (8.4.7)

What then is the connection between the Ai1i2...ik of (8.4.7) and the Ti1i2...ik of (8.4.4)?

 The discussion goes exactly as in Chapter 7 and the result is,

 Ai1i2...ik = ΣP (-1)S(P) TiP(1)iP(2)...iP(k) i1 < i2 < < ik

 = [Ti1i2...ik + all signed permutations] // k! terms

 = k! [Alt(T)]i1i2...ik . // (A.5.3a) def of Alt
or
 A = k!Alt(T) = k! T^ (8.4.16)

Chapter 8: Dual Wedge Products

 153

where T^ = Alt(T) as shown in (7.4.3), not to be confused with tensor functional T^ ≡ Alt(T) in (8.4.3).

Since A = k! T^ , (7.4.5) shows that

Fact: Ai1i2...ik and T^

i1i2...ik are both totally antisymmetric tensors. (8.4.17)

Vector Case. For k = 1, we find that

 T = Σi1Ti1

 λi1 // (6.2.3)
 T^ = Σi1Ti1

 λi1 // (8.4.4) ⇒ T^ = T (8.4.19)

so for a vector there is no distinction between T^ and T (and in fact V*1 = Λ1).

8.5 Various expansions for the wedge product of k dual vectors

We have generally stopped bolding vectors in V, but in this section we bold the vectors αr to distinguish
them from the corresponding functionals αr, where recall (2.11.a.4) that αr(v) = αr• v .

The symmetric expansion is very straightforward. First, consider this rank-k tensor in Vk ,

 Ti1i2...ik = (α1)i1 (α2)i2 ... (αk)ik = (α1 ⊗ α2 ⊗⊗ αk)i1i2...ik // αr ∈ V
or (8.5.1a)
 T = (α1 ⊗ α2 ⊗⊗ αk) or |T> = |α1,α2,... αk> . // T ∈ Vk

The corresponding rank-k tensor functional is,

 T = (α1 ⊗ α2 ⊗⊗ αk) // αr ∈ V*, T ∈ V*k
or (8.5.1b)
 <T| = <α1,α2,... αk| .

Then the symmetric expansion (8.4.4) gives,

 T^ = Σi1i2...ik Ti1i2...ik (λi1 ^ λi2^ λik) (8.4.4)

 = Σi1i2...ik (α1)i1 (α2)i2 ... (αk)ik (λi1 ^ λi2^ λik) // (8.5.1a) (8.5.2)

 = [Σi (α1)i1λ

i1] ^ [Σi2 (α2)i2 λi2] ^ ^ [Σik (αk)ik
 λik]

 = α1 ^ α2 ^ ... ^ αk . (8.5.3)

This pure tensor functional T^ = (α1 ^ α2 ^ ... ^ αk) is an element of Λk .

Chapter 8: Dual Wedge Products

 154

The corresponding element of Lk is T^ = (α1 ^ α2 ^ ... ^ αk) = Alt(α1 ⊗ α2 ⊗ ... ⊗ αk) as in (7.4.3).

Expressing α1 ^ α2 ^ ... ^ αk in terms of the ordered expansion is more complicated. One must first
compute the tensor A as in (8.4.16) or (7.4.3),

 (1/k!) A = Alt(T) = Alt(α1⊗α2⊗.....⊗αk) = T^ = (α1 ^ α2 ^ ... ^ αk) ∈ Λk (8.5.4)

Then the ordered expansion (8.4.7) can be written in a battery of ways,

 α1 ^ α2 ^ ... ^ αk = // α1 ^ α2 ^ ... ^ αk ∈ Λk

(a) = Σ1≤i1<i2<....<ik≤n Ai1i2...ik (λi1 ^ λi2^ λik) // (8.4.7)

(b) = Σi1<i2<....<ik k! [Alt(α1⊗α2⊗...⊗αk)]i1i2...ik (λi1 ^ λi2^ λik) . // (8.5.4)

(c) = Σi1<i2<....<ik k! [α1 ^ α2 ^ ... ^ αk]i1i2...ik (λi1 ^ λi2^ λik) . // (8.1.3)

(d) = Σi1<i2<....<ik det[(α*)i*] (λi1 ^ λi2^ λik) . // (8.2.8c) with jr → r

(e) = Σi1<i2<....<ik det

⎝⎜
⎜⎛

⎠⎟
⎟⎞

(α1)i1 (α1)i2 ... (α1)ik
(α2)i1 (α2)i2 ... (α2)ik

...
(αk)i1 (αk)i2 ... (αk)ik

 (λi1 ^ λi2^ λik) .

(f) = Σi1<i2<....<ik det

⎝⎜
⎜⎛

⎠⎟
⎟⎞

(α1)i1 (α2)i1 ... (αk)i1
(α1)i2 (α2)i2 ... (αk)i2

...
(α1)ik (α2)ik ... (αk)ik

 (λi1 ^ λi2^ λik) .

(g) = Σi1i2...ik (α1)i1 (α2)i2 ... (αk)ik (λi1 ^ λi2^ λik) // (8.5.2) (8.5.5)

where we throw in the symmetric sum at the end. Remember that, since generally dim(V) = n > k, the
determinant in (f) is a full-width minor of matrix M = [α1, α2.....αk]. If k = n, the minor is the full matrix.

Example : Suppose k = n = 3. Then the following sum (form (f)) has only one term,

 α1 ^ α2 ^ α3 = Σ1≤i1<i2<i3<3 det[α1, α2, α3] (λi1 ^ λi2 ^ λi3)

 = det[α1, α2, α3] (λi1 ^ λi2 ^ λi3) (8.5.6)

as quoted in (4.4.15).

Chapter 8: Dual Wedge Products

 155

Here are the above expressions for k = 2 and general n ≥ k :

(a) α1 ^ α2 = Σi1<i2 Ai1i2

 (λi1 ^ λi2)

(b) = Σi1<i2 2! [Alt(α1⊗α2)]i1i2 (λi1 ^ λi2)

(c) = Σi1<i2 2! (α1 ^ α2)i1i2 (λi1 ^ λi2)

(d) = Σi1<i2 det[(α*)i*] (λi1 ^ λi2)

(e) = Σi1<i2 det
⎝
⎜
⎛

⎠
⎟
⎞ (α1)i1 (α1)i2

 (α2)i1 (α2)i2 (λi1 ^ λi2)

(f) = Σi1<i2 det
⎝
⎜
⎛

⎠
⎟
⎞ (α1)i1 (α2)i1

 (α1)i2 (α2)i2 (λi1 ^ λi2) = Σi1<i2[(α1)i1(α2)i2- (α2)i1(α1)i2](λi1 ^ λi2)

(g) = Σi1i2 (α1)i1 (α2)i2 (λi1 ^ λi2) = [Σi1(α1)i1λ

i1] ^ [Σi2(α2)i2 λi] = α1 ^ α2 (8.5.7)

Result (f) matches that shown in (4.4.12),

 α ^ β = Σij αiβj (λi ^ λj) = Σi<j (αiβj- αjβi) (λi ^ λj) = Σi<j Aij (λi ^ λj)

 = Σi<j det ⎝
⎛

⎠
⎞ αi βi

 αj βj (λi ^ λj) Aij = (αiβj- αjβi) = det ⎝
⎛

⎠
⎞ αi βi

 αj βj . (4.4.12)

8.6 Number of elements in Λk compared with V*k.

We know from (6.1.5) and (8.3.6) that,

 dim(V*k) = nk // number of basis elements of V*k (6.1.5)

 dim(Λk) = ⎝
⎛

⎠
⎞ n

 k // number of basis elements of Λk (8.3.6)

If the number of elements of field K is N (N → ∞ for K= reals), then

 ratio =
elements of Λk

elements of V*k =
⎝
⎛

⎠
⎞ n

 k N

nkN =
⎝
⎛

⎠
⎞ n

 k

nk = ⎝
⎛

⎠
⎞ n

 k / nk . (8.6.1)

For a given n, this is a strongly decreasing function of k, see graph in (7.6.2).

8.7 Multiindex notation

In this section, multiindex versions of equations are shown in red.

Chapter 8: Dual Wedge Products

 156

Multiindexing is done in two different ways. First, for the symmetric expansion (8.4.4) :

 T^ = Σi1i2....ik Ti1i2....ik (λi1^ λi2^ λik) (8.4.4)

 T^ = ΣI TI λ^I where λ^I ≡ λi1 ^ λi2 ^ ^ λik TI

 ≡ Ti1i2...ik

 and I ≡ {i1, i2,.... ik} with 1 ≤ ir ≤ n = ordinary multiindex, n = dim(V*) . (8.7.1)

The more significant notation involves the ordered expansion (8.4.7) which has only one term for each
linearly independent basis element. Note our use of Σ'I (prime) to indicate an ordered multiindex
summation :

 T^ = Σ1≤i1<i2<....<ik≤n Ai1i2...ik (λi1 ^ λi2^ λik) . (8.4.7)

 T^ = Σ'I AI λ^I where λ^I ≡ λi1 ^ λi2 ^ ^ λik AI

 ≡ Ai1i2...ik

 and I ≡ {i1, i2,.... ik} with 1 ≤ i1< i2<....< ik ≤ n = ordered multiindex, n = dim(V*) . (8.7.2)

Here are some unofficial multiindex notations for other equations developed above:

 T^ = α1 ^ α2 ^ ... ^ αk T^ = (^αZ) (8.5.3)

 Ti1i2...ik

 = (α1)i1 (α2)i2 ... (αk)ik ≡ (αZ)I TI = (αZ)I (8.5.1a)

with the idea that Z = 1,2...k . Continuing on,

 T^ = Σi1i2...ik (α1)i1 (α2)i2 ... (αk)ik (λi1 ^ λi2^ λik) T^ = ΣI (αZ)I λ^I (8.5.2)

 A = k! Alt(α1⊗α2⊗.....⊗αk) A = k! Alt(⊗αZ) (8.5.4)

 α1 ^ α2 ^ ... ^ αk = Σi1<i2<....<ik k! [Alt(α1⊗α2⊗...⊗αk)]i1i2...ik (λi1 ^ λi2^ λik) . (8.5.5b)

 (^αZ) = Σ'I k! Alt(⊗αZ)I λ^I

 Ai1i2...ik = det

⎝⎜
⎜⎛

⎠⎟
⎟⎞

(α1)i1 (α2)i1 ... (αk)i1
(α1)i2 (α2)i2 ... (αk)i2

...
(α1)ik (α2)ik ... (αk)ik

 AI = det[(αZ)I] (8.5.5a+f)

 α1 ^ α2 ^ ... ^ αk = Σi1<i2<....<ik det

⎝⎜
⎜⎛

⎠⎟
⎟⎞

(α1)i1 (α2)i1 ... (αk)i1
(α1)i2 (α2)i2 ... (αk)i2

...
(α1)ik (α2)ik ... (αk)ik

 (λi1 ^ λi2^ λik). (8.5.5f)

Chapter 8: Dual Wedge Products

 157

 (^αZ) = Σ'I det[(αZ)I]λ^I
8.8 The Exterior Algebra Λ(V)

We now construct the graded algebra Λ(V) in analogy with that of T(V) in (5.4.1).

Define a large vector space of the form (this is "the dual exterior algebra on V")

 Λ(V) ≡ Λ0 ⊕ Λ1 ⊕ Λ2 ⊕ Λ3 + // Λ(V) = Σ⊕

k=0
∞ Λk(V) (8.8.1)

Here Λ0 = the space of scalars, Λ1 the space of dual vectors, Λ2 = Λ ^ Λ ⊂ V*2 the space of
antisymmetric dual rank-2 tensors (8.4.6), and so on. The most general element of the space Λ(V) would
have the form

 X = s ⊕ ΣiTi λi ⊕ Σij Tij λi^λj ⊕ Σijk Tijk λi^λj^λk +
or
 X = s ⊕ ΣiTi λi ⊕ Σi<j Aij λi^λj ⊕ Σi<j<k Aijk λi^λj^λk + (8.8.2)

The direct sum ⊕ is described in Appendix B.

Associativity of the Wedge Product

See discussion near (7.8.3) and replace ei→ λi and v→α. One then concludes that,

Fact: The wedge product of k vectors α1^ α2^ ^ αk can be "associated" in any manner without altering
the meaning of the product. By this we mean that parentheses can be added in any manner without
altering the object. (8.8.4)

What this in effect does is define an array of new objects to be the same as α1^ α2^ ^ α6. For example,

 (α1^ (α2^ α3 ^ α4) ^ (α5^ α6) ≡ α1^ α2^ α3^ α4^ α5^ α6
 α1^ (α2^ (α3^ α4)^ α5)^ α6 ≡ α1^ α2^ α3^ α4^ α5^ α6 (8.8.5)

Since tensors like T^ can be expanded on (λi1 ^ λi2 ^ ^ λik), and since one may associate this wedge
product arbitrarily as claimed in (8.8.4), one easily shows that :

Fact: The wedge product of N general dual tensors A^^B^^C^.... can be "associated" in any manner
without altering the meaning of the product. By this we mean that parentheses can be added in any
manner without altering the object. (8.8.7)

This fact then extends the claim (8.8.4) made for N vectors, and is exactly analogous to the similar
axiomatic statement for ⊗ associativity made in (2.8.21).

Chapter 8: Dual Wedge Products

 158

Example: In (8.7.1) multiindex notation, consider three Λ(V) tensors T^,S^,R^ of rank k,k',k" :

 (T^ ^ S^) ^ R^ = ((ΣITIλ^I) ^ (ΣJSJλ^J)) ^ (ΣKRKλ^K)

 = ΣITIΣJSJ { (λ^I ^ λ^J) ^ (ΣKRKλ^K) } // rules (8.2.3)

 = ΣITIΣJSJΣKRK (λ^I ^ λ^J) ^ (λ^K) // rules (8.2.3) again

 = ΣIJKTISJRK (λ^I ^ λ^J ^ λ^K) // detail shown above (7.8.8) with ui→λi

 = (ΣITIλ^I) ^ (ΣJSJλ^J) ^ (ΣKRKλ^K) // rules (8.2.3) again

 = T^ ^ S^ ^ R^ .

Our example shows that for arbitrary Λ(V) tensors, (T^ ^ S^) ^ R^ = T^ ^ S^ ^ R^.

Fact: The large space Λ(V) is in fact itself a vector space. (8.8.8)

We know this is true since Λ(V) = Σ⊕

k=0
∞ Λk and we showed in (8.3.2) that each Λk is a vector space.

For example, the "0" element in Λ(V) is the direct sum of the "0" elements of all the Λk. See Appendix B
for more detail.

To show that Λ(V) is an algebra, we must show that it is closed under both addition and multiplication. It
should be clear to the reader that Λ(V) is closed under addition and has the right scalar rule. For example,
if k1 and s are scalars,

 k1 ⊕ α ⊕ β^κ ⊕ ρ^σ^η = sum of 4 elements of Λ(V) = an element of Λ(V)

 s(k1 ⊕ α ⊕ β^κ ⊕ ρ^σ^η) = (sk1) ⊕ (sα) ⊕ (sβ)^κ ⊕ ρ^(sσ)^η = element of Λ(V) (8.8.9)

This additive closure is of course necessary for Λ(V) be a vector space.

The space is also closed under the multiplication operation ^. For example

 (β^κ)^(ρ^σ^η) = β^κ^ρ^σ^η = ∈ Λ5 = ∈ Λ(V) . // (β^κ) ∈ Λ2 (ρ^σ^η) ∈ Λ3 (8.8.10)

Here we have used the associative property (8.8.4). This closure claim is stated more generally below
(8.9.a.6).

One then makes the following definitions with regard to the space Λ(V), where n = dim(V*) = dim(V):
(the objects in this table are pure multilinear functionals)

Chapter 8: Dual Wedge Products

 159

 Object Name any blade lincomb: Grade(rank): Space
 s dual 0-blade scalar ∈ K 0 Λ0

 α dual 1-blade dual vector 1 Λ1

 α^β dual 2-blade dual bivector 2 Λ2
 α^β^γ dual 3-blade dual trivector 3 Λ3
 α^β^γ^δ dual 4-blade dual quadvector 4 Λ4

 α^β^γ^δ^.... dual k-blade dual k-vector k Λk

 α^β^γ^δ^.... dual n-blade dual n-vector n Λn

 arbitrary element of Λ(V) dual multivector mixed Λ(V) (8.8.11)

Since Λ(V) is closed under the operations ⊕ and ^, it is "an algebra" (the space Λk alone is not an algebra
because it is not closed under ^). The Λ(V) algebra is different from that of the reals due to its definition
as a sum of vector spaces. The elements of Λ(V) have different "grades" as shown above, so Λ(V) is a
"graded algebra". Sometimes Λ(V) is called "the dual exterior tensor algebra" over V.
 A k-blade is a pure wedge product of k vectors, whereas a k-vector is any linear combination of k-
blades. A multivector is any linear combination of k-vectors for any mixed values of k.
 Note that

 s1(α^β) ⊕ s2(γ^δ) = (s1α)^β ⊕ (s2γ)^δ = (α'^β) ⊕ (γ'^δ) // 2-blades
 s1(α^β) ⊕ s2(γ^δ^ε) = (s1α)^β ⊕ (s2γ)^δ^ε = (α'^β) ⊕ (γ'^δ^ε) // multivector

so it is also correct to say that a k-vector is any sum of k-blades, and a multivector is any sum of k-
vectors. That is, any linear combination can be written as a sum as shown in the above examples.
 Unlike in Tensor World, in Wedge World the above list (8.8.11) is finite for a given n = dim(V). For
k = n there is exactly one linearly independent basis vector which is the ordered wedge product of all the
basis vectors of V*. For k > n, all wedge products vanish since the vectors in the wedge product are
linearly dependent, see (8.2.6). The dimensionality of the space Λ(V) is as follows, based on (8.8.1) and
(B.10)',

 dim[Λ(V)] = dim[Λ0 ⊕ Λ1 ⊕ Λ2 ⊕ Λ3 +] = dim(Λ0) + dim(Λ1) + dim(Λ2) + dim(Λ3) + ...

but for dim(V*) = n this series truncates with Λn and we find from (7.3.6),

 dim[Λ(V)] = 1 + n + ⎝
⎛

⎠
⎞ n

 2 + ⎝
⎛

⎠
⎞ n

 3 + ... + ⎝
⎛

⎠
⎞ n

 n = Σk=0n ⎝
⎛

⎠
⎞ n

 k = 2n = a finite number (8.8.12)

Recall from the discussion above (4.4.34) that the space Λ2 of rank-2 tensor functionals is isomorphic to
the space Λ2

f of rank-2 tensor functions, where we added a subscript f to distinguish these two vector
spaces. We apply this similar notation to the full space Λ(V) to obtain this tensor function version of
(8.8.1),

Chapter 8: Dual Wedge Products

 160

 Λf(V) ≡ Λ0
f ⊕ Λ1

f ⊕ Λ2
f ⊕ Λ3

f + // Λf(V) = Σ⊕
k=0

∞ Λk
f(V) (8.8.13)

where now Λf(V) is the space of all multilinear totally antisymmetric (alternating) functions of any
number of vector arguments.

8.9 The Wedge Product of two or more dual tensors in Λ(V)

(a) Wedge Product of two dual tensors T^ and S^

Rather than translate the many details of this section from Chapter 7, we will skip these details and state
the conclusions. The details may be obtained from Section 7.9 by making these simple replacements:

 ui1 → λi1 uI → λI u^I → λ^I

 Ti1i2....ik → Ti1i2....ik , TI → TI , T^ → T^
 Si1i2....ik → Si1i2....ik , SI → SI , S^ → S^ .

In subsection (d) below on the product of three tensors, more details are provided.

Here then are selected results:

 Tensor product of two tensors:

 T^^ S^ = ΣI (T⊗S)I λ^I I ≡ I, I' = i1,i2...ik+k', λ^I ≡ (λi1^ λi2^ λik) . (8.9.a.5)

 Closure: T^ ∈ Λk and S^ ∈ Λk' ⇒ T^^ S^ ∈ Λk+k' ⊂ Λ(V) . (8.9.a.6)

 Basis relation: (λi1^ λi2^ λik) = Alt(λi1 ⊗ λi2 ⊗ ⊗ λik)
 λ^I = Alt(λI) (8.3.8)

 T⊗S == ΣI (T⊗S)I λI I ≡ I, I' = i1,i2...ik+k', uI ≡ (ui1⊗ ui2⊗ uik+k') . (5.6.5)

 Alt(T⊗S)(vJ) = AltJ(T⊗S)(vJ) = ΣI (T⊗S)I AltJ (λI(vJ)) // (5.6.5) and (A.5.10) that Alt is linear

 = ΣI (T⊗S)I AltI (λI(vJ)) // (A.8.31), λI(vJ) has factored form λi1(vj1) λi2(vj2) ...

 = ΣI (T⊗S)I λ^I(vJ) // (8.3.8)

 = (T^^ S^)(vJ) // (8.9.a.5)
so
 T^^ S^ = Alt(T⊗S) . (8.9.a.7)

The "components" (tensor functions) are

Chapter 8: Dual Wedge Products

 161

 (T^^ S^)(vJ) = Alt(T⊗S)(vJ)

 =
1

(k+k')! ΣP(-1)S(P) (T⊗S)(vP(J))

 =
1

(k+k')! ΣP(-1)S(P) T(vP(J)) S(vP(J')) (8.9.a.8)

where

 J ≡ j1, j2...jk J' ≡ jk+1, jk+2,jk+k' J ≡ J, J' = j1,j2...jk+k' (7.9.a.4)

The above is an explicit instruction for computing the "components" of the tensor T^^ S^ . We have
added this new notation,

 T(vP(J)) ≡ T(vjP(1), vjP(2)

... vjP(k)) for J ≡ j1, j2...jk . (8.9.a.9)

Example: Let S and T both be rank-2 dual tensors so k = k' = 2 . Then

 (T^^ S^)(vI) = (T^^ S^)(v1,v2,v3,v4) = (1/4!) ΣP(-1)S(P)T(viP(1), viP(2))S(viP(3), viP(4))

 = (1/24) [T(vi1,vi2)S(vi3,vi4) - T(vi2,vi1)S(vi3,vi4) + T(vi2,vi3)S(vi1,vi4) + 21 more terms]
 (8.9.a.10)

Here as elsewhere we show in red the indices to be swapped to make the next term. From (8.9.c.6) below,

 T^^ S^ = (-1)2*2 S^^ T^ = S^^ T^. (8.9.a.11)

(b) Special cases of the wedge product T^^ S^

Same as Section 7.9 (b) with T^→ T^ and S^→ S^ . Here are the conclusions :

 T^^S^ = κ^S^ = S^^T^ = S^^κ = κS^ if T^ = κ ∈ V*0 [V*0 = V0]

 T^^S^ = T^^κ' = S^^T^ = κ'^T^ = κ'T^ if S^ = κ' ∈ V*0

 T^^S^ = κ^κ' = S^^T^ = κ'^κ = κκ' if T^,S^ = κ,κ' ∈ V*0 (8.9.b.3)

(c) Commutivity Rule for the Wedge Product of two dual tensors T^ and S^

Same as Section 7.9 (c) with T^→ T^ and S^→ S^ and u→λ. Here are some of the translated conclusions:

 (λ^J ^ λ^I) = (-1)kk' (λ^I ^ λ^J) . dual basis vectors (8.9.c.5)

 S^^ T^ = (-1)kk'T^^ S^ ranks of the two dual tensors are k and k' . (8.9.c.6)

Chapter 8: Dual Wedge Products

 162

(d) Wedge Product of three or more dual tensors

For this section we do a full translation of Section 7.9 (d) :

 T^^S^^R^ = [ΣITIλ^I]^[ΣJ SJλ^J]^[ΣK RKλ^K]

(a) = ΣI,J,K TISJRK (λ^I) ^ (λ^J) ^ (λ^K)

(b) = ΣI,J,K TISJRK (λ^I ^ λ^J ^ λ^K) // associative of ^ used here

(d) = ΣI,I',I" TISI'RI" (λ^I ^ λ^I' ^ λ^I") // rename multiindices J→I',K→I"

 I ≡ i1, i2...ik I' ≡ ik+1, ik+2,ik+k' I" ≡ ik+k'+1, ik+k'+2,ik+k'+k"
 λ^I ≡ (λi1^....^ λik) λ^I' ≡ (λik+1^...^λik+k') λ^I" ≡ (λik+k'+1^...^λik+k'+k")

(e) = ΣI (T⊗S⊗R)I λ^I λ^I ≡ (λi1^....^ λik+k'+k") I ≡ I, I',I" = i1,i2...ik+k'+k" (8.9.d.1)

The outer product form is TISI'RI" = (T⊗S⊗R)I,I',I" = (T⊗S⊗R)I .

The conclusion is this:

 T^^S^^R^ = ΣI (T⊗S⊗R)Iλ^I I ≡ I, I',I" = i1,i2...ik+k'+k" , λ^I ≡ (λi1^....^ λik+k'+k") (8.9.d.2)

Since the λ^I are basis vectors in Λk+k'+k", we have shown that:

 T^ ∈ Λk and S^ ∈ Λk' and R^ ∈ Λk" ⇒ T^^S^^R^ ∈ Λk+k'+k" ⊂ Λ(V) . (8.9.d.3)

Recalling the Chapter 6 result,

 T⊗S⊗R = ΣI (T⊗S⊗R)I λI I ≡ I, I',I" = i1,i2...ik+k'+k" λI ≡ (λi1⊗....⊗ λik+k'+k") (6.6.5)

and (8.3.8) that λ^I = Alt(λI), we find,

 Alt(T⊗S⊗R) = ΣI (T⊗S⊗R)I Alt(λI) // Alt is linear, see (7.9.d.4)

 = ΣI (T⊗S⊗R)I λ^I // (8.3.8)

 = T^^S^^R^ // (8.9.d.2)
so
 T^^S^^R^ = Alt(T⊗S⊗R) (8.9.d.4)

and then

Chapter 8: Dual Wedge Products

 163

 [T^^S^^R^](vI) = [Alt(T⊗S⊗R)](vI)

 = ΣP(-1)S(P) (T⊗S⊗R)(vP(I)) // (A.5.3)

 = ΣP(-1)S(P) T(vP(I))S(vP(I'))R(vP(I")) (8.9.d.5)

which gives instructions for how to compute the "components" of T^^S^^R^ .

Using the systematic notation outlined in (5.6.10) through (5.6.12), and generalizing the above
development for the wedge product of three tensors, we find the following expansion for the wedge
product of N tensors of Λ(V),

 (T1)^^(T2)^^...^(TN)^ = ΣI (T1)I1(T2)I2 (TN)IN λ^I = ΣI (T1⊗T2....⊗TN)I λ^I
 (8.9.d.6)
 where λ^I = λi1^ λi2^ λik1+k2+...+kN = λi1^ λi2^ λiκ

 and (T1⊗T2....⊗TN)I = (T1)I1(T2)I2 (TN)IN .

The rank of this product tensor is then κ = Σi=1N ki and the tensor is an element of Λκ ⊂ Λ(V). Notice
that if κ > n, the tensor product (8.9.d.6) vanishes since there are then > n factors in λ^I so one or more
are then duplicated,

 (T1)^^(T2)^^...^(TN)^ = 0 if κ = Σi=1N ki ≥ n+1 . (8.9.d.7)

For example, if all the tensors are the same tensor T^ of rank k, then

 T^

N ≡ T^^T^^...^T^ = 0 if Nk ≥ n+1 or N ≥ (n+1)/k . (8.9.d.8)

If N ≥ (n+1), then N ≥ (n+1)/k for any k ≥ 1. Thus

 T^

N = 0 for any N ≥ n+1 assuming k ≠ 0. (8.9.d.9)

Recall (6.6.16),

 T1⊗T2⊗...⊗TN = ΣI (T1I1T2

I2 TN
IN) λI = ΣI (T1⊗T2....⊗TN)I λI . (6.6.16)

Applying Alt to both sides again with λ^I = Alt(λI) shows that, as in (8.9.d.4),

 (T1)^^(T2)^^...^(TN)^ = Alt(T1⊗T2⊗...⊗TN) . (8.9.d.10)

"Components" (the tensor function) of this tensor are computed as follows:

Chapter 8: Dual Wedge Products

 164

 [(T1)^^(T2)^^...^(TN)^](vI) = [Alt(T1⊗T2⊗...⊗TN)](vI)

 = ΣP(-1)S(P) (T1⊗T2⊗...⊗TN)(vP(I)) // (A.5.3)

 = ΣP(-1)S(P) T1(vP(I1))T2(vP(I2)) ...TN(vP(IN)) (8.9.d.11)

 where T1(vP(I1)) ≡ T1(viP(1),viP(2)...viP(k)) for I1 = i1, i2...iκ1
 T2(vP(I2)) ≡ T2(viP(κ1+1), viP(κ1+2)...viP(κ2)) for I2 ={iκ1+1, iκ1+2.....iκ2}

 etc. // see (5.6.10 thru 12) for details

In the Dirac notation of Section 2.11 one can write (8.9.d.10) as

 <(T1)^| ^ < (T2)^| ^...^ < (TN)^| = Alt(<T1| ⊗ <T2| ⊗ ...⊗ <TN|) . (8.9.d.12)

It is shown in (C.4.14) that "pre-antisymmetrization makes no difference", so the above may also be
written

 <(T1)^| ^ < (T2)^| ^...^ < (TN)^| = Alt(<(T1)^| ⊗ <(T2)^| ⊗ ...⊗ <(TN)^|) . (8.9.d.13)

Both sides of this equation are elements of the dual wedge product space Λk1+k2+..+kN , but they are also
both elements of the larger dual tensor product space V*k1 ⊗ V*k2 ⊗...⊗ V*kN . The action of linear
operator Q on a dual tensor product space vector is defined in the obvious manner, as in (6.6.18),

 [<(T1)^| ⊗ <(T2)^| ⊗ ...⊗ <(TN)^|] Q = <(T1)^|Q ⊗ <(T2)^|Q ⊗ ...⊗ <(TN)^|Q . (8.9.d.14)

In other words, the action of Q on the larger space is defined in terms of its action on the spaces which
make up the tensor product. This result holds as well for the wedge product of N dual tensors,

 [<(T1)^| ^ < (T2)^| ^...^ < (TN)^|] Q = <(T1)^|Q ^ < (T2)^|Q ^...^ < (TN)^|Q (8.9.d.15)

Proof: [<(T1)^| ^ < (T2)^| ^...^ < (TN)^|] Q = [Alt(<(T1)^| ⊗ <(T2)^| ⊗ ...⊗ <(TN)^|)] Q

 = Alt [(<(T1)^| ⊗ <(T2)^| ⊗ ...⊗ <(TN)^|) Q]

 = Alt [(<(T1)^|Q ⊗ <(T2)^|Q ⊗ ...⊗ <(TN)^|Q)]

 = <(T1)^|Q ^ <(T2)^|Q ^ ...^ <(TN)^|Q .

Equations (8.9.d.14,15) are the transposes of (7.9.d.14,15) if we set Q = PT .

Chapter 8: Dual Wedge Products

 165

(e) Commutativity Rule for product of N dual tensors

The argument of Section 7.9 (e) can be repeated with u→λ. Here we just quote the conclusion.

Fact: In a product of tensors (T1)^^(T2)^^(T3)^.... of rank k1, k2, k3 ... , if two tensors are swapped
(Tr)^ ↔ (Ts)^ (with r < s), the resulting tensor incurs the following sign relative to the starting tensor,

 sign = (-1)m where m = (kr+1+kr+2 ...+ks-1)(kr+ks) + krks . (8.9.e.6)

 Corollary: If the sum of the ranks of the two swapped tensor is even, in effect m = krks . (8.9.e.7)

Example:

 (T1)^ ^ (T2)^ ^ (T3)^ = (-1)m (T3)^ ^ (T2)^ ^ (T1)^ r = 1 s = 3

 m = (k2)(k1+k3) + k1k3 = k1k2 + k1k3 + k2k3 (-1)m = (-1)k1k2+k1k3+k2k3 (8.9.e.8)

(f) Theorems from Appendix C : pre-antisymmetrization makes no difference

We showed above that one can form wedge products of elements of Λ(V) in this manner,

 T^^ S^ = Alt(T⊗S) . (8.9.a.7)

 T^^S^^R^ = Alt(T⊗S⊗R) (8.9.d.4)

 (T1)^^(T2)^^...^(TN)^ = Alt(T1⊗T2⊗...⊗TN) (8.9.d.7)

where the operator Alt acts on the vector arguments which are not displayed in the above compact
functional notation. For example

 T^^ S^ = Alt(T⊗S)

means, in multiindex notation,

 (T^^ S^)(vI) = AltI [(T⊗S)(vI)] = AltI [T(vI)S(vI')] =
1

(k+k')! ΣP(-1)S(P) T(vP(I))S(vP(I')) .

A very simple case is the following (recall for vectors that α = α^)

 (α ^ β)(vi1,vi2) = Alt (α⊗β)(vi1,vi2) = Alt [α(vi1)β(vi2)] =
1

(1+1)! ΣP(-1)S(P) α(viP(1)) β(viP(2))

 = (1/2) [α(vi1)β(vi2) - α(vi2)β(vi1)] = (1/2)[(α⊗β)(vi1,vi2) - (β⊗α)(vi1,vi2)]

 = { (1/2) [(α⊗β) - (β⊗α)]}(vi1,vi2)

Chapter 8: Dual Wedge Products

 166

which replicates our Chapter 4 statement that

 α ^ β = [α⊗β- β⊗α]/2 . (4.4.1)

The objects here are functionals in Λ(V) which, when closed with a vector set, become tensor functions in
Λf(V).

Appendix C uses the rearrangement theorem in three separate Theorems to show that

 T^^ S^ = Alt(T⊗S) = Alt(T^⊗S) = Alt(T⊗S^) = Alt(T^⊗S^) . (8.9.f.1)
 Theorem One Theorem Two Theorem Three

These three theorems are derived in a generic space with vectors |1,2...k> and so apply to both tensors and
tensor functionals, TI and T(vI).

Recall that

 T^ ≡ Alt(T) (8.4.3)

so that T^ is a totally antisymmetric tensor functional. What (8.9.f.1) says is that Alt(T⊗S) provides total
antisymmetrization on all the (undisplayed) vector argument indices, so pre-antisymmetrizing either or
both tensors makes no difference. A similar statement applies to working with totally symmetric tensors.
So we have,

 Alt[T⊗S] = Alt[T^⊗S] = Alt[T⊗S^] = Alt[T^⊗S^]
 where T^ = Alt(T) S^ = Alt(S) (C.4.1)

 Sym[T⊗S] = Sym[Ts⊗S] = Sym[T⊗Ss] = Sym[Ts⊗Ss]
 where Ts = Sym(T) Ss = Sym(S) . (C.4.2)

These can of course be rewritten as

 Alt[T⊗S] = Alt[Alt(T)⊗S] = Alt[T⊗Alt(S)] = Alt[Alt(T)⊗Alt(S)] (C.4.3)

 Sym[T⊗S] = Sym[Sym(T)⊗S] = Sym[T⊗Sym(S)] = Sym[Sym(T)⊗Sym(S)] . (C.4.4)

Similarly Appendix C shows that

 T^^S^^R^ = Alt(T⊗S⊗R) = Alt(T^⊗S⊗R) = Alt(T⊗S^⊗R) = Alt(T⊗S⊗R^)
 = Alt(T^⊗S^⊗R)= Alt(T^⊗S⊗R^)= Alt(T⊗S^⊗R^)
 = Alt(T^⊗S^⊗R^) . (8.9.f.2)

Adding ^ subscripts inside an Alt expression changes nothing. Here is another example:

Chapter 8: Dual Wedge Products

 167

 T^^S^^R^ = Alt(T⊗S⊗R) = Alt((T⊗S)⊗R) = Alt((T⊗S)^⊗R) = Alt(Alt(T⊗S)⊗R)
and
 T^^S^^R^ = Alt(T⊗S⊗R) = Alt(T⊗(S⊗R)) = Alt(T⊗(S⊗R)^) = Alt(T⊗Alt(S⊗R)) . (8.9.f.3)

This appears in Spivak p 80 as

 (C.4.8)

(g) Spivak Normalization

We won't repeat the discussion of Section 7.9 (g), but the reader can do the translation with the usual rules

 v → α ei → λi TI → TI etc.

Here are the results, where factors shown in red show changes caused by the Spivak notation in which the
normalization factor in (8.1.2) is changed from (1/k!) to 1,

 αj1^ αj2^ ^ αjk = 1 ΣP (-1)S(P) (αP(j1)⊗ αP(j2)⊗ ⊗ αP(jk))

 = 1 [(αj1 ⊗ αj2 ⊗ ⊗ αjk) + all signed permutations]

 = k! Alt(αj1 ⊗ αj2 ⊗ ⊗ αjk) . (8.1.2)S

In particular,

 α ^ β = 1[α⊗β - β⊗α] . // no factor of 1/2 (4.4.1)S

The affected equations are these:

 (λi1^ λi2^^ λik) = k! Alt(λi1⊗ λi2⊗⊗ λik) or λ^I = k!Alt(λI) (8.3.8)S

 T^ ≡ k!Alt(T) and S^ ≡ k'!Alt(S) . (8.4.3)S

 T^^ S^ = (k+k')! Alt(T⊗S) . (8.9.a.7)S

 T^^ S^ =
(k+k')!
k! k'! Alt(T^⊗S^) T^ ∈ Λk and S^ ∈ Λk' . (8.9.g.1)

 T^^ S^^ R^ =
(k+k'+k")!
k! k'!k"! Alt(T^⊗S^⊗R^) T^ ∈ Λk , S^ ∈ Λk', R^ ∈ Λk" . (8.9.g.2)

These now correspond exactly with Spivak's wedge product definition for tensor functions,

Chapter 8: Dual Wedge Products

 168

 page 79

 page 80

In (8.3.1a) we showed a table comparing our notation to that of Spivak. Here are a few more items:

 us Spivak
 λi φi dual space basis vectors
 Λk -- space of k-multilinear alternating tensor functionals
 Λk

f Λk(V) space of k-multilinear alternating tensor functions
 T^,R^,S^ ω,η,θ typical elements of Λk (and Λk

f)
 k,k',k" k,l,m ranks (degrees) of the above typical elements
 σ P permutation operator
 sgn σ (-1)S(P) permutation parity, S(P) = swap count
 Sk G set (group) of all permutations of [1,2...k], App. A. (8.9.g.3)

Comments:

1. Spivak refers to a totally antisymmetric tensor function as an alternating function which is the
traditional terminology in this realm, hence the operator name Alt.

2. Spivak uses all lower indices, whereas we have used covariant notation where contravariant indices are
up and covariant indices are down.

3. The Spivak normalization is compatible with the traditional definition of a "pullback" as described
below in Chapter 10.

Chapter 9: Wedge Product as Quotient Space

 169

9. The Wedge Product as a Quotient Space

We present here a wedge product "theory section" which really should be part of Chapter 1, but we
wanted to have the reader first immersed in the nuts and bolts approach to the wedge product presented in
Chapters 4, 7 and 8. As is the case for Chapter 1, this chapter makes no mention of the components of
vectors or tensors.

9.1. Development of Lk as Vk/S

The presentation below is based on the paragraph titled Definition 3.1 on page 5 of Conrad.

Consider the vector space V defined over some field K (the scalars, normally reals). If V used coefficients
in a ring R instead of a field K, V would be called an R-module. Since any field K is also a ring, we can
regard our usual V as an R-module (any vector space is also an R-module). Statements about R-modules
are more general that statements about vector spaces, so for that reason one sees the R-module moniker in
discussions of our current topic. We shall use the bare term module.

Thus, the vector space Vk = V⊗V...⊗V can be regarded as a module since its vectors are defined over
the field K which is also a ring.

The pure elements of Vk have the form v1⊗v2⊗v3.... ⊗vk (k factors).

Consider the subset S of Vk whose elements have a repeat of one of the vectors. That is, suppose we have
vi = vj for some i ≠ j in v1⊗v2⊗v3.... ⊗vk. There could be other vectors which are also equal to vi, so at
least two vectors are the same. For example, if k = 4 one would say a⊗x⊗b⊗x and x⊗x⊗b⊗x were in the
subset S. Adding elements of this subset produces another element of the subset, so this subset is itself a
module. Thus we are talking about elements of a submodule S of the module Vk. Notice that 0 is an
element of S, which can be represented by any element of Vk having one or more vectors being the 0
vector of V, as in (1.1.9).

For k = 4, consider this element of Vk,

 A' = 3 a⊗b⊗c⊗d + 5 a⊗b⊗c⊗a - 2 a⊗a⊗c⊗d + 3 a⊗a⊗c⊗a . (9.1.1)

If we were to throw out elements of the set S, we would get

 A = 3 a⊗b⊗c⊗d . (9.1.2)

The set of elements of Vk that is generated by adding all elements of set S to A is called the coset of A,
usually written [A]. Thus, the coset of A is A + s where s ∈ S. The elements of Vk can be partitioned into
an array in this manner, where each row (coset) involves all the si ∈ S :

Chapter 9: Wedge Product as Quotient Space

 170

 row name coset →
 [0] 0 0 + s1 0 + s2
 [A] A A + s1 A + s2
 [B] B B + s1 B + s2 (9.1.3)
 ...

For example our Vk element A' lies somewhere in the row of this chart labeled on the left by [A].

It turns out that the rows themselves (the cosets) form a module called Vk/S . The elements of this module
can be regarded as being those in the first column of the cosets. So A is an element of Vk/S , but A' is not.
Strictly speaking, there is an isomorphism between A and [A], but we ignore such details.

Fact: To enumerate the elements of the module Vk/S we write down all the elements of Vk and just set to
0 all terms in which a vector is repeated, such as the last three terms of A' in (9.1.1). We thus filter out
such terms, they are "modded out", which is why Vk/S is sometimes called Vk mod S. (9.1.4)

Define Lk to be

 Lk ≡ Vk/S . (9.1.5)

The fact that Vk elements lying in S (those that have repeated vectors) are "thrown out" (modded out, set
equal to 0) is reminiscent of the construction (1.1.4) that F(VxW)/N = V⊗W and certain elements of the
full set F(VxW) were similarly modded out (set to 0, such as (v2, w1+w2) – (v2,w1) – (v2,w2)).

Elements of Vk are written v1⊗v2⊗v3.... ⊗vk. This product is "associative" in that parentheses can be
placed any way one wants, such as v1⊗(v2⊗v3).... ⊗vk, with no change in value. (9.1.6)

Elements of Lk ≡ Vk/S are written v1^v2^v3.... ^vk . This product is declared to be "associative" in that
parentheses can be placed any way one wants, such as v1^(v2^v3).... ^vk, with no change in value. (9.1.7)

Using this definition of the wedge product of k vectors, we can derive some of its properties.

Fact 1: v1^v2^v3.... ^vk = 0 if two (or more) vectors are the same. (9.1.8)

Proof: This follows from the definition of Lk ≡ Vk/S and the Fact (9.1.4) stated above.

Fact 2: v1^v2 = - v2^v1 (9.1.9)

Proof: We know that (v1+v2) ^ (v1+v2) = 0 since this has the form v3 ^ v3 which is 0 by Fact 1.
Expanding,

 0 = (v1+v2) ^ (v1+v2) = v1^v1 + v1^v2 + v2^v1 + v2^v2 = v1^v2 + v2^v1
so
 0 = v1^v2 + v2^v1 and v1^v2 = - v2^v1 QED

Chapter 9: Wedge Product as Quotient Space

 171

Fact 3: Swapping any pair of vectors in v1^v2^v3.... ^vk creates a minus sign. (9.1.10)

Proof by example: (swap v1 and v3 by making use of associativity and Fact 2 three times) :

 v3^v2^v1.... ^vk = + v3^(v2^v1).... ^vk = - v3^(v1^v2).... ^vk = - (v3^v1)^v2.... ^vk

 = + (v1^v3)^v2.... ^vk = + v1^(v3^v2).... ^vk = - v1^(v2^v3).... ^vk

 = - v1^v2^v3.... ^vk QED

Fact 4: vj1 ^ vj2 ^ ^ vjk = εj1j2....jk (v1^ v2^ ^ vk) (9.1.11)

Proof: Fact 4 is the combination of Fact 3 and Fact 1.

Fact 5: vj1 ^ vj2 ^ ^ vjk = 0 if the vectors are linearly dependent. (9.1.12)

Proof: See (7.2.6).

In this manner, we can derive all the properties of the wedge product stated in Section 7.2 without having
to lean on the construction of the wedge product as a linear combination of tensor products.

However, we know that the elements of Lk are linear combinations of the elements of Vk. We have
written in (7.1.3) that

 v1^ v2^ ^ vk = (1/k!) Σi1i2....ik εi1i2....ik (vi1 ⊗ vi2 ⊗ ⊗ vik)

 = (1/k!) ΣP (-1)S(P) (vP(1)⊗ vP(2)⊗ ⊗ vP(k)) . (4.6.2)

Since in Section 7.2 this linear combination generates all the Facts listed above, and does not contradict
any of them, we conclude that this must be the linear combination of Vk elements that equals
 v1^ v2^ ^ vk (apart from a possible normalization factor).

Alternate Language. Looking at A and A' above, we could say that A and A' are in the same equivalence
class so that A ~ A'. Two elements of Vk are in the same equivalence class if they differ by an element of
S, so we have A' - A = s ∈ S. The elements of the equivalence class of A are then just the coset [A]. The
submodule of Vk called Vk/S is called a quotient module. Using category diagrams, one can consolidate
this notion with that of quotient rings and quotient groups.

Chapter 9: Wedge Product as Quotient Space

 172

9.2. Development of L as T/I

Start with the tensor algebra (vector space) shown in (5.4.1),

 T(V) = V0 ⊕ V ⊕ V2 ⊕ V3 ⊕ (9.2.1)

The elements of the vector space T(V) form a ring with operations ⊕ and ⊗. It is easy to show that T(V)
is closed under addition ⊕ and multiplication ⊗ and has the other required ring properties.

Ideal Example 1: Consider the set S of elements of T(V) which are linear combinations of elements of the
form A⊗B⊗C (with coefficients in field K) where B is some fixed element of T(V) and A,C ∈ T(V) are
allowed to vary. This set is closed under addition. For example, A⊗B⊗C + A'⊗B⊗C' ∈ S. Since
coefficients in K can be absorbed into A, one could just say that the elements of S are sums of elements of
the form A⊗B⊗C. One could take any 0⊗B⊗C as the "0" element, and -A⊗B⊗C is the additive inverse.
The set S is commutative and associative under addition. Therefore S forms an additive subgroup of the
ring T(V). Moreover if we left or right multiply (using ⊗) any element of this set by any element of T(V),
the result clearly lies in T(V).

 Q⊗(A⊗B⊗C) ∈ T(V) (A⊗B⊗C)⊗Q ∈ T(V) . (9.2.2)

 Therefore this set S is a two-sided ideal of the ring T(V).

Ideal Example 2: S = sums of elements of the form A⊗B⊗C⊗D⊗E where elements B and D are fixed
and A,C are E varied, all letters being ∈ T(V) .

Ideal Example 3: S = sums of elements of the form A⊗x⊗C⊗x⊗E where vector x is fixed and A,C,E ∈
T(V) are varied. This set is the set of all sums of elements of T(V) in which the vector x appears at least
twice. Let's call this particular ideal by the name S = I, because this is our ideal of interest.

Now suppose we declare the following equivalence relation

 A⊗x⊗C⊗x⊗E ~ 0 x,A,C,E ∈ T(V) . (9.2.3)

Sums of such elements form the ideal I discussed above, and we are in effect setting all elements of this
ideal equal to 0.

There then exists a subset of T(V) which we shall call T(V)/I, or T(V) "mod" I. This is a standard
algebraic structure where one takes the quotient of a ring R divided by a two-sided ideal I of that ring.
The upshot is that the elements of the new quotient set T(V)/I consist of all sums of T(V) elements except
that any term which matches the form (9.2.3) is filtered out ("modded out") by setting it equal to 0.

Example: t' = k1 a⊗b⊗c⊗d + k2 a⊗b + k3 b⊗c⊗c + k4 a⊗b⊗c⊗a = element of T(V)

 t = k1 a⊗b⊗c⊗d + k2 a⊗b = element of T(V)/I (9.2.4)

Chapter 9: Wedge Product as Quotient Space

 173

In algebra terminology, adding all elements of the form A⊗x⊗C⊗x⊗E to t generates a coset associated
with t called [t], and T(V)/I is in effect the set of all such cosets. Element t' is one element of the t coset.
The elements of T(V)/I themselves form a new ring called the quotient ring or factor ring. The
ring/ideal situation is quite similar to that discussed above for the module/submodule situation Vk/S.

Recall from (7.8.1) that the full wedge (exterior) tensor algebra is given by the direct sum space

 L(V) = L0 ⊕ L1 ⊕ L2 ⊕ L3 + (9.2.5)

The claim then is that

 L(V) = T(V)/I where I = the ideal of Example 3 above. (9.2.6)

This is then the space of all T(V) elements where all terms in which a vector is repeated are set to 0 and
thus are not part of L(V).
 Notice that the quotient of Section 9.1 has a finer granularity. It deals with individual Lk ⊂ Vk

spaces, whereas Section 5.2 deals with the entire L(V) ⊂ T(V).
 Many texts refer to Lk as Λk(V) and L(V) as Λ(V). We have reserved the Λ names for the dual
spaces.

The category theory approaches to Lk and L(V) are similar to the discussion of Section 1.2 with the main
point being that Lk and L(V) are "universal" and therefore uniquely defined up to isomorphism. The role
played by k-multilinear functions is played by antisymmetric k-multilinear functions.

Chapter 10: Differential Forms

 174

10. Differential Forms

In this chapter we consider aspects of the topic of differential forms from the viewpoint of Chapter 2 on
the tensor algebra of transformations, and Chapter 8 on the dual exterior algebra of wedge products.

10.1. Differential Forms Defined

A differential form is in fact just an element of the wedge space Λk(V) described in Chapter 8. Recall that
the most general element of Λk(V) was written in symmetric sum notation as (sums run 1 to n = dimV) ,

 T^ = Σi1i2....ik Ti1i2....ik (λi1 ^ λi2^ λik) ir = 1 to n n = dim(V) (8.4.4)

 T^ = ΣITIλ^I . // the above in multiindex notation (10.1.1)

This sum is redundant since each basis vector appears k! times. In an ordered sum form, each independent
basis vector of Λk appears only once,

 T^ = Σ1≤i1<i2<....<ik≤n Ai1i2...ik (λi1 ^ λi2^ λik) (8.4.7)

 T^ = Σ'IAIλ^I (10.1.2)

where Σ'I indicates the ordered summation.

If one is given Ti1i2....ik in the first expansion, a viable expression for Ai1i2...ik which makes the
second expansion valid is this

 A = k!Alt(T) (8.4.16) (10.1.3)

which is a shorthand notation for

 AI = k! Alt(TI) (10.1.4)

which in turn means

 Ai1i2...ik = k! Alt(Ti1i2...ik)

 = Ti1i2....ik - Ti2i1....ik + all other signed permutations . (10.1.5)

Whereas T is an arbitrary rank-k tensor, A obtained from T in (10.1.4) is a totally antisymmetric rank-k
tensor if one allows all values of the ir.

On the other hand, if one is given Ai1i2....ik in (10.1.2), it is likely that Ai1i2....ik is not a totally
antisymmetric tensor. One might have, for example, Ai1i2....ik = ∂i1Bi2....ik. The sum in (10.1.2)

Chapter 10: Differential Forms

 175

only "senses" the values of Ai1i2....ik = AI for values of I which are ordered, and AI for non-ordered I
play no role. Given some Ai1i2....ik in (10.1.2) a viable expression for Ti1i2....ik in (10.1.1) is this,

 Ti1i2...ik =
⎩⎪
⎨
⎪⎧ Ai1i2...ik for i1 < i2 < ...< ik
 0 for all other values of i1,i2...ik

or (10.1.6)
 TI = AI θ(I=ordered) // θ(bool) = 1 if bool true else 0

since then

 ΣITIλ^I = ΣI[AI θ(I=ordered)] λ^I = Σ'I AIλ^I . (10.1.7)

We shall take the vector space V in Λk(V) to be V = Rn.

Below we shall treat the objects TI and AI as rank-k tensor fields with an argument in Rn, so we will
then have for example,

 Ai1i2...ik(x) x ∈ Rn ("x-space") . (10.1.8)

In the usual presentation of the theory of differential forms, the dual-space basis vector λi is given the
purely cosmetic name dxi,

 dxi ≡ λi = <ui| = (ui)T , ui = axis-aligned basis vectors of Rn (10.1.9)

where λi was a notation introduced in (2.11.c.2).

This object dxi is very different from the normal calculus differential dxi, and for that reason we write
dxi in a red italic font. For example, one can then write,

 dxi(v) = λi(v) = <ui| v> = vi . (10.1.10)

In contrast, there is no calculus differential object called dxi(v).

The differential forms (elements of Λk) shown above in (10.1.1) and (10.1.2) are now written in cosmetic
notation as

 T^ = Σi1i2....ik Ti1i2....ik (dxi1 ^ dxi2^ dxik) T^ = ΣITI dx^I (10.1.11)

 T^ = Σ1≤i1<i2<....<ik≤n Ai1i2...ik (dxi1 ^ dxi2^ dxik) T^ = Σ'IAI dx^I . (10.1.12)

We have used the hat subscript notation to distinguish dual tensors in V*k from those in Λk(V) ,

Chapter 10: Differential Forms

 176

 λI = λi1 ⊗ λi2⊗ λik // basis vector in dual space V*k
 λ^I = λi1 ^ λi2^ λik // basis vector in dual space Λk(V) . (10.1.13)

The traditional names for differential forms are α, β, ω and so on, so we take T^ → α and write our
arbitrary differential k-form (10.1.12) now as

 α = Σ'I fI(x) λ^I = Σ'I fI(x) dx^I α ∈ Λk(V) V = x-space = Rn (10.1.14)

where fI is the more traditional name for AI. Once again, V = Rn, Euclidean space, where the basis
vectors ui = |ui> are independent of x, and so the λi = <ui| are also independent of x.

Comment: Since our monograph deals with both tensor products and wedge products, we feel it is useful
to maintain the distinction between λ^I and λI, or between dx^I and dxI . Most discussions of differential
forms involve only wedge products and the corresponding wedge spaces, so they write dx^I as dxI. And
of course they don't use our red italic notation, so the final result is just dxI. Furthermore, many
presentations don't show the wedge product ^ symbols, so one sees dxI = dx1dx2 which we would write
as dx^I = dx1 ^ dx2 . (Our use of italics is only to maintain the form/calculus distinction for black and
white printed copies of this document.)

10.2. Differential Forms on Manifolds

Chapter 2 was concerned with the general transformation x' = F(x) where x-space and x'-space both had
the same dimension N. Here we shall be considering x-space = Rn and x'-space = Rm with n ≤ m. If we
allow x to exhaust some dimension-n region U in x-space, the image x' = F(x) will exhaust some region V
in x'-space of dimension n ≤ m. If Fi and its derivatives are "smooth" and 1-to-1, the region V in x'-space
will lie on a "manifold" M which is embedded in x'-space. Here is a crude graphical representation,

 (10.2.1)
Here we have in effect reflected Picture A (2.1.1) left to right to get

 (10.2.2)

Chapter 10: Differential Forms

 177

One can define a differential form αx' at a point x' on manifold M in this way,

 αx' = Σ'I fI(x') λ'^I = Σ'I fI(x') dx'^I = Σ'I fI(x') <e'^I| ∈ Λ'k ≡ Λk(Rm) (10.2.3)

where λ'^I = <e'^I| is based on (2.11.c.11). Recall that the e'i are axis-aligned basis vectors in x'-space.
We think of this differential form αx' as "being in dual x'-space" to which we give the name Λ'k .

The manifold M is a "surface" of dimension n within Rm with n ≤ m. The manifold M could be some full
chunk of Rm (or all of Rm), in which case it has dimension n = m. If the manifold is a "hypersurface" in Rm
it then has dimension n = m-1. In general M is some n-dimensional "surface" embedded within Rm where
1 ≤ n ≤ m.

Recall from (2.5.1) and Fig (2.5.4) (left-right flipped) that the x'-space basis vectors u'i = R ui are the
tangent base vectors for the inverse transformation x = F-1(x'). For m > n this inverse transformation only
exists for points x' on manifold M, and, for u'i with i = 1 to n, the u'i continue to be tangent base vectors.
The remaining u'i for i = n+1 to m can be defined "as needed" to provide a full basis in x'-space Rm .

By the definition of M as the mapping image, we know that the first n u'i are "tangent to" the surface M,
meaning that tiny arrows ε u'i(x') for ε << 1 lie on M at point x'. Since the full basis is by definition
complete in Rm (elements are linearly independent), the remaining u'i(x') for i = n+1 to m are all "normal
to" the surface M. This is all specific to some point x' on M.

For example, for a manifold that is a smooth non-self-intersecting 3D curve embedded in R3, one would
have u'1 being tangent to the curve at x', and then u'2 and u'3 are both normal to the curve at x'.

On the other hand, if M is a 2D surface in R3, u'1 and u'2 will be tangent to the surface M and u'3 will be
normal to that surface, all at point x' on M.

The set of n linearly independent basis vectors {u'1...u'n} which are tangent to M at x' are first thought of
as having their tails right at the point x' on M. When these vectors are translated so their tails are all at the
origin, the {u'1...u'n} then span an n-dimensional vector space. This vector space is usually written Tx'M
and is called the tangent space to M at point x' on M, dimension n. As with any vector space, there is a
corresponding dual space. The dual space to the tangent space is called the cotangent space T*x'M and it
is the set of all rank-n linear functionals of vectors in Tx'M. The name cotangent is like the name
covector mentioned below (2.11.a.3) and has nothing to do with the cotangent of any angle.

The conglomeration of all the tangent spaces Tx'M on M has the structure of a fiber bundle and is often
called the tangent bundle. There is a corresponding dual cotangent bundle. See Spivak [1999] Chapter
3, Lang [1999] Chapter III, or wiki on tangent bundles.

As one moves from x' to a nearby point x' + dx' on M, the basis vectors in general will move slightly (M
is "smooth"). The dual basis vectors u'i of course also move to maintain u'i • u'j = δij. Thus we have

Chapter 10: Differential Forms

 178

λ'i = <u'i| also depending on x'. We don't want to write this λ'i as λ'(x') because then we have to write
<u'i|v> = (λ'i(x'))(v) which is rather messy (although Spivak uses this kind of notation with x' = p in
various places). We hesitate to write the left side αx' in (10.2.3) as α(x') because this makes α look like a
function, but it is in fact a differential form.

Notice one benefit of the cosmetic notation λ'^I = dx'^I. The dependence on x' can be regarded as being
implied by writing dx' instead of say dy.

It is customary to abbreviate αx' as just α with the understanding that it is at some point x' on M. In
proofs below we sometimes call it α' since it is a differential form in dual x'-space.

As already noted, a simple example of a manifold is a non-self-intersecting and "smooth" finite piece of
3D curve hanging in R3 which is defined by some function x' = F(x) where x is a scalar parameter which
marks points on the curve. In this case αx' is a differential 1-form defined at every point x' along that
curve, and the tangent space at any point x' as noted is one dimensional and contains the tangent vector to
the curve at that point on the curve.

Our second example of a manifold is a non-self-intersecting and "smooth" finite piece of 2D surface
hanging in R3 which is defined by some function x' = F(x) with x = (x1,x2) where every point on the
surface is marked by a unique value of x. Perhaps this surface is a piece of a toroidal surface or sphere. In
this case αx' is a differential 2-form defined at every point x' on that surface. The tangent space at any
point x' on M is 2 dimensional.

See Sjamaar Chapter 1.1, 6 and 9, Spivak Chapter 5, or elsewhere for a formal definition of a manifold
and smoothness. A manifold is roughly a smooth "surface" which can be cobbled together from a set of
smooth mappings x' = Fi(x) which are said to cover the manifold, the way an atlas of flat maps can cover
the entire globe of the Earth. A manifold is a "surface" which is locally smooth in the region of any point
x' on the manifold. Since x' = F(x) must be 1-to-1 between the parameter x-space and x'-space, the
manifold cannot be self-intersecting. That is to say, such a point of intersection in x'-space must back-map
into at least two different points in x-space hence the map is not 1-to-1. Each mapping has some open
domain Ui in Rn and one writes Fi: Ui → M and Fi must be 1-to-1 as noted. But (∂Fi/∂xj) : Ui→M
must also be 1-to-1 to provide clean differentiability at all points on M and in all directions from any such
point. This is often stated as (DFi) must be 1-to-1. What this says is that at any local point in the mapping
(on the manifold), there must be differentiable "elbow room" around the point. This is illustrated in
Spivak's nice pictures on page 110, where his mapping h is our F-1,

Chapter 10: Differential Forms

 179

 (10.2.4)

Spivak would like the mappings h and h-1 to both be infinitely differentiable (C∞), in which case he calls
h a diffeomorphism. Notice that his U and V are the reverse of ours in (10.2.1) and have one higher
dimension. For example, Vus = Uspivak ∩ M which is the gray patch on his toroid above.

Here is a simple example of a manifold (a circle in R2) being covered by two charts.

 (10.2.5)

Most of the circle is "covered" by the larger chart whose t-space is the red line segment at the top. But a
small part of the circle shown in blue is covered by a second chart whose x-space is the short lower blue
line segment at the bottom. There is some overlap of the charts. So to integrate a 1-form over this circle =
manifold, we could do two pullbacks of 1-forms. The circle cannot be covered by just the upper chart
extended because then the bottom point on the circle would correspond to both ends of the red segment
and then the mapping is not 1-to-1. This is an example of "the seam problem".

Regarding our "cosmetic notation" dxi ≡ λi of (10.1.9), the reader can take some support from Lang
[1999] page 131,

Chapter 10: Differential Forms

 180

 (10.2.6)

In Lang's second equation, he "incorrectly" writes λi as dxi which is our cosmetic dxi ≡ λi . We would
write his third equation in x-space as ωx = Σ'I fI(x) λ^I .

That is our main point from the snippet above, but Lang's first equation also deserves some comment.
Recall from (2.11.c.5) that λi(x) = <ui|x> = xi where x is a vector in V. If the ui are constant vectors in
x-space (as they are for V = Rn) then

 d(λi(x)) = d (<ui | x>) = <dui|x> + <ui| dx> = <ui| dx> = dxi

or
 dλi(x) = dxi (10.2.7)

and this is the gist of Lang's first equation. This equation is a little confusing for the following reason.
Below we show that if we take α = Σifi(x)λi then dα = ΣiΣj (∂jf(x))λi ^ λj, which is a 2-form. If fi(x) =
δi,n then (∂jf(x)) = 0. In that case we have α = λn and dα = dλn = 0 which is then a null 2-form (0 is a
valid element of vector space Λ2). Then we would say

 (dλi)(x) = (0)(x) = 0 (10.2.8)

which is not the same as (10.2.7) that d(λi(x)) = dxi.

10.3. The exterior derivative of a differential form

Motivation

The exterior derivative dα plays a key role in the theory of differential forms, as does the notion of the
boundary ∂M of a manifold M. Although we shall not derive it, Stokes' Theorem for differential forms
says

Chapter 10: Differential Forms

 181

 ∫M dα = ∫∂M α .

Here α is a k-form, and dα is the exterior derivative of α which we shall see below is a (k+1)-form. The
main work involved in proving this theorem involves not so much an understanding of dα as it does
dealing with an explicit definition of the boundary ∂M of a manifold M in an arbitrary number of
dimensions including issues of orientation. See Sjamaar Chapters 5 and 9.

The single statement above encompasses a large set of integral theorems from analysis only one of which
bears the specific Stokes' Theorem moniker. Here we list some of these theorems (red = functionals) ,

 ∫C ∇f • dx = ∫∂M f = f(b) - f(a) "line integral of a gradient theorem" (H.2.3)

 ∫M [f (∇2g) + ∇f • ∇g] dV = ∫∂M f ∇g • dA "Green's first identity" (H.3.6)

 ∫M (div F) dV = ∫∂M F • dA "the divergence theorem" (H.4.6)

 ∫M (∂1F2 - ∂2F1) dx1 ^ dx2 = ∫∂M [F1dx1 + F2 dx2] "Green's theorem in the plane" (H.5.6)

 ∫M (curl F) • dA = ∫∂M F • dx "traditional Stokes' Theorem" (H.5.10)

The sudden appearance of familiar objects like the grad, curl and divergence is part of the Hodge * dual
operator "correspondence" we mentioned below (4.3.18). In that correspondence one has

 α = f 0-form in Rn α ↔ f
 dα = ∇f • dx 1-form in Rn dα ↔ ∇f . (H.2.2)

 α = f 0-form in Rn α ↔ f
 *(d(*dα)) = ∇2f 0-form on Rn *(d(*dα)) ↔ ∇2f . (H.3.3)

 α = F • dx 1-form on Rn

 α ↔ F
 *(d(*α)) = div F 0-form on Rn *(d(*α)) ↔ div F (H.4.5)

 α = F • dx 1-form in R3 α ↔ F
 *(dα) = [curl F] • dx 1-form in R3 *(dα) ↔ curl F (H.5.4)

where one sees various appearances of the exterior differential operator d on the left side. The action of
the Hodge * operator is a follows (see Section H.1),

Chapter 10: Differential Forms

 182

 dx^I = some ordered multi-index wedge product of k dxi in Rn (a basis vector k-form)

 (*dx^I) ≡ (sign)I,k dx^Ic = ordered wedge product of the missing dxi within Rn (c = complement)

 Requirement: dx^I ^ (*dx^I) = dx1 ^ dx2 ... dxn which is satisfied by the following sign,

 (sign)I,k = (-1)a+b+..+q (-1)k(k+1)/2 where dx^I = dxa ^ dxb ^^ dxq a < b < ... < q (H.1.7)

 Fact: *(*dx^I) = (-1)kn+k dx^I (H.1.20)

 Example: (k=2, n=6) dxI = dx2 ^ dx4 ⇒ *dxI = - dx1 ^ dx3 ^ dx5 ^ dx6

 since (sign)I,k = (-1)2+4 (-1)2(3)/2 = (-1)6 (-1)3 = -1.

Our intention here is to provide the reader with some motivation for slogging through the rest of this
section on "d". The above material is treated in Appendix H based on results below.

Definition of the Exterior Derivative

In Section 10.1 we noted that TI(x) = Ti1i2....ik(x) and AI(x) = Ai1i2...ik(x) were rank-k tensor
fields with respect to some unspecified Chapter 2 transformation x' = F(x) and dx' = Rdx. We now regard
these objects as being just scalar-valued functions which happen to have label I. We refer to either of
these functions for the moment as f(x). Such a function by itself is a 0-form because it has no λi factors.
That is, the object f ,

 f = f ∈ Λ0, (10.3.1)

is a differential 0-form (abbreviated 0-form).

The exterior derivative of such a 0-form is written df and is defined as

 df ≡ Σj=1n [∂f(x)/∂xj] λj = Σj=1n [∂jf(x)] λj . (10.3.2)

Here we put df in red italic so it won't be confused with a calculus differential df of a function f(x). We
could have written the 0-form f as f , but since then f = f there is no reason to do so.

The first thing we notice is that, since f is a 0-form, df is a 1-form because the sum is a linear combination
of single λj dual basis vectors Using the cosmetic notation defined above, we then write (10.3.2) as,

Chapter 10: Differential Forms

 183

 df = Σj=1n [∂jf(x)] dxj . (10.3.3)

Now we begin to see the motivation for the cosmetic notation dxj. The above equation looks just like the
corresponding calculus equation

 df = Σj=1n [∂jf(x)] dxj . (10.3.4)

In this last equation df(v) would make no sense, but in (10.3.3) one can write

 df (v) = Σj=1n [∂jf(x)] λj(v) = Σj=1n [∂jf(x)] vj . // (2.11.c.5) (10.3.5)

The exterior derivative of a general differential form α has an extremely simple definition. Renaming AI
in (10.1.2) to be the more traditional fI, we write

 α = Σ'I fI(x) λ^I general k-form α ∈ Λk

 dα ≡ Σ'I (dfI(x)) ^ λ^I

 = Σ'I (Σj=1n [∂jfI(x)] λj) ^ λ^I // from (10.3.2)

 = Σ1≤i1<i2<...<ik≤n Σj=1n [∂jfi1i2...ik(x)] λj ^ λi1 ^ λi2 ...^ λik . (10.3.6)

Since there are now k+1 wedged dual basis vectors λr, this dα must be a (k+1)-form. So,

Fact: If α is a k-form, then dα is a (k+1)-form. (10.3.7)

We pause to take note of a fact that perhaps seems obvious:

Fact: One can compute dα in the same manner for the ordered or the symmetric sum form of α,

 α = Σ'I AI(x) λ^I ⇒ dα = Σ'I (Σj=1n [∂jAI(x)] λj) ^ λ^I // ordered sum
 (10.3.8)
 α = ΣI TI(x) λ^I ⇒ dα = ΣI (Σj=1n [∂jTI(x)] λj) ^ λ^I // symmetric sum

where we assume that the λ^I are constants in x.

Proof: The only question here is whether the dα computed on the second line above is the same as the dα
computed on the first line. Assume they are different and call the second line dα". Reorder to get,

 dα = Σj=1n λj ^ (Σ'I [∂jAI(x)] λ^I)

 dα" = Σj=1n λj ^ (ΣI [∂jTI(x)] λ^I) . (10.3.9)

But write (10.1.1) = (10.1.2) and then apply ∂j to both sides,

Chapter 10: Differential Forms

 184

 ΣI TI(x) λ^I = Σ'I AIλ^I ⇒ ΣI ∂jTI(x) λ^I = Σ'I ∂jAI(x) λ^I

and thus the two right-side expressions in (10.3.9) are the same and so α" = α. QED

So far we have shown that if α is a k-form, then dα is a (k+1)-form.

What can be said about d2α ≡ d(dα) ? One might reasonably think this would be a (k+2)-form, but that is
not correct. In fact:

Fact: d2α = 0 for any k-form α (differential forms have zero "curvature") . (10.3.10)

Since a differential form involves linear functionals, the above Fact seems intuitively reasonable.

Proof: The proof is quite simple if we use the redundant symmetric sum (10.1.1) to express α. Then

 α = ΣITI(x) λ^I

 dα = ΣI(dTI(x)) ^ λ^I = ΣI (Σr=1n [∂rTI(x)] λr) ^ λ^I = ΣIΣr=1n [∂rTI(x)] (λr ^ λ^I)

 d(dα) = ΣI Σr=1n d[∂rTI(x)] (λr ^ λ^I)

 = ΣI Σr=1n (Σs=1n∂s[∂rTI(x)] λs) ^ (λr ^ λ^I)

 = ΣI Σr=1n Σs=1n[∂s∂rTI(x)] (λs ^ λr ^ λ^I)

 = 0 . QED

The result is 0 because in the symmetric sum Σrs the object ∂s∂rFI(x) is symmetric under r↔ s while the
object (λs ^ λr ^ λ^I) is antisymmetric under r↔s. That is to say, if S is symmetric and A antisymmetric,

 swap names r↔s use symmetries
 sum = Σrs SrsArs = Σsr SsrAsr = Σrs (+Srs)(-Ars) = - Σrs SrsArs = - sum = 0 (10.3.11)

Expressing dα in standard form

Recall from above that

 α = Σ'I fI(x) λ^I k-form

 dα = Σ'I (Σj=1n [∂jfI(x)] λj) ^ λ^I . (k+1)-form (10.3.6)

We wish to rewrite dα in a more standardized form. To this end, starting with the k-multiindex I we create
a (k+1)-multiindex J as follows

Chapter 10: Differential Forms

 185

 I = i1,i2.....ik

 J = j1,j2.....jk,jk+1 ≡ i1,i2.....ik, j // j = jk+1

 J' = j1,j2.....jk = I = i1,i2.....ik . (10.3.12)

Then one can rewrite the summation appearing in dα above as

 Σ'I Σj = Σ'J' Σjk+1 = Σj1<j2<...<jk Σjk+1 . (10.3.13)

Then

 dα = Σj1<j2<...<jk Σjk+1 [∂jk+1fj1j2...jk(x)] λjk+1 ^ λj1 ^ λj2 ^ λjk . (10.3.14)

Because each swap of vectors in a wedge product of same creates a minus sign,

 λjk+1 ^ λj1 ^ λj2 ^ λjk = (-1)k λj1 ^ λj2 ^ λjk ^ λjk+1

 = (-1)k λ^J (10.3.15)
and then

 dα = (-1)k Σj1<j2<...<jk Σjk+1 [∂jk+1fj1j2...jk(x)] λ^J . (10.3.16)

The summations appearing above can be written as

 Σj1<j2<...<jk Σjk+1
 = Σj1<j2...<jk<jk+1 + Σj1<j2...<jk+1<jk + ... + Σjk+1<j1<j2...<jk . (10.3.17)

Here we are just exhausting all possible locations that jk+1 can take relative to the other indices. We don't
have to worry about cases like jk+1 = j2 because in that case λ^J = 0 and there is no contribution to the
sum (10.3.16). One can then write,

 (-1)kdα = Σj1<j2...<jk-1<jk<jk+1 [∂jk+1fj1j2...jk] λj1 ^ λj2 ^ λjk+1

 + Σj1<j2...<jk-1<jk+1<jk [∂jk+1fj1j2...jk] λj1 ^ λj2 ^ λjk+1

 + Σj1<j2...<jk+1<jk-1<jk [∂jk+1fj1j2...jk] λj1 ^ λj2 ^ λjk+1

 + Σjk+1j1<j2...<jk-1<jk [∂jk+1fj1j2...jk] λj1 ^ λj2 ^ λjk+1 . (10.3.18)

Next, define the following index subscript swap operator S(r,s),

 S(r,s) Fj1j2. jr...js...jk = Fj1j2. js...jr...jk . (10.3.19)

Chapter 10: Differential Forms

 186

In each term in (10.3.18) all the summation indices are of course dummy indices and their names can be
swapped around at will. Notice that :

 S(k,k+1)[Σj1<j2...<jk-1<jk+1<jk] = Σj1<j2...<jk-1<jk<jk+1

 S(k,k+1)S(k-1,k+1)[Σj1<j2...<jk+1<jk-1<jk] = S(k,k+1)[Σj1<j2...<jk-1<jk+1<jk]

 = Σj1<j2...<jk-1<jk<jk+1

 S(k,k+1)S(k-1,k+1)S(k-2,k+1) [Σj1<j2...<jk+1<jk-2<jk-1<jk]

 = S(k,k+1)S(k-1,k+1) [Σj1<j2...<jk-2<jk+1<jk-1<jk]

 = S(k,k+1) [Σj1<j2...<jk-2<jk-1<jk+1<jk] = Σj1<j2...<jk-1<jk<jk+1

 S(k,k+1)S(k-1,k+1)....S(1,k+1)[Σjk+1j1<j2...<jk-1<jk] = Σj1<j2...<jk-1<jk<jk+1 (10.3.20)

Thus these swap combinations convert each summation to the standard form shown in the first line of
(10.3.18).

So the next step is to apply the swap combinations not just to the summations, but to the entire lines
shown in (10.3.18), since one is allowed to do this without changing each line's value since these are just
dummy index swaps. The first effect of doing this is that all the summations become that shown on the
first line which is just Σ'J. The second effect is that the λ wedge products can be restored to their first-line
ordering by adding a minus sign for each swap. For example,

 S(k,k+1)S(k-1,k+1) λj1 ^ λj2 ^ λjk+1 = (-1)2 λj1 ^ λj2 ^ λjk+1
or
 S(k,k+1)S(k-1,k+1) λ^J = (-1)2 λ^J . (10.3.21)

Since on each line going down the number of swaps increases by 1, we pick up alternating signs.

Doing this, one can rewrite (10.3.18) as

 (-1)kdα = Σ'J [∂jk+1fj1j2...jk] λ^J

 - Σ'J [S(k,k+1){∂jk+1fj1j2...jk}] λ^J

 + Σ'J [S(k,k+1)S(k-1,k+1){∂jk+1fj1j2...jk}] λ^J

 + (-1)k Σ'J [S(k,k+1)S(k-1,k+1)....S(1,k+1){∂jk+1fj1j2...jk}] λ^J . (10.3.22)

Chapter 10: Differential Forms

 187

Here then is the way to write the derivative of a k-form in standard form:

 α = Σ'I fI(x) λ^I k-form

 dα = (-1)k Σ'J QJ(x) λ^J (k+1)-form (10.3.23)

 QJ = [1 - S(k,k+1) + S(k,k+1)S(k-1,k+1) - ... +(-1)kS(k,k+1)S(k-1,k+1)...S(1,k+1)] ∂jk+1fj1j2...jk .

The general result is admittedly unwieldy and perhaps has some more pleasant form, but we take it as is
and consider some simple examples.

Example 1: Exterior derivative of a 1-form:

 α = Σ'I fI(x) λ^I = Σi1 fi1(x) λi1

 QJ = [1 - S(1,2)] ∂j2fj1 = (∂j2fj1- ∂j1fj2)

 dα = (-1)k Σ'J QJλ^J = - Σj1<j2 (∂j2fj1- ∂j1fj2) λj1 ^ λj2

 = Σj1<j2 (∂j1fj2 - ∂j2fj1) λj1 ^ λj2 . (10.3.24a)

In cosmetic notation,

 α = Σi1 fi1(x) dxi1

 dα = Σj1<j2 (∂j1fj2 - ∂j2fj1) dxj1 ^ dxj2 (10.3.24b)

 dα = Σi<j (∂ifj - ∂jfi) dxi ^ dxj

which agrees with Sjamaar p 21 (2-2).

Example 2: Exterior derivative of a 2-form:

 α = Σ'I fI(x) λ^I = Σi1<i2 fi1i2(x) λi1 ^ λi2

 QJ = [1 - S(2,3) + S(2,3)S(1,3)] ∂j3fj1j2

 S(2,3)∂j3fj1j2 = ∂j2fj1j3

 S(2,3)S(1,3) ∂j3fj1j2 = S(2,3)∂j1fj3j2 = ∂j1fj2j3

 QJ = ∂j3fj1j2 - ∂j2fj1j3+ ∂j1fj2j3

Chapter 10: Differential Forms

 188

 dα = (-1)k Σ'J QJλ^J

 = + Σj1<j2<j3 (∂j1fj2j3 - ∂j2fj1j3+ ∂j3fj1j2) λi1 ^ λi2 ^ λi3 . (10.3.25a)

In cosmetic notation,

 α = Σi1<i2 fi1i2(x) dxi1 ^ dxi2

 dα = Σj1<j2<j3 (∂j1fj2j3 - ∂j2fj1j3+ ∂j3fj1j2) dxj1 ^ dxj2 ^ dxj3 (10.3.25b)

 dα = Σi<j<k (∂ifjk - ∂jfik + ∂kfij) dxi ^ dxj ^ dxk

which agrees with Sjamaar p 21 (2-4).

Example 3: (last one!) Exterior derivative of a 3-form:

 α = Σ'I fI(x) λ^I = Σi1<i2<i3 fi1i2i3(x) λi1 ^ λi2^ λi3

 QJ = [1 - S(3,4) + S(3,4)S(2,4) - S(3,4)S(2,4)S(1,4)] ∂j4fj1j2j3

 S(3,4)∂j4fj1j2j3 = ∂j3fj1j2j4

 S(3,4)S(2,4)∂j4fj1j2j3 = S(3,4)∂j2fj1j4j3 = ∂j2fj1j3j4

 S(3,4)S(2,4)S(1,4)∂j4fj1j2j3 = S(3,4)S(2,4)∂j1fj4j2j3 = S(3,4)∂j1fj2j4j3 = ∂j1fj2j3j4

 QJ = ∂j4fj1j2j3 - ∂j3fj1j2j4 + ∂j2fj1j3j4 - ∂j1fj2j3j4

 dα = (-1)k Σ'J QJλ^J (10.3.26a)

 = Σj1<j2<j3<j4 (∂j1fj2j3j4 - ∂j2fj1j3j4+ ∂j3fj1j2j4 - ∂j4fj1j2j3) λi1 ^ λi2 ^ λi3 ^ λi4 .

In cosmetic notation,

 α = Σi1<i2<i3 fi1i2i3(x) dxi1 ^ dxi2 ^ dxi3 (10.3.26b)

 dα = Σj1<j2<j3<j4 (∂j1fj2j3j4 - ∂j2fj1j3j4+ ∂j3fj1j2j4 - ∂j4fj1j2j3) dxj1 ^ dxj2 ^ dxj3 ^ dxj4

 dα = Σi<j<k<l (∂ifjkl - ∂jfikl + ∂kfijl - ∂lfijk) dxi ^ dxj ^ dxk ^ dxl .

We leave it to the reader to deduce a "general rule by inspection" for the series of terms for any k. This
might involve rotations of certain subsets of the subscripts.

Chapter 10: Differential Forms

 189

Exterior Derivative of products of differential forms

Whereas d(fg) = (df)g+f(dg) in calculus, the result is slightly different if f and g are differential forms :

Fact: If α is a k-form and β is a k'-form, then d(α ^ β) = (dα) ^ β + (-1)k α ^ (dβ) . (10.3.27)

Proof: This is a "brute force proof". See Sjamaar p 22 for a denser proof which uses (10.4.1) below. The
forms are assumed to exist in Rn so x has n coordinates (n > k+k') and Σs = Σs=1n .

Consider, using (10.3.6),

 α = Σ'I fI(x) λ^I // a k-form ⇒ dα = Σ'I Σs [∂sfI(x)] λs ^ λ^I
 β = Σ'J gJ(x) λ^J // a k'-form ⇒ dβ = Σ'J Σs [∂sgJ(x)] λs ^ λ^J

 α ^ β = (Σ'I fI(x) λ^I) ^ (Σ'J gJ(x) λ^J) = Σ'I Σ'J fI(x)gJ(x) λ^I ^ λ^J

⇒ d(α ^ β) = Σ'I Σ'J Σs ∂s[fI(x)gJ(x)] λs ^ λ^I ^ λ^J .

Then just evaluate the right side of (10.3.27) :

 (dα) ^ β = (Σ'I Σs [∂sfI(x)] λs ^ λ^I) ^ (Σ'J gJ(x) λ^J)

 = Σ'I Σ'J Σs [∂sfI(x)] gJ(x) λs ^ λ^I ^ λ^J

 α ^ (dβ) = (Σ'I fI(x) λ^I) ^ (Σ'J Σs=1n [∂sgJ(x)] λs ^ λ^J)

 = Σ'I Σ'J Σs fI(x)[∂sgI(x)] λI ^ λ^s ^ λ^J

 = Σ'I Σ'J Σs fI(x)[∂sgI(x)] (-1)k λs ^ λ^I ^ λ^J .

Here λI ^ λ^s = (-1)k λs ^ λ^I because λs has to slide left through k vector wedge products. Then

 (dα) ^ β + (-1)k α ^ (dβ) = Σ'I Σ'J Σs=1n [∂sfI(x)] gJ(x) λs ^ λ^I ^ λ^J
 + Σ'I Σ'J Σs=1n fI(x)[∂sgI(x)] λs ^ λ^I ^ λ^J

 = Σ'I Σ'J Σs=1n { [∂sfI(x)] gJ(x) + fI(x) [∂sgI(x)] } λs ^ λ^I ^ λ^J

 = Σ'I Σ'J Σs=1n ∂s[fI(x)gJ(x)] λs ^ λ^I ^ λ^J

 = d(α ^ β) . QED

Reader Exercises: (10.3.28)
(a) Show that d is a linear operator so d(s1α + s2β) = s1dα + s2dβ for any forms α and β .
(b) Use (10.4.1) below three times in (10.3.27) and show result is consistent with (10.3.27) for d(β ^ α).
(c) Write an expression for d(α^β^γ) where α,β,γ are forms of rank k, k' and k".
(d) Write an expression for d(α1^ α2^ ...αM) where αi are ki-forms.

Chapter 10: Differential Forms

 190

10.4. Commutation properties of differential forms

Recall these three results from Chapter 8 concerning elements of Λ(V),

• S^^ T^ = (-1)kk'T^^ S^ ranks of the two dual tensors are k and k' . (8.9.c.6)

• In a product of tensors (T1)^^(T2)^^(T3)^....of rank k1, k2, k3 ... , if two tensors are swapped
(Tr)^ ↔ (Ts)^ (with r < s), the resulting tensor incurs the following sign relative to the starting tensor,

 sign = (-1)m where m = (kr+1+kr+2 ...+ks-1)(kr+ks) + krks (8.9.e.6)

• T^

N = 0 for any N ≥ n+1 assuming k ≠ 0 . (8.9.d.9)

In the language of differential forms these three results become

• α ^ β = (-1)kk'β ^ α α = k-form, β = k'-form (10.4.1)

• α1 ^ α2 ^ ... αr ... αs ... ^ αk = (-1)m α1 ^ α2 ^ ... αs ... αr ... ^ αk

 where m = (kr+1+kr+2 ...+ks-1)(kr+ks) + krks (10.4.2)

• αN = 0 for N ≥ n+1 dim(V) = n α = any k-form with k ≥ 1

 where αN ≡ α ^ α ... ^ α . (10.4.3)

Equations (10.4.1) and (10.4.3) appear in Sjamaar as "2.1 Proposition" and the preceding equation on
page 19 . In Sjamaar, Buck and many other source all ^ symbols are suppressed so (10.4.1) is written αβ =
(-1)kk'βα and one must understand that these are wedge products in Λ(V).

10.5. Closed and Exact, Poincaré and the Angle Form

Closed: If dα = 0 for a k-form α, α is said to be closed. The analogous fact for a function f(x) with df = 0
would be that f(x) = constant. (10.5.1)

Exact: Sometimes one finds that a form α can be written α = dβ where β is some other form. If α is a k-
form, we know from (10.3.7) that β must be a (k-1)-form. When α = dβ for some form β, α is said to be
exact. We showed in (10.3.10) that d2β = 0 for any form β, so it follows that if α = dβ, then dα = 0 and α
is closed. Thus we have shown that : (10.5.2)

Fact: If α is exact, then α is closed. (10.5.3)

In 1D calculus if f = dh/dx one says that dh = f dx is an "exact (perfect) differential" and one then writes

Chapter 10: Differential Forms

 191

 ∫
a

 b f(x) dx = ∫
a

 b (
dh
dx) dx = ∫

a

 b dh = h(a) - h(b) dh = (
dh
dx) dx . (10.5.4)

In nD calculus if f = ∇h one says that dh = ∇h • dx is an exact (perfect) differential. The above integral
then becomes a line integral over a smooth curve C having endpoints a and b,

 ∫
a

 b f(x) • dx = ∫
a

 b ∇h • dx = ∫C dh = h(b) - h(a)

where
 dh = ∇h • dx = Σi=1n (∂ih(x))dxi = Σi=1n fi(x) dxi = f(x) • dx . (10.5.5)

The line integral depends only on the line endpoints a and b, and not on the particular shape of the curve
C joining a and b. For a closed curve a = b and one finds

 ∫C dh = h(b) - h(a)

 ∫dh = h(a) - h(a) = 0 . (10.5.6)

In physics if f(x) is a "conservative force field" (like gravity) then h(a) - h(a) = 0 is the work done in
moving a particle that senses the field (has mass) around a closed path.

A similar theorem exists for α = dg where g is a 0-form (a function) and α is 1-form. Here we provide a
preview of things to come. C' is a curve in x'-space running from point a' to point b', while C is the
pulled-back curve in x-space running from a to b, where a' = F(a) and b' = F(b) :

 ∫C' αx' = ∫C'dg(x') // αx' = dg so αx' is an exact 1-form (g is a function)

 = ∫C F*(dg) // pullback of a 1-form, (10.11.2) with βx = F*(dg)

 = ∫C d[F*(g(x'))] // fact (10.7.22) that d commutes with F*

 =∫C d[g(F(x)] // fact (10.7.19) item 1 (pullback of a function) that F*(f(x')) = f(F(x))

 = g(F(b))-g(F(a)) // think of g(F(x)) as h(x) so d[g(F(x)] = dh

 = g(b')-g(a') . (10.5.7)

Then for a closed curve C' the line integral of an exact 1-form vanishes,

 ∫c' αx' = g(a') - g(a') = 0 (10.5.8)

in analogy with (10.5.6). A 1-form α being exact is like dh being an exact differential.

Chapter 10: Differential Forms

 192

Fact (10.5.3) above says α exact ⇒ α closed. Is it possibly also true that α closed ⇒ α exact and so then
the two descriptions are one in the same? The answer is "not quite" as expressed in this claim:

Poincaré Lemma: If any differential form α on Rn is closed for x in some open star-shaped domain in Rn
which includes the origin, then α is exact. (Poincare for PDF search) (10.5.9)

This Lemma appears on p 94 of Spivak from which we quote,

and Spivak proceeds to give a detailed proof. In topological language, the star-shaped domain is any
domain that is "contractible to a point". Certainly the Lemma is valid for a domain which is an open
"cube" or "sphere" (n dimensions) about the origin. The domain need not be convex (as the star shows).

A classic application of this theorem involves the so-called angle form defined on R2 with coordinates
(x1,x2),

 α = Σi=12 fi(x)λi where f1(x) = - (x2/r2) r2 = x12 + x22 .
 f2(x) = (x1/r2) (10.5.10)
Then

 dα = Σi dfi(x)λi = Σij (∂jfi) λj ^ λi .

Notice that, using the fact that ∂ir = xi/r,

 (∂1f2) = ∂1(x1/r2) = [r2 * 1 - x1 (∂1r2)] / r4 = [r2 - x12r (∂1r)] / r4 = - [r2 - x12r(x1/r)] / r4
 = [r2 - 2x12] / r4 = [x12 + x22 - 2x12] / r4 = (x22 - x12) / r4
and
 (∂2f1) = - ∂2 (x2/r2) = - [r2 * 1 - x2 (∂2r2)] / r4 = - [r2 - x22r (∂2r)] / r4 = - [r2 - x22r(x2/r)] / r4
 = - [r2 - 2x22] / r4 = - [x12 + x22 - 2x22] / r4 = (x22 - x12) / r4 = (∂1f2) .

Thus it turns out that the quantity (∂jfi) is symmetric under i ↔ j. Then by the argument (10.3.11) we get

 dα = Σij (∂jfi) λj ^ λi = Σij (Sij)(Aji) = 0 ⇒ α = closed

so α is a closed 2-form. As we shall show below in (10.12.21), the line integral of α around a circle

centered at the origin gives ∫ α = 2π. Thus the angle form is not exact because if it were one would have

∫ α = 0 as in (10.5.8). So here is a form α which is closed, but which is not exact. The condition of the

Chapter 10: Differential Forms

 193

Poincaré Lemma must therefore be violated, and that is indeed the case since the form α is undefined for r
= 0 where f1 and f2 blow up, so α is then defined only on R2 punctured at the origin, sometimes written
R2/ {0} or R2 - {0}. Thus we can't have any open star-shaped domain including the origin for α, so
Poincaré's Lemma does not apply. Note that R2 - {0} is not "simply connected" due to the puncture hole.
The presence of holes ("multiply connected") means that line integrals are no longer path independent.
Here a line integral around the hole gives 2π, whereas one not looping the hole gives 0.

Our plan now is first to define the "pullback" of a differential form, and then in later sections to use the
pullback to define the meaning of integration of a differential form over a manifold. But we wish to show
how the notion of a pullback fits into the general transformation scenario of Chapter 2, and this requires
several digressions before we get to the pullback discussion in Section 10.7 through 10.9.

10.6 Transformation Kinematics

Much mathematical hardware accompanies a mapping. In mechanics, the selection of an appropriate set
of coordinates and corresponding basis vectors is sometimes referred to as stating the kinematics of a
problem (as opposed to the dynamics which involves equations of motion). Here we apply this term
loosely to the cloud of equations associated with a mapping. Not all these equations will be used in our
analysis, but we like being able to see them all in one place just in case something is needed.

In the following Sections we shall move in and out of the Dirac notation of Section 2.11 in a somewhat
repetitive fashion intended to make the reader more comfortable with that notation.

The notion of a pullback is often presented as "something new", but the main point of the following
sections is to show that the pullback operator is just the R/R matrix/operator of the underlying
transformation.

In Chapter 2 we discussed the transformation x' = F(x) from x-space to x'-space using Picture A (2.1.1).
The vector transformation and "the differential" (the R-matrix) of the transformation were given by

 V'a = Ra

bVb Ra
b ≡ (∂x'a/∂xb) = ∂bx'a ≡ (∇F)ab ≡ (DF)ab ≡ (DF)ab (2.1.2)

 dx'a = Ra

bdxb dx' = Rdx . (2.1.12) (10.6.2)

Here V'a = Ra

bVb shows the transformation of a contravariant vector under x' = F(x). In matrix notation
one would write V' = RV. Repeated indices are always summed unless otherwise stated.

Above we have defined ∇F and DF as alternate names for matrix R because many authors (like Spivak)
use this notation. In Tensor (E.4.4) we show that this is in fact a "reverse dyadic notation". Often (DF)ab
is written unbolded (DF)ab so then R = (DF) with the idea that a matrix like R is normally not bolded.

(a) Axis-Aligned Vectors and Tangent Base Vectors : The Kinematics Package

We gather here various facts derived in Chapter 2 which comprise our "kinematics package" for the
transformation x' = F(x) . We cosmetically flip Picture A of (2.1.1) left to right.

Chapter 10: Differential Forms

 194

 Rn Rm m ≥ n

(a) x' = F(x) transformation Ri

j ≡ (∂x'i/∂xj) = ∂jx'i R = (DF)
 V' = R V vector Sij ≡ (∂xi/∂x'j) = ∂'jxi (2.1.2)

(b) e'i with (e'i)j = δij axis-aligned basis vectors in x'-space (i = 1..m) (2.5.2)
 ei ei= Se'i tangent base vectors in x-space (i = 1..n) (2.5.1)

(c) ui with (ui)j = δij axis-aligned basis vectors in x-space (i = 1..n) (2.4.1)
 u'i u'i= Rui tangent base vectors in x'-space (i = 1..n) (2.5.1)
 (u'i)j = Rj

k (ui)k
 (2.11.h.8)
(d) 1' = | e'i> <e'i| = | e'i> <e'i| = | u'i> <u'i| = | u'i> <u'i| completeness in x'-space
 1 = | ei> <ei| = | ei> <ei| = | ui> <ui| = | ui> <ui| completeness in x-space

(e) (uj)i = ui • uj = <ui | uj > = gij = u'i • u'j = <u'i | u'j >
 (ej)i = ui • ej = <ui | ej > = Sij = Rj

i
 (e'j)i = e'i • e'j = <e'i | e'j > = g'ij = ei • ej = <ei | ej >
 (u'j)i = e'i • u'j = <e'i | u'j > = Ri

j = Sji (2.5.8)

(f) ei = g'ij ej e'i = g'ij e'j ui = gij uj u'i = gij u'j (2.3.2),(2.4.2),(2.5.6)
 ei = g'ij ej e'i = g'ij e'j ui = gij uj u'i = gij u'j

(g) <ej | S | e'i> = <e'i | R | ej> = g'ij // <e'i | Rej> = <e'i | e'j> = g'ij from (e)
 <ej | S | u'i> = <u'i | R | ej> = Sij = Rj

i // <u'i | Rej> = <u'i | e'j> = Rj
i from (e)

 <uj | S | e'i> = <e'i | R | uj> = Ri
j = Sji // <e'i | Ruj> = <e'i | u'j> = Ri

j from (e)
 <uj | S | u'i> = <u'i | R | uj> = gij . // <u'i | Ruj> = <u'i | u'j> = gij from (e)

(h) S = RT S = RT Sij = (RT)ij = Rj

i (2.11.f3), (2.11.f1)
 R = ST R = ST Ri

j = (ST)ij = Sji

(i) S = R-1 R = S-1 RS = SR = 1 (2.11.f3)
 RRT = RTR = SST = STS = 1. (10.6.a.1)

In item (g) one has in general <a | S | b> = <a | RT | b> = <b | R | a> as shown in (2.11.g.11) .

Chapter 10: Differential Forms

 195

In any equation above, any index or label can be raised or lowered on both sides. The object gij is the
tensor-correct form of gij = δij = δi,j , allowing for indices to be raised and lowered, see (2.2.2). Here is
a sample Dirac notation manipulation using the above information (implied sum in completeness),

 |ei> = [1] |ei> = | uj> <uj|ei> = | uj>Ri

j = Ri
j |uj> or ei = Ri

juj . (10.6.a.2)

The result ei = Ri

juj appears in (2.4.4) showing that Ri
j is the basis change matrix between these two

sets of basis vectors. Notice that an equation like ei = Σj=1n Ri
juj is a "vector sum equation" since it has

a sum of vectors on the right side. No component indices appear on the vectors in this equation (i and j are
labels).

As discussed in Section 2.11 (g), abstract operators in the Dirac space will be written in script font. The
operator R for example is completely determined by all its matrix elements <e'i| R | uj> = Ri

j. The
identity operator in a Dirac space we then write as 1 for x-space and 1' for x'-space, as appear in the
completeness statements of (10.6.a.1) item (d).

(b) What happens for a non-square tall R matrix?

In Chapter 2 and in Tensor it was assumed that x' = F(x) was an invertible mapping F: RN→RN . Now
however we wish to consider the non-invertible mapping x' = F(x) where

 F: Rn → Rm m > n
 F: x-space → x'-space x ∈ Rn, x' ∈ Rm F(x) = x' . (10.6.b.1)

In Ra

b = (∂x'a/∂xb) the row index a ranges 1 to m, while column index b ranges 1 to n. Thus the down-tilt
R matrix is a "tall" non-square matrix having m rows and n columns with m > n.
 As outlined in Section 10.2 and Fig (10.2.1). if we let the variable x exhaust some domain U within x-
space, the mapping x' = F(x) generates a "surface" embedded within x'-space = Rm which has dimension
n. We assume that the mapping F has appropriate properties so that this surface is a Manifold M.
 Thus, the mapping x' = F(x) is defined in effect for all x in Rn (or perhaps for a region U in Rn as in
Fig (10.2.1), and produces (as its image) the manifold M within Rm . The inverse mapping x = F-1(x') is
then only defined for points x' on the manifold M. For such points, the mapping and its inverse are
assumed one-to-one. This inverse mapping is a set of n equations which one can presumably write down.
The equations represent x = F-1(x') only when x' lies on M. For other values of x', the set of equations
still exists but no longer represents the inverse function x = F-1(x'). This point is hopefully clarified by
some Examples.

Example 1: Let U be a square in R2 x-space with corners (-1,-1) to (1,1). We map this square into R3
using the following map x' = F(x):

 x'1 = x1

 x'2 = x2

 x'3 = 22- (x1)2-(x2)2 x' = F(x) (10.6.b.2)

Chapter 10: Differential Forms

 196

The image in R3 x'-space is a partial upper hemispherical surface of radius 2 (see below).
What is the inverse mapping x = F-1(x') ? One can take it to be the first two lines above,

 x1 = x'1
 x2 = x'2 x = F-1(x') (10.6.b.3)

but the inverse mapping only applies to points x' on the hemisphere. The above two equations of course
exist for points x' not on the hemisphere, but they only act as the inverse mapping for points on the
hemisphere.
 Here is Maple code for Example 1. The transformation is first entered and plotted, xp = x' :

Maple then computes the "tall" R matrix, Ri

j ≡ (∂x'i/∂xj),

 .

The S matrix Sij= (∂xi/∂x'j) is computed by hand from (10.6.b.3) and is then entered into Maple. Maple
then computes the matrix products RS and SR,

Chapter 10: Differential Forms

 197

Notice that RS ≠ 1 while SR = 1.

Example 2: Let U be the same square as in Example 1, but the new mapping is this

 x'1 = x1 + 2x2 1
 x'2 = 2x1 + x2 2
 x'3 = x1 + 3x2 3 x' = F(x) . (10.6.b.4)

The image in R3 x'-space is a tilted plane passing through the origin. We reuse the above Maple code for
this example, but don't display the Maple output.

What is the inverse mapping x = F-1(x') ?

If one solves the first two equations for x1 and x2 the result is

 x1 = -1/3 x'1 + 2/3 x'2
 x2 = 2/3 x'1 - 1/3 x'2 x = F-1(x') (10.6.b.5)

and this then can be taken to be the inverse mapping x = F-1(x'). Inserting these expressions into the third
equation gives

 5/3 x'1 - 1/3 x'2 - x'3 = 0 (10.6.b.6)

which is the equation of the tilted image plane passing through the origin whose normal is (5/3,-1/3,-1).

On the other hand, if one instead solves the second two equations in (10.6.b.4) one finds

 x1 = 3/5 x'2 - 1/5 x'3
 x2 = - 1/5 x'2 +2/5 x'3 x = F-1(x') . (10.6.b.7)

Notice that this inverse mapping is different from (10.6.b.5). When these two expressions are inserted into
the first equation of (10.6.b.4), one gets

Chapter 10: Differential Forms

 198

 x'1 - 1/5 x'2 - 3/5 x'3 = 0 (10.6.b.8)

Multiplication by 5/3 gives (10.6.b.6) so this is, of course, the equation for the same tilted plane.

In this Example we find that the inverse equation set x = F-1(x') is not unique. If we work with the first
and third equations in (10.6.b.4) we get a third set of inverse equations which we leave to the reader.

By visual inspection, the R matrix computed from x' = F(x) (10.6.b.4) is this:

 R = Ra
b = (∂x'a/∂xb) =

⎝
⎜
⎛

⎠
⎟
⎞ 1 2

 2 1
 1 3

 (10.6.b.9)

and is the "tall" R matrix for this example. For the two inverse transformations stated in (10.6.b.5) and
(10.6.b.7) we compute an S matrix, again by inspection (Maple did the products on the right)

 S = Sab = (∂xa/∂x'b) = ⎝
⎛

⎠
⎞ -1/3 2/3 0

 2/3 -1/3 0 SR = ⎝
⎛

⎠
⎞ -1/3 2/3 0

 2/3 -1/3 0
⎝
⎜
⎛

⎠
⎟
⎞ 1 2

 2 1
 1 3

 = ⎝
⎛

⎠
⎞ 1 0

 0 1

 (10.6.b.10)

 S = Sab = (∂xa/∂x'b) = ⎝
⎛

⎠
⎞ 0 3/5 -1/5

 0 -1/5 2/5 SR = ⎝
⎛

⎠
⎞ 0 3/5 -1/5

 0 -1/5 2/5
⎝
⎜
⎛

⎠
⎟
⎞ 1 2

 2 1
 1 3

 = ⎝
⎛

⎠
⎞ 1 0

 0 1

Thus we have found two different "left inverses" S of the tall matrix R. If we try out these S matrices on
the right of R, we find

 RS =
⎝
⎜
⎛

⎠
⎟
⎞ 1 2

 2 1
 1 3

 ⎝
⎛

⎠
⎞ -1/3 2/3 0

 2/3 -1/3 0 =
⎝
⎜
⎛

⎠
⎟
⎞ 1 0 0

 0 1 0
 5/3 -1/3 0

 ≠
⎝
⎜
⎛

⎠
⎟
⎞ 1 0 0

 0 1 0
 0 0 1

 RS =
⎝
⎜
⎛

⎠
⎟
⎞ 1 2

 2 1
 1 3

 ⎝
⎛

⎠
⎞ 0 3/5 -1/5

 0 -1/5 2/5 =
⎝
⎜
⎛

⎠
⎟
⎞ 0 1/5 3/5

 0 1 0
 0 0 1

 ≠
⎝
⎜
⎛

⎠
⎟
⎞ 1 0 0

 0 1 0
 0 0 1

 (10.6.b.11)

Example 2 serves then to illustrate that a tall R matrix might have multiple left inverses, but those left
inverses are not also right inverses. It turns out that there are in fact no right inverses for a tall R, as
shown in section (c) below.

Before leaving this example, we comment on the "coordinate lines" in x-space using our first inverse
solution (10.6.b.5).

 x1 = -1/3 x'1 + 2/3 x'2
 x2 = 2/3 x'1 - 1/3 x'2 x = F-1(x') (10.6.b.5)

Chapter 10: Differential Forms

 199

If we vary only x'1 (keeping the other two coordinates in x'-space fixed) both x1 and x2 vary, and not
surprisingly they define a certain line in x-space, and this is the coordinate line in x-space for x'1 . If we
instead vary only x'2, again both x1 and x2 vary and they define some other line in x-space, the x'2
coordinate line. If we vary only x'3 , then x1 and x2 do not vary and this coordinate line is just a point!

Recall that the tangent base vectors en are tangent to the coordinate lines in x-space. As shown in
(10.6.a.1) (e) one has (ej)i = Sij so the tangent base vectors are the columns of S, S = [e1, e2, e3].

Looking at S = ⎝
⎛

⎠
⎞ -1/3 2/3 0

 2/3 -1/3 0 for our first inverse solution, we see that the first two tangent base

vectors are indeed reasonable tangents to coordinate lines in x-space. Since the third coordinate line is just
a point, it can have no tangent base vector, and in fact e3 = (0,0) which "resolves" this problem.

(c) Some Linear Algebra for non-square matrices

The linear algebra for non-square matrices is a topic often omitted in linear algebra presentations. Here
we consider only the special case of two matrices where each has the shape of the transpose of the other,
and we cherry-pick a few relevant theorems. As shown below, non-square matrices never have two-sided
inverses, so one talks only about the possibility of such a matrix having a "right inverse" or a "left
inverse".

Consider then the following matrix products where we assume m > n :

 (10.6.c.1)

A nameless matrix rank theorem states the following :

Fact: rank(AB) ≤ min{rank(A), rank(B)} . (10.6.c.2)

Consider first the upper part of Fig (10.6.c.1). S and R each have some rank ≤ n, since n is the smaller
matrix dimension. The Fact then says rank(SR) ≤ n. Since SR is an n x n matrix, it could therefore have

Chapter 10: Differential Forms

 200

full rank n, and then it is possible that one could have SR = 1. This says that it is possible for R to have a
left inverse S, and for S to have a right inverse R.

Another nameless theorem states that if R has full rank n then in fact it has at least one left inverse S, and
if S is full rank it has at least one right inverse R. The theorem does not say how to compute these
inverses, nor does it suggest how many inverses there might be (a non-trivial problem). So,

Fact: tall R has full rank ⇒ R has at least one left inverse S
 wide S has full rank ⇒ S has at least one right inverse R (10.6.c.3)

In our Example 2 above, matrix R in (10.6.b.9) has full rank 2, so we know it has at least one left inverse
S. We explicitly found two such left inverses S as shown in (10.6.b.10). Since each of these left inverses
has R as a right inverse, we know (and confirm) that each S must have full rank 2. Thus, we know (and
confirm) that two of the tangent base vectors en are linearly independent (these being columns of S).

Now consider the lower part of Fig. (10.6.c.1). Fact (10.6.c.2) says rank(RS) ≤ n, but the matrix RS is m x
m. Thus it cannot possibly have full rank m, so it can never be the m x m identity matrix (which would
have rank m). We may then conclude that R has no right inverses and S has no left inverses:

Fact: tall R has no right inverses
 wide S has no left inverses (10.6.c.4)

Corollary: A non-square matrix cannot have a two-sided inverse. (10.6.c.5)

If we take S = RT, then the two matrices on the right in the drawing are RTR and RRT. Yet another matrix
rank theorem says,

Fact: rank(RRT) = rank(RTR) = rank(R). (10.6.c.6)

If R has full rank n, then the small matrix RTR has rank n and so is full rank, det(RTR) ≠ 0, and RTR is
invertible. But the m x m larger matrix RRT having rank n must have det(RRT) = 0 and is not invertible.

Fact: If tall R has full rank n, then (RTR)-1 exists.
 For any tall R, (RRT)-1 does not exist. (10.6.c.7)

With this in mind, another theorem says that if tall R is full rank, then we know one of its left inverses:

Fact: If tall R has full rank n, then one left inverse is given by S = (RTR)-1RT . (10.6.c.8)

Proof: By the previous fact we know (RTR)-1 exists, so SR = [(RTR)-1RT]R = (RTR)-1 (RTR) = 1 .

Fact: If wide S has full rank n, then one right inverse is given by R = ST (SST)-1. . (10.6.c.8)

Proof: Reader exercise.

Chapter 10: Differential Forms

 201

We mention in passing two other matrix theorems for arbitrary conforming matrices A,B,C:

Fact: (Sylvester's Inequality)
 rank(A) + rank(B) ≤ rank(AB) + n where n is the conforming dimension (10.6.c.9)

Fact: (Frobenius Inequality)
 rank(AB) + rank(BC) ≤ rank(ABC) + rank(B) (10.6.c.10)

(d) Implications for the Kinematics Package

The set of relations shown in (10.6.a.1) still stands for F: Rn→ Rm with its tall R matrix, with the
exception of the last item (i),

(i) S = R-1 R = S-1 RS = SR = 1 RRT = RTR = SST = STS = 1 . (10.6.a.1)

This must be replaced by

(i) SR = 1 SST = RTR = 1 (10.6.d.1)

since RS ≠ 1 and two-sided inverses R-1 and S-1 do not exist for F: Rn→ Rm with m>n.

A second implication is that certain items in the kinematics package are no longer unique. We have
already seen that Sij is not unique, so anything depending on Sij is also not unique. Here is a list
showing which objects are unique, and which are not:

 Metric tensors
 gij, gij unique
 g'ij unique, since g'ij = Ri

aRj
bgab

 g'ij not unique, since g'ij = Ri
aRj

bgab = SaiSbjgab and Sij not unique

 Transformation matrices
 Ri

j = Sji unique (tall R matrix from x' = F(x))
 Rij = Sji unique since Rij = gjaRi

a and both gja and Ri
a are unique

 Rj
i = Sij not unique

 Rij = Sji not unique, since Rij = g'ia Ra
j and g'ia not unique

 Axis-aligned basis vectors
 (uj)i unique since (uj)i = gji (e'j)i unique since (e'j)i = g'ij (= δij)
 (uj)i unique since (uj)i = gji (e'j)i not unique since (e'j)i = g'ij
 (uj)i unique since (uj)i = gji (e'j)i unique since (e'j)i = g'ij
 (uj)i unique since (uj)i = gji (e'j)i unique since (e'j)i = g'ij (= δij)

Chapter 10: Differential Forms

 202

Tangent base vectors
 (ej)i not unique since (ej)i = Rj

i (u'j)i unique since (u'j)i = Ri
j

 (ej)i not unique since (ej)i = Rji (u'j)i not unique since (u'j)i = Rij
 (ej)i unique since (ej)i = Rji (u'j)i unique since (u'j)i = Rij
 (ej)i unique since (ej)i = Rj

i (u'j)i not unique since (u'j)i = Ri
j (10.6.d.2)

(e) Basis vectors for the Tangent Space at point x' on M

From (10.6.a.1) we select as a basis for x-space the set of n axis-aligned basis vectors ui,

 {ui} i = 1,2...n basis for x-space

 (ui)j = δij components of these basis vectors in x-space . (10.6.e.1)

These map into a set of n tangent base vectors u'i in x'-space,

 u'i = R ui |u'i> = R |ui> (2.5.1)
or
 (u'i)j = Rj

a (ui)a = Rj
a δia = Rj

i i = 1,2...n j = 1,2..m . (10.6.e.2)

We know that u'i = R ui because this is the way any vector transforms: v' = R v.

Since there are m basis vectors in x'-space, we define the rest of the u'i arbitrarily such that the m basis
vectors {u'i} in Rm are linearly independent, so

 u'i = as needed i = n+1, n+2m . (10.6.e.3)

Note in (10.6.e.2) that (u'i)j = Rj

a(ui)a = Σa=1n Rj
a(ui)a is a "component sum equation", in contrast

with the "vector sum equation" ei = Σj=1nRi
juj appearing in (10.6.a.2). To summarize for u'i :

 u'i =
⎩
⎨
⎧ R ui i = 1 through n
 as needed i = n+1 through m . (10.6.e.4)

We show just below that the first n u'i span the tangent space Tx'M. Since the remaining u'i must be
selected so that the full set of m u'i is a basis for x'-space, we know that the higher m-n u'i must span the
perp space (Tx'M) ⊥ of the tangent space, and this space is said to have codimension m-n within Rm.

Based on (10.6.e.2) that Rj

i = (u'i)j, one concludes that the columns of R*
* are the contravariant basis

vectors u'i which span Tx'M. Each of these u'i has m components and R*
* has m rows.

 R*

* = [u'1, u'2u'n] . (2.5.9) (10.6.e.5)

As long as R*

* has full rank n, the columns are linearly independent so the u'i form a (complete) basis.

Chapter 10: Differential Forms

 203

We now show that the first n tangent base vectors u'i do in fact span the tangent space Tx'M.

Assume that, as x ranges over some portion of x-space, the mapping x' = F(x) describes a "smooth
surface" M embedded in x'-space, hopefully a manifold or a piece thereof. If we start at some x and move
to x + dx in x-space, we move from some point x' on M to some nearby point x' + dx' on M. By the
definition of M, this dx' lies on the surface M and so is tangent to the surface M at x' and thus lies in the
tangent space Tx'M of M at point x'. Applying R to each of the n axis-aligned differentials dxi = dxi(ui)
in x-space (no i sum), we thereby generate a set of n differential vectors dx'i = Rdxi in x'-space which are
in effect a set of short basis vectors which span the tangent space Tx'M. Since dx'i = dx'i (u'i), we may
take the basis vectors {u'i, i=1,2..n} as spanning Tx'M. The upper u'i are orthogonal to M and span the
perp space (Tx'M) ⊥ as noted.
 We know from the fact u'i • u'j = δij that the up-label (dual) vectors {u'i, i=1,2..n} also form a
basis for the tangent space Tx'M. This conclusion can be reached as well by raising all i indices in the
previous paragraph. In this case, the set {u'i, i=n+1,n+2..m} are then all orthogonal to the "surface" M.
 These last paragraphs and (10.6.e.5) have shown that:

Fact: The first n x'-space tangent base vectors u'i, which are the columns of full-rank R*

* , span the
tangent space Tx'M at point x' on M, and this is true as well for the u'i . (10.6.e.6)

10.7 The Pullback Operator R and properties of the Pullback Function F*

The Pullback Operator R

From (10.6.e.2), or just from the fact that vectors transform as v' = Rv, we know that

 u'i= Rui |u'i> = R |ui> i = 1,2..n . (2.5.1) (10.7.1)

One can say that the n axis-aligned basis vectors ui in x-space are "pushed forward" by R to become the
tangent-space-spanning vectors u'i in x'-space. Applying S to both sides and using (10.6.d.1) that SR = 1,
one finds that

 ui= S u'i |ui> = S |u'i> i = 1,2..n . (10.7.2)

From the package (10.6.a.1) item (h) we know that S = RT and S = RT for the corresponding Dirac
operators, so the above may be written,

 ui= RT u'i |ui> = RT |u'i> i = 1,2..n . (10.7.3)

Thus, while operator R "pushes forward" the |ui> to the |u'i>, the operator RT "pulls back" the |u'i>
from x'-space into the |ui> in x-space, just reversing the first process.
 For the label-up u and e basis vectors one then has,

 u'i = Rui |u'i> = R |ui> i = 1,2..n push forward
 ui = RT u'i |ui> = RT |u'i> i = 1,2..n pull back

Chapter 10: Differential Forms

 204

 e'i = Rei |e'i> = R |ei> i = 1,2..n push forward
 ei = RT e'i |ei> = RT |e'i> i = 1,2..n pull back . (10.7.4)

Here is a picture, reminiscent of Fig (2.5.4) (but reversed left to right), showing the above activity just for
the u1 and u'1 basis vectors,

 (10.7.5)
In the dual space of bras (linear functionals) (10.7.4) becomes, according to (2.11.g.10),

 (u'i)T= (ui)T RT <u'i| = <ui|RT i = 1,2..n push forward
 (ui)T = (u'i)TR <ui| = <u'i|R i = 1,2..n pull back

 (e'i)T= (ei)T RT <e'i| = <ei|RT i = 1,2..n push forward
 (ei)T = (e'i)TR <ei| = <e'i|R i = 1,2..n pull back . (10.7.6)

We refer to the R operator acting to the left as the pullback operator.

A picture similar to (10.7.5), which has dual x-space (Rn)* on the left and dual x'-space (Rm)'* on the
right, would show the push forward <u'1| = <u1|RT in red and the pullback <u1| = <u'1|R in blue. Below
we shall have hybrid pictures showing the non-dual spaces but also showing the mapping of linear
functionals between the dual-spaces.

Recall now the notations used in (8.7.1) for basis vectors in the dual wedge product spaces Λ'k(Rm) and
Λk(Rn) ,

 λ'^I ≡ λ'i1 ^ λ'i2 ^ ^ λ'ik = <e'^I| ≡ <e'i1| ^ <e'i2| ^ ^ <e'ik|

 λ^I ≡ λi1 ^ λi2 ^ ^ λik = <u^I| ≡ <ui1| ^ <ui2| ^ ^ <uik| (10.7.7)

where the e'i (ui) are axis-aligned basis vectors in x'-space (x-space). Recall also that,

Chapter 10: Differential Forms

 205

 <ei| = <e'i|R (10.7.6)

 ei = Ri

j uj or |ei> = Ri
j |uj> ⇒ <ei| = Ri

j<uj| = <e'i|R . (2.4.4)

Then,

 <e'^I|R = <e'i1|R ^ <e'i2|R ^ <e'ik| R // (8.9.d.15)

 = (Ri1j1<uj1|) ^ (Ri2j2<uj2|) ^ ... ^ (Rikjk<ujk|) // (2.4.4) above

 = Ri1j1Ri2j2 ...Rikjk (<uj1| ^ <uj2| ^ ... ^ <ujk|) // reorder

 = ΣJ RI

J <u^J| // multiindex
or
 [λ'^I R] = <e'^I|R = ΣJ RI

J <u^J| = ΣJ RI
J λ^J . (10.7.8)

On the last line we write [λ'^I R] where R acts to the left on λ'^I as a reminder of what is happening in
the Dirac notation. For k=1 one would write <e'i|R = [λ'iR] .

Eq. (10.7.8) shows that the pullback of a k-form basis vector λ'^I = <e'^I| from dual x'-space to dual x-
space is a linear combination of k-form basis vectors λ^J = <u^J| in dual x-space which is then some k-
form in dual x-space. The above equations are meaningful for k ≥ 1.

For k=0, a 0-form in x'-space is just a scalar function f(x'). Since there are no basis vectors involved, there
is no shuffling with RI

J and the pullback of the scalar f(x') is just itself. That is to say, there is no
distinction between the spaces Λ'0(Rm) = V0 = K and Λ0(Rn) = V'0 = K where K is the field of scalars .
However, in x-space we want any object to be expressed in terms of x-space variables, so we write f(x') as
f(F(x)) since x' = F(x). Therefore,

Fact: The pullback of a 0-form may be written as

 [f(x') R] = f(x') = f(F(x)) (10.7.9)

so R is really the unity operator in this Λ0 = V0 = K (scalars) space. Note that

 [f(x')g(x') R] = f(x')g(x') = [f(x') R] [f(x') R] . (10.7.10)

The pullback of a 0-form (a function) times a k-form basis vector is then,

 [f(x') λ'^I] R = < f(x') e'^I | R

 = (f(x') < e'^I |) R // the space Λ'k(Rm) is linear since it is a vector space

 = f(x') (< e'^I | R) // R is a linear operator as in (2.11.g.29)

 = [f(x') R] [λ'^I R] // using (10.7.9) and (10.7.8) . (10.7.11)

Chapter 10: Differential Forms

 206

The pullback of an arbitrary k-form is then given by,

 αx' = Σ'I fI(x')λ'^I ∈ Λ'k // k-form as in (10.2.3) (10.7.12)

 [αx'R] = < Σ'I fI(x') e'^I | R

 = [Σ'I fI(x') < e'^I |] R // the space Λk(Rm) is linear since it is a vector space

 = Σ'I fI(x') [< e'^I | R] // R is a linear operator as in (2.11.g.29)

 = Σ'I fI(x') [λ'^I R] // λ'^I = < e'^I |

 = Σ'I fI(F(x)) ΣJ RI

J λ^J // (10.7.8)

 = ΣJ [Σ'I fI(F(x)) RI
J] λ^J // reorder

 = ΣJ GJ(x)λ^J ∈ Λk where GJ(x) ≡ Σ'I fI(F(x)) RI

J . (10.7.13)

Note that αx' is a k-form in dual x'-space, while [αx'R] is a linear combination of the λ^J and therefore is
a k-form in dual x-space. This will be rewritten with the ordered sum Σ'J in Section 10.8 below. So,

Fact: The pullback of a k-form in Λ'k(Rm) is a k-form in Λk(Rn) . (10.7.14)

Finally, for a general k-form scaled by a function g(x'), using the same steps as above,

 (g(x')αx')R = < g(x') αx' | R = g(x') <αx' | R = [g(x')R] [αx'R] . (10.7.15)

The pullback of a rank-k tensor function is obtained by closing [αx'R] with a vector in the space Vk ,

 [αx'R](v1,v2....vk) = < αx'|R| v1,v2....vk>

 = < αx'|R [| v1> ⊗ | v2> ⊗ | vk>] // definition of |v1,v2....vk>

 = < αx'|[| Rv1> ⊗ | Rv2> ⊗ | Rvk>] // (5.6.17)

 = < αx'| Rv1,Rv2....Rvk>

 = αx'(Rv1,Rv2....Rvk) . (10.7.16)

The object αx'(Rv1,Rv2....Rvk) is a rank-k tensor function in Λ'kf(Rm) : the functional αx' lies in Λ'k(Rm)
while the k vector arguments v'i = Rvi all lie in Rm . In contrast, the object [αx'R] (v1,v2....vk) is a rank-k
tensor function in Λk

f(Rn): the functional [αx'R] lies in Λk(Rn) while the k vector arguments vi all lie in
Rn. The functional [αx'R] is the pullback of the functional αx'. Equation (10.7.16) says that the pulled-

Chapter 10: Differential Forms

 207

back tensor function [αx'R] in Λk
f when evaluated at arguments (v1,v2....vk) is equal in value to the un-

pulled-back tensor function αx' in Λ'kf evaluated at arguments (Rv1,Rv2....Rvk).
 These tensor functions are the objects that Spivak [1965] uses and he refers to them as k-tensors.
Presentations which use only tensor functions regard (10.7.16) as the definition of a pullback [αx'R] of a
differential k-form αx'.

The Pullback Function F*

The notation used above with the Dirac operator R acting to the left on a dual space vector is a bit
clumsy, so one defines the following pullback function where <α'| is any k-form in Λ'k(Rm),

 F*(α') ≡ <α' | R // α' ≡ αx' (10.7.17)

 F* : Λ'k(Rm) → Λk(Rn) . (10.7.18)

Recall that the differential matrix R = (DF) and its associated Dirac operator R are specific to the
underlying general transformation x' = F(x), so to be more precise we could have written RF and RF. The
letter F in the function F* makes this connection explicit.

Various equations above can now be recast in terms of the pullback function F* :

Some Properties of the F* pullback function (10.7.19)

0 F*(α') ≡ <α' | R = <α' | RF // definition of F*, (10.7.17)

1 F*(f(x')) = f(x') = f(F(x)) // F* on a 0-form, (10.7.9) for k = 0

2 F*(f(x') g(x')) = F*(f(x')) F*(g(x')) // F* on a product of two 0-forms, (10.7.10)

3 F*(f(x') λ'^I) = F*(f(x')) F*(λ'^I) // F* on 0-form and basis-vector k-form, (10.7.11)

4 F*(λ'^I) = ΣJ RI

J λ^J // F* on a basis-vector k-form, (10.7.8) for k ≥ 1

5 F*(λ'i) = Σj Ri

j λj // F* on a basis-vector 1-form, k=1 of the above

6 αx' = Σ'I fI(x')λ'^I // general k-form in Λ'k(Rm), (10.7.12)

7 F*(αx') = Σ'I fI(F(x)) ΣJ RI

J λ^J // F* pulling back a general k-form from Λ'k, (10.7.13)

8 F*(g(x') αx') = F*(g(x')) F*(αx') // F* on a 0-form times a general k-form, (10.7.15)

9 [F*(αx')](v1,v2...vk) = αx'(Rv1,Rv2...Rvk) // F* pulling back a rank-k tensor function, (10.7.16)

Chapter 10: Differential Forms

 208

Note that ΣJ in items 4 and 7 is the redundant symmetric sum. In (10.8.2) below we restate items 4 and 7
using the ordered sum Σ'J, and then we restate everything again using cosmetic notation.

Other Properties of the F* pullback function

Fact: F* is linear, so F*(s1α' + s2β') = s1F*(α') + s2F*(β') where α' and β' are k-forms. (10.7.20)

Proof for k>0 : F*(s1α' + s2β') = <s1α' + s2β'| R // (10.7.19) 0, definition of F*

 = s1(<α' |R) + s2(<β' |R) // R is a linear operator, see (2.11.g.29)

 = s1F*(α') + s2F*(β') // (10.7.19) 0, definition of F* twice

Proof for k=0 : F*(s1f(x') + s2g(x')) = s1f(x') + s2g(x') // (10.7.19) 1, definition of F* on a function

 = F*(s1f(x')) + F*(s2g(x')) // (10.7.19) 2 definition of F* twice

 = s1F*(f(x')) + s2F*(g(x')) // (10.7.19) 2 and 1

Fact: F*(α'1 ^ α'2 ^...^ α'N) = F*(α'1) ^ F*(α'2) ^...^ F*(α'N) where α'i is an arbitrary ki-form. (10.7.21)

Proof: F*(α'1 ^ α'2 ^....^ α'N) = [<α'1| ^ <α'2| ^ ... ^ <α'N|] | R // (10.7.19) 0 + Dirac notation

 = [<α'1| R ^ <α'2| R ^ ... ^ <α'N| R] // (8.9.d.15)

 = F*(α'1) ^ F*(α'2) ^...^ F*(α'N) . // (10.7.19) 0 QED

The result is valid if one or more of the forms are 0-forms. In this case, the two ^ operators surrounding a
0-form can be replaced by one ^. For example, <α'1| ^ f(x) ^ <α'3| = f(x) <α'1| ^ <α'3| . In vector space
notation, one has Λn ^ Λ0 ^ Λm = Λn ^ Λm where Λ0 is the space of scalars.

Fact: F*(dα') = d(F*(α')) where α' ∈ Λ'k is a k-form in x'-space (10.7.22)

This Fact says that the pullback function F* commutes with the exterior derivative operator d.

Proof: Show that Left Hand Side = Right Hand Side:

LHS: α' = Σ'IfI(x') λ'^I ∈ Λ'k (k-form in x'-space) // (10.7.12)

 dα' = Σ'I dfI(x') λ'^I = Σ'I Σj=1m [∂'jfI(x')] λ'j ^ λ'^I ∈ Λ'k+1 // (10.3.6)

 F*(dα') = Σ'I Σj=1m [∂'jfI(x')] F*(λ'j ^ λ'^I) ∈ Λk+1 // (10.7.20) F* linear

Chapter 10: Differential Forms

 209

 = Σ'I Σj=1m [∂'jfI(x')] F*(λ'j) ^ F*(λ'^I) . // (10.7.21) product

RHS: α' = Σ'IfI(x') λ'^I ∈ Λ'k (k-form in x'-space) // (10.7.12)

 F*(α') = Σ'I F*(fI(x')) F*(λ'^I) ∈ Λk // (10.7.19) 3

 = Σ'I fI(F(x)) F*(λ'^I) ∈ Λk // (10.7.19) 1

 d(F*(α')) = Σ'I dfI(F(x))) F*(λ'^I) ∈ Λk+1 // (10.3.6)

 = Σ'I Σj=1m [∂'jfI(x') Σr=1n (∂x'j/∂xr)] λr ^ F*(λ'^I) // (10.3.6) + chain rule

 = Σ'I Σj=1m [∂'jfI(x') Σr=1n Rj

r] λr ^ F*(λ'^I) // (2.1.2)

 = Σ'I Σj=1m [∂'jfI(x')] (Σr=1n Rj

r λr) ^ F*(λ^I) // regroup

 = Σ'I Σj=1m [∂'jfI(x')] F*(λ'j) ^ F*(λ'^I) . // (10.7.19) 5

The LHS and RHS results are the same, so F*(dα') = d(F*(α')) . QED

Corollary: d(F*(dα')) = 0 . (10.7.23)

Proof: d(F*(dα')) = d(dF*(α')) = d2 [F*(α')] = 0 // (10.7.22) then (10.3.10)

Fact: F*(G*α) = (G o F)* α where α is a k-form (10.7.24)

Proof: This theorem involves two mappings F and G which are composed to form a third H :

 x" = G(x') x' = F(x) x → x' → x" x → x"
 F G H

 x" = G(F(x)) ≡ [G o F](x) = H(x) ⇒ H* = (G o F)*

 dx" = RG dx' dx' = RF dx ⇒ dx" = RGRFdx

 x" = H(x) ⇒ dx" = RHdx so: RH = RGRF and RH = RGRF

Using the definition (10.7.17) that F*(β) ≡ <β|RF and G*(α) ≡ <α|RG we find,

 F*(G*α) = F*(<α|RG) = (<α|RG) RF = <α| RGRF = <α|RH = H*(α) = (G o F)* (α) QED

Chapter 10: Differential Forms

 210

If α is a 0-form (a function) α = f(x"), then by (10.7.19) item 1,

 G*(f(x")) = f(G(x'))
so
 F*(G*α) = F*(G*f(x")) = F*(f(G(x'))) = f(G(F(x))) = f((G o F)(x))

 = f(H(x)) = H*(f(x")) = (G o F)*(f(x")) = (G o F)*α QED

A Chapter 1 style category diagram for this scenario would be

 (10.7.25)

The following hybrid drawing shows the forward mapping x' = F(x) between the non-dual spaces, and at
the same time the pullback βx = F*(αx') from the dual space Λ'k on the right to dual space Λk on the left,

 (10.7.26)

Here βx is just a made-up name for the pulled back k-form αx'. Recall that x' on αx' means that the k-
form αx' = Σ'I fI(x') λ'^I is specific to the point x' on manifold M, while the x on βx means that the k-
form βx is specific to the point x in x-space.

10.8 Alternate ways to write the pullback of a k-form

The ordered sum form of a k-form pullback

Certain expressions above contain the sum ΣJ RI

J λ^J . As shown in Appendix A, because the object RI
J

has a "factored form" , this sum can be written as on ordered sum Σ'J as follows

 ΣJ RI

J λ^J = Σ'J det(RI
J) λ^J // (A.8.37) (10.8.1)

Chapter 10: Differential Forms

 211

where the determinant magically appears. We can then rewrite two items from (10.7.19) :

4 F*(λ'^I) = Σ'J det(RI

J) λ^J // F* on a basis-vector k-form

7 F*(αx') = Σ'I fI(F(x)) Σ'J det(RI

J) λ^J // F* pulling back a general k-form from Λ'k

 = Σ'J gJ(x)λ^J where gJ(x) ≡ Σ'I fI(F(x)) det(RI

J) . (10.8.2)

It is useful to write out (10.8.2) in full detail. using the cosmetic notation λi = dxi ,

 F*(αx') = Σ1≤j1<j2<....<jk≤n Σ1≤i1<i2<....<ik≤m fi1i2...ik(F(x))

 * det [RI

J] * (dxi1 ^ dxi2^ dxik)

 = Σ1≤i1<i2<....<ik≤m fi1i2...ik(F(x))

 Σ1≤j1<j2<....<jk≤n det [RI

J] * (dxi1 ^ dxi2^ dxik) (10.8.3)

where RI

J is this kxk matrix,

 Ri1j1 Ri1j2 ... Ri1jk

 RI
J = Ri2j1 Ri2j2 ... Ri2jk

 Rikj1 Rikj2 ... Rikjk (10.8.4)

where
 Ri

j = (DF)ij = (∂Fi/∂xj) = ∂jFi(x) . // (10.6.2)

The object det(RI

J) is a k x k minor of the full "tall" m x n matrix R, so k ≤ n ≤ m in our application.
Remember that, due to the ordered sums, all the ir are different, and all the jr are different, so no row or
column appears twice in RI

J.

The dFi form of a k-form pullback

 It is customary to define the object shown above in (10.8.1) as a certain k-form,

 dF^

I ≡ ΣJ RI
J λ^J = Σ'J det(RI

J) λ^J . (10.8.5)

The motivation for doing this arises from the k = 1 case where the above becomes

 dFi ≡ Ri

j λj = Ri
j dxj (10.8.6)

Chapter 10: Differential Forms

 212

where we replace λj by its cosmetic notation dxj. The above equation then "looks just like" the normal
calculus differential one obtains from transformation x' = F(x) so x'i = Fi(x),

 dFi = (∂Fi/∂xj) dxj = (∂x'i/∂xj) dxj = Ri

jdxj . (10.8.7)

That is to say,

 dFi = Ri

jdxj (10.8.7)
 dFi = Ri

j dxj (10.8.6) (10.8.8)

and in this same cosmetic notation we can rewrite (10.8.5) as

 dF^

I = ΣJ RI
J dx^J = Σ'J det(RI

J) dx^J . (10.8.9)

Using this new object, we write (10.8.2) as

4 F*(λ'^I) = dF^

I // F* on a basis-vector k-form

7 F*(αx') = Σ'I fI(F(x)) dF^I // F* pulling back a general k-form from Λ'k (10.8.10)

Therefore,

 dF^

I = F*(λ'^I) = F*(λ'i1) ^ F*(λ'i2) ^ ... ^ F*(λ'ik) // (10.7.21) product rule

 = [λ'i1R] ^ [λ'i2R] ^ ... ^ [λ'ikR] // (10.7.17) def F*

 = <e'i1|R ^ <e'i2|R ^ ... ^ <e'ik|R // (2.11.c.11) def λ'i1

 = <ei1| ^ <ei2| ^ ... ^ <eik| // (10.7.6) pullbacks

 = <e^I| ∈ Λk . // recall that λ^I = <u^I| (10.8.11)

so dF^

I is just our old friend <e^I|.

As an example of (10.8.9) we write for k = 2,

 dFi1 ^ dFi2 = Σ1≤j1<j2≤n det

⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞

∂x'i1

∂xj1
∂x'i1

∂xj2

∂x'i2

∂xj1
∂x'i2

∂xj2
 dxj1 ^ dxj2 . (10.8.12)

Note that both sides of the above equation are 2-forms in Λ2, whereas dx'i1 ^ dx'i2 is a 2-form in Λ'2, so
we cannot identify dFi1 ^ dFi2 with dx'i1 ^ dx'i2 even though x'i = Fi(x). But from (10.8.10) 4,

Chapter 10: Differential Forms

 213

 dFi1 ^ dFi2 = F*(λ'i1^ λ'i2) = F*(dx'i1 ^ dx'i2) (10.8.13)

so in fact dFi1 ^ dFi2 is just the pullback of dx'i1 ^ dx'i2 . This is just restating the basic fact of (10.7.6)
that <ei| = <e'i|R so <ei| is the pullback of <e'i| .

The reader will hopefully appreciate our use of red italic font to distinguish differential form objects from
calculus objects of the same name. Otherwise things can be very confusing, especially in presentations
where all ^ symbols are suppressed and where symmetric and ordered sums are both written as ΣI.

Summary all in cosmetic notation for x' = F(x)

 dx'^I ≡ dx'i1 ^ dx'i2 ^ ^ dx'ik ∈ Λ'k(Rm)
 dx^I ≡ dxi1 ^ dxi2 ^ ^ dxik ∈ Λk(Rn) (10.7.7) (10.8.14)

Some Properties of the F* pullback function (10.7.19) (10.8.15)

0 F*(α') ≡ <α' | R = <α' | RF // definition of F*, (10.7.17)

1 F*(f(x')) = f(x') = f(F(x)) // F* on a 0-form, (10.7.9) for k = 0

2 F*(f(x') g(x')) = F*(f(x')) F*(g(x')) // F* on a product of two 0-forms, (10.7.10)

3 F*(f(x') dx'^I) = F*(f(x')) F*(dx'^I) // F* on 0-form and basis-vector k-form, (10.7.11)

4 F*(dx'^I) = ΣJ RI

J dx^J // F* on a basis-vector k-form, (10.7.8) for k ≥ 1

5 F*(dx'i) = Σj Ri

j dxj // F* on a basis-vector 1-form, k=1 of the above

6 αx' = Σ'I fI(x') dx'^I // general k-form in Λ'k, (10.7.12)

7 F*(αx') = Σ'I fI(F(x)) ΣJ RI

J dx^J // F* pulling back a general k-form from Λ'k, (10.7.13)

8 F*(g(x') αx') = F*(g(x')) F*(αx') // F* on a 0-form and general k-form, (10.7.15)

9 [F*(αx')](v1,v2...vk) = αx'(Rv1,Rv2...Rvk) // F* pulling back a rank-k tensor function, (10.7.16)

Other Properties of the F* pullback function (10.8.16)

Fact: F* is linear, so F*(s1α' + s2β') = s1F*(α') + s2F*(β') where α' and β' are k-forms. (10.7.20)

Fact: F*(α'1 ^ α'2 ^...^ α'N) = F*(α'1) ^ F*(α'2) ^...^ F*(α'N) where α'i is an arbitrary ki-form. (10.7.21)

Fact: F*(dα') = d(F*(α')) where α' ∈ Λ'k is a k-form in x'-space (10.7.22)

Chapter 10: Differential Forms

 214

Corollary: d(F*(dα')) = 0 . (10.7.23)

Fact: F*(G*α) = (G o F)* α where α is a k-form . (10.7.24)

The ordered sum form of a k-form pullback

 ΣJ RI

J dx^J = Σ'J det(RI
J) dx^J // (A.8.37) (10.8.1) (10.8.17)

4 F*(dx'^I) = Σ'J det(RI

J) dx^J // F* on a basis-vector k-form (10.8.18)

7 F*(αx') = Σ'I fI(F(x)) Σ'J det(RI

J) dx^J // F* pulling back a general k-form from Λ'k

 = Σ'J gJ(x) dx^J where gJ(x) = Σ'I fI(F(x)) det(RI

J) (10.8.2) (10.8.19)

The dFi form of a k-form pullback

 dF^

I ≡ ΣJ RI
J dx^J = Σ' J det(RI

J) dx^J = F*(dx'^I) = <e^I| (10.8.9,10,11) (10.8.20)

 F*(dx'i1 ^ dx'i2) = dFi1 ^ dFi2 = Σ1≤j1<j2≤n det

⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞

∂x'i1

∂xj1
∂x'i1

∂xj2

∂x'i2

∂xj1
∂x'i2

∂xj2
 dxj1 ^ dxj2 .

 ≡ Σ1≤j1<j2≤n
∂(x'i1, x'i2)
∂(xj1, xj2) dxj1 ^ dxj2 (10.8.12) (10.8.21)

 dFi = Ri
j dxj (10.8.8) (10.8.22)

 F*(dx'^I) = F*(dx'i1 ^ dx'i2 ...^ dx'ik) = dFi1 ^ dFi2 ...^ dFik = dF^

I (10.8.10) 4 (10.8.23)

 F*(αx') = Σ'I fI(F(x)) dF^I (10.8.10) 7 (10.8.24)

10.9 A Change of Notation and Comparison with Sjamaar and Spivak

To this point we have maintained the notation of Chapter 2 (and Tensor) for transformations x' = F(x). To
compare our results with other sources, we shall now make the following change of notation :

Chapter 10: Differential Forms

 215

 →

 x-space → t-space
 x'-space → x-space

 F → φ general transformation name
 x' = F(x) → x = φ(t) general transformation equation
 R = (DF) → R = (Dφ) differential matrix
 F* → φ* pullback function (10.9.1)

Confusingly, in Picture A' the left-side space has the name x-space, while in Picture F' this happens to be
the name of the right-side space. This is just a coincidental new definition of x-space.

This notation is convenient for presenting results, but it is somewhat clumsy for developing those results
as we have done above. Having primes and no primes is very efficient compared to the other changes one
must make to develop in this new notation. For example one must write λ'i → xλi and λi → tλi.
Similarly, one has u'i → xui for the tangent base vectors which span TxM and ui → tui are the axis-
aligned basis vectors in t-space ("parameter space"). Just for the record, these changes are all shown in
Appendix E.

Drawings for the new spaces

In terms of the new t-space and x-space, this drawing (a translation of Fig (10.7.5)) shows the push
forward and pull back of the first basis vectors in Rn and Rm,

 (10.9.2)

Chapter 10: Differential Forms

 216

The next drawing (translation of Fig (10.7.26)) shows the pullback of a differential k-form αx from
xΛk(Rm) to k-form βt in tΛk(Rn),

 (10.9.3)

Here βt is just a made-up name for the pulled back k-form αx. Recall that x on αx means that the k-form
αx = Σ'I fI(x) xλ^I is specific to the point x on manifold M, while the t on βt means that the k-form βt is
specific to the point t in t-space.

Here is a more practical picture for the special case n = 2 and k = 2:

 (10.9.3a)

Here the open region U is a unit square [0,1]2 which maps into a patch on a torus. That is, if m = 3 the
object on the right is a torus in R3, but we can imagine it to be a torus embedded in Rm for any m ≥ 3.
 The space of functionals defined on U ⊂ R2 is a 2-dimensional dual space (R*2)(U). On this space we
can define either 1-forms or 2-forms. The above picture suggests a 2-form since the region U is an area,
and since we will later associate dt1 ^ dt2 with the calculus differential dt1dt2 which represents an area
(we are not there yet).
 The picture shows the "forward map" x = φ(t), suggesting that forward means left to right in the
picture. Then αx is "pulled back" right to left from dual x-space to dual t-space where it becomes βt.
 One could imagine a set of 16x6 = 96 mappings like the one shown above which would "cover the
torus", using one little patch for each mapping (with some small overlap between patches). One would

Chapter 10: Differential Forms

 217

then have an atlas of 96 square maps like that on the left which would serve to cover the surface of Planet
Toroid. This is the basic idea of a manifold. In the torus example, one could do the job with only 2 maps.
Doing it with a single map does not fly since then some seam curve on the torus would map back to two
boundaries of the square and the mapping is then not one-to-one and smooth. Manifold mappings have to
be continuous in both mapping directions at every point, and a seam is a place without continuity.
 The aspect ratio of the 2-cube on the left is not significant. One could change it to be an arbitrary
rectangle in t-space and select a φ to make it map to the same small image patch in x-space. Or one could
construct a mapping φ which maps the unit 2-cube [0,1]2 to the entire left half of the torus. See Sjamaar.
 The black arrows on the left are the t-space basis vectors tui (only tu2 is labeled). These map
according to xui = R tui (formerly u'i = R ui) into basis vectors which are tangent to M, and these
vectors then span the tangent space TxM at point x on M. It is clear that the two xui vary as the point x
on M is varied.

As another example consider this situation with n = 1 and k = 1,

 (10.9.3b)

Now the domain in t-space is U = 1-cube [0,1] which maps to a (generally non-planar) red curve which is
embedded in Rm . Here αx and βt are 1-forms. The red curve segment V lies on the manifold curve M as
shown, just as the patch of the previous example lay on the torus. There is only one basis vector tu in t-
space (not shown) and it maps to the unlabeled black arrow on the right which is xu and is of course
tangent to the curve at x.

We now reproduce the "Summary in all cosmetic notation" given above at the end of Section 10.8 but in
terms of this new notation:

Summary all in cosmetic notation for x = φ(t)

 dx^I ≡ dxi1 ^ dxi2 ^ ^ dxik basis vector ∈ xΛk(Rm)
 dt^I ≡ dti1 ^ dti2 ^ ^ dtik basis vector ∈ tΛk(Rn) (10.8.14) (10.9.4)

Chapter 10: Differential Forms

 218

Some Properties of the φ* pullback function R = (Dφ) (10.8.15) (10.9.5)

0 φ*(αx) ≡ <αx | R = <αx | RF // definition of φ*, (10.7.17)

1 φ*(f(x)) = f(x) = f(φ(t)) // φ* on a 0-form, (10.7.9) for k = 0

2 φ*(f(x) g(x)) = φ*(f(x)) φ*(g(x)) // φ* on a product of two 0-forms, (10.7.10)

3 φ*(f(x) dx^I) = φ*(f(x)) φ*(dx^I) // φ* on 0-form and basis-vector k-form, (10.7.11)

4 φ*(dx^I) = ΣJ RI

J dt^J // φ* on a basis-vector k-form, (10.7.8) for k ≥ 1

5 φ*(dxi) = Σj Ri

j dtj // φ* on a basis-vector 1-form, k=1 of item 4

6 αx = Σ'I fI(x) dx^I // general k-form in xΛk, (10.7.12)

7 φ*(αx) = Σ'I fI(φ(t)) ΣJ RI

J dt^J // φ* pulling back a general k-form from xΛk, (10.7.13)

8 φ*(g(x) αx) = φ*(g(x)) φ*(αx) // φ* on a 0-form and general k-form, (10.7.15)

9 [φ*(αx)](v1,v2...vk) = αx(Rv1,Rv2...Rvk) // φ* pulling back a rank-k tensor function, (10.7.16)

Other Properties of the φ* pullback function (10.8.16) (10.9.6)

These five items are translations of (10.7.20) through (10.7.24) :

Fact: φ* is linear, so φ*(s1α + s2β) = s1φ*(α) + s2φ*(β) where α and β are k-forms. (10.9.7)

Fact: φ*(α1 ^ α2 ^...^ αN) = φ*(α1) ^ φ*(α2) ^...^ φ*(αN) where αi is an arbitrary ki-form. (10.9.8)

Fact: φ*(dα) = d(φ*(α)) where α ∈ xΛk is a k-form in x-space (10.9.9)

Corollary: d(φ*(dα)) = 0 . (10.9.10)

Fact: φ*(ψ*α) = (ψ o φ)* α where α is a k-form . (10.9.11)

The ordered sum form of a k-form pullback R = (Dφ)

 ΣJ RI

J dx^J = Σ' J det(RI
J) dt^J // (A.8.37) (10.8.17) (10.9.12)

4 φ*(dx^I) = Σ' J det(RI

J) dt^J // φ* on a basis-vector k-form (10.8.18) (10.9.13)

7 φ*(αx) = Σ'I fI(φ(t)) Σ' J det(RI

J) dt^J // φ* pulling back a general k-form from xΛk

 = Σ' J gJ(t) dt^J where gJ(t) = Σ'I fI(φ(t)) det(RI

J) (10.8.19) (10.9.14)

Chapter 10: Differential Forms

 219

The dφi form of a k-form pullback

 dφ^I ≡ ΣJ RI

J dt^J = Σ'J det(RI
J) dt^J = φ*(dx^I) = <te^I| (10.8.20) (10.9.15)

 φ*(dxi1 ^ dxi2) = dφi1 ^ dφi2 = Σ1≤j1<j2≤n det

⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞

∂φi1

∂tj1
∂φi1

∂tj2

∂φi2

∂tj1
∂φi2

∂tj2
 dtj1 ^ dtj2 .

 ≡ Σ1≤j1<j2≤n
∂(φi1, φi2)
∂(tj1, tj2) dtj1 ^ dtj2 (10.8.21) (10.9.16)

 dφi = Ri

j dtj (10.8.22) (10.9.17)

 φ*(dx^I) = φ*(dxi1 ^ dxi2 ...^ dxik) = dφi1 ^ dφi2 ...^ dφik = dφ^I (10.8.10) (10.9.18)

 φ*(αx) = Σ'I fI(φ(t)) dφ^I (10.8.24) (10.9.19)

Comparison with Sjamaar

Our document was strongly motivated by Sjamaar's excellent notes, so it seems useful to make some
connection to those notes. In most of our document we used the transformation x' = F(x) but in Section
10.9 we changed this to be x = φ(t) to bring things closer to Sjamaar and other authors.
 Sjamaar uses y = φ(x) in his Ch 3 on pullbacks, x = c(t) in Ch 4 on 1-forms, and x = ψ(t) in Ch 5 on
integration and Ch 6 on manifolds. He does not stress the notion of an underlying transformation as we
have done because he has many more important details to attend to, but he does show y = φ(x) in his
figure on page 39. All wedge product symbols ^ are suppressed with the idea that almost all products are
wedge products, so one sees equations like dx1dx2 = - dx2dx1. His sum ΣI is almost always an ordered
sum which we write as Σ'I.

Here then is a sampling of our equations above and how they appear in Sjamaar's 2015 notes :

 α ^ β = (-1)kk'β ^ α α = k-form, β = k'-form (10.4.1)

Sja p 19, "graded commutivity"

Fact: d2α = 0 for any k-form α (differential forms have zero "curvature") . (10.3.10)

Sja p 22

Chapter 10: Differential Forms

 220

 α = Σ'I fI(x) xλ^I = Σ'I fI(x) dx^I // a k-form (10.1.14)

 Sja p 19,39

 φ*(f(x) dx^I) = φ*(f(x)) φ*(dx^I) (10.9.5) 2

Sja p 39, related to the above

 φ*(dx^I) = φ*(dxi1 ^ dxi2 ...^ dxik) = dφi1 ^ dφi2 ...^ dφik = dφ^I (10.9.18)

Sja p 39

 Fact: φ* is linear, so φ*(s1α + s2β) = s1φ*(α) + s2φ*(β) where α and β are k-forms. (10.9.7)
 Fact: φ*(α1 ^ α2 ^...^ αN) = φ*(α1) ^ φ*(α2) ^...^ φ*(αN) where αi is an arbitrary ki-form. (10.9.8)
 Fact: φ*(ψ*α) = (ψ o φ)* α where α is a k-form (10.9.11)

 Sja p 40

Fact: φ*(dα) = d(φ*(α)) where α ∈ xΛk is a k-form in x-space (10.9.9)

Sja p 41

 φ*(dx^I) = dφ^I = Σ'J det((Dφ)IJ) dtJ for x = φ(t) (10.9.18), (10.9.15)

Sja p 44 for y = φ(x)

 φ*(αx) = Σ' J gJ(t) dt^J where gJ(t) = Σ'I fI(φ(t)) det(RI

J) for x = φ(t) (10.9.14)

Sja p 44 for y = φ(x)

dxi ≡ λi = <ui| = (ui)T ui = axis-aligned basis vectors of Rn (10.1.1)

 Sja p 92

Chapter 10: Differential Forms

 221

 (αj1^ αj2^ ^ αjk)(vi1,vi2.....vik) = (1/k!) det [αj*(vi*)] (8.2.8a)
 (α1 ^ α2 ^ ^ αk) (v1, v2.........vk) = (1/k!) det [α*(v*)]

 // Sja p 94, Spivak normalization so no (1/k!)

The tensor function pullback

For the pullback of a tensor function we have stated

 [φ*(αx)](v1,v2...vk) = αx(Rv1,Rv2...Rvk) for x = φ(t) (10.9.5) item 9 (10.9.20)

where recall [φ*(αx)](v1,v2...vk) = <αx | R | v1,v2...vk>. If R acts to the left, one gets the left side of
(10.9.20), while if R acts to the right one gets the right side. Here the function φ*(αx) is the pullback of
the function αx and the pulled-back function is associated with t-space, so we wish to write the right side
expression entirely in t-space variables. To this end we replace αx by αφ(t) on the right of (10.9.20). The
tensor functional [φ*(αx)] is in dual t-space, so we can write it as [φ*(αx)]t similar to the βt appearing in
Fig (10.9.3) above. The vectors vi are in t-space Rn. We write R = (Dφ) = (D(t)φ) to show that the
derivatives are with respect to t. Then in more detail we can write the above tensor function pullback
equation as

 [φ*(αx)]t(v1,v2...vk) = αφ(t)([D(t)φ(t)]v1, [D(t)φ(t)]v2... [D(t)φ(t)]vk) // x = φ(t) (10.9.21)

where the expression on the right contains only t variables (no x variables), as appropriate for expressing
the t-space tensor function [φ*(αx)]t(v1,v2...vk).

Translating (10.9.21) according to x = φ(t) → y = φ(x) gives

 [φ*(αy)]x(v1,v2...vk) = αφ(x)([D(x)φ(x)]v1, [D(x)φ(x)]v2... [D(x)φ(x)]vk) // y = φ(x) . (10.9.22)

It is this equation we then compare to Sjamaar's page 96 equation,

(10.9.23)

He writes [D(x)φ(x)] as Dφ(x) and [φ*(αy)]x as φ*(α)x .

The tensor function pullback equation also appears in Spivak but not quite as we have written it. Spivak
says on the top of page 90 and the bottom of page 89,

which we interpret to mean

 [f*(ω)](p)(v1,v2...vk) = ω(f(p)) ((D(p)f)v1, (D(p)f)v2, ... (D(p)f)vk) .

Chapter 10: Differential Forms

 222

Replacing ω→α, f→φ and p → x gives

 [φ*(α)](x)(v1,v2...vk) = α(φ(x))((D(x)φ)v1, (D(x)φ)v2, ... (D(x)φ)vk) .

We then interpret (x) on the left and (φ(x)) on the right as spatial locations in the respective non-dual
spaces, so the above becomes

 [φ*(α)]x(v1,v2...vk) = αφ(x)((D(x)φ)v1, (D(x)φ)v2, ... (D(x)φ)vk)
(10.9.24)

in agreement with our (10.9.22) and with Sjamaar's form (10.9.23). Sjamaar 2015 refers to φ*α as the
pullback of α, but Spivak writing in 1965 does not use the term pullback in his book. Having a name for
something is always helpful.

Spivak's entire presentation is in terms of tensor functions, there are no functionals per se. He uses our
tensor function pullback equation as the definition of a pullback (not calling it by that name). We have
tried to define the pullback more generally in terms of the general transformation x = φ(t) so that it has a
meaning for vectors, dual vectors (functionals), and tensor functions.

10.10 Integration of functions over surfaces and curves

In Section 10.11 we are going to make this claim concerning the integration of an arbitrary differential k-
form over a manifold "surface" x' = F(x) embedded in Rm :

 α' = Σ'I fI(x') λ'^I = Σ'I fI(x') dx'i1 ^ dx'i2 ^ dx'ik // the k-form in x'-space

 ∫F α' = Σ'I Σ'J∫[0,1]k fI(F(x)) det(RI
J(x)) dxj1 ^ dxj2 ^ ...^ dxjk R= (DF)

 = Σ'I Σ'J (∫
0

 1 ∫
0

 1 ∫
0

 1) fI(F(x)) det(RI
J(x)) dxj1dxj2....dxjk . (10.10.1)

The general idea is that the k-form α' in dual x'-space is first pulled back to a different k-form in dual x-
space, and then the wedge product dxj1 ^ dxj2 ^ ...^ dxjk of basis functionals appearing in this pulled
back k-form is mysteriously replaced by a product of ordinary calculus differentials dxj1dxj2....dxjk .

The end result is that ∫F α' is some calculus-computable real number. In this notation, the form α' is

integrated over a surface F in x'-space determined by F = F ([0,1]k). We assume that the manifold M can
be covered by a single mapping x' = F(x), otherwise we create at atlas of mappings as described at the
end of Section 10.2.

Before delving into this subject, it seems useful to have some discussion of integrals of functions over
surfaces and curves in R3 without any mention of differential forms. This discussion takes the form of a
set of seemingly simple examples.

Chapter 10: Differential Forms

 223

INTEGRATION OF FUNCTIONS OVER SURFACES

Example 1: Compute the average temperature on a flat plate S' in the z' = 0 plane in R3 (x'-space).
 (10.10.2)

What is the meaning of "average temperature"? We partition the plate into a large array of N x N tiny
squares of equal area dA'i = Δx'Δy', and measure the temperatures Ti simultaneously in all N2 locations.
The average temperature is then <T> = (1/A') limN→∞ [ΣiTidA'i] where A' = ab is the area of the plate.
So this is an area-weighted average temperature which is cast into a standard-issue 2D Riemann integral,

 <T> = (1/A') ∫S'dA' T(x') = (1/ab) ∫
0

 a dx' ∫
0

 b dy' T(x',y',0) . dA' = dx'dy' (10.10.3)

This same kind of integral would be used to compute the average mass density of a flat plate which has
areal mass density ρ(x',y'),

 <ρ> = (1/A') ∫S'dA' ρ(x',y') . (10.10.4)

One could compute the center of mass location of a plate of mass m with similar integrals,

 <x'> = (1/m) ∫S'dA' x' ρ(x',y')

 <y'> = (1/m) ∫S'dA' y' ρ(x',y')

 m = ∫S' dA' ρ(x',y') . (10.10.5)

In this Example we put primes on the variables because they exist in x'-space. There is no need to do any
"pulling back" of the area element dA' = dx'dy' to some x-space. The integral is done directly in x'-space.

Example 2: Compute the average normal component of a magnetic field B on the same flat plate.
 (10.10.6)
We are still in x'-space. This problem is similar to the temperature problem with T → Bn' and the result is

 <Bn'> = (1/A') ∫S'dA' Bn'(x') = (1/A') ∫S'dA' B(x') • n̂'

 = (1/A')∫S'dA' • B(r'), dA' = dA' n̂' (10.10.7)

where in this problem it happens that

 n̂' = unit normal vector, normal to the surface of the plate at (x',y',0) = ẑ ' = constant .

Then

Chapter 10: Differential Forms

 224

 <Bn'> = <Bz'> = (1/ab) ∫
0

 a dx' ∫
0

 b dy' Bz(x',y',0) . (10.10.8)

For both these examples, one could consider a round plate instead of a square plate, and then one would
use dA' = dx'dy' → (r)drdθ where the Jacobian J = r appears. One could show that such differential area
patches dA' cover the plate surface perfectly with no overlaps and no missed regions.

Example 1a: Compute the average temperature on a spherical shell of radius R in R3.
Example 2a: Compute the average normal component of a magnetic field B on this shell. (10.10.9)

Treating this smooth surface as behaving locally like a flat plate, we use the general expressions
(10.10.3) and (10.10.7) obtained for Examples 1 and 2 above,

 <T> = (1/A') ∫S'dA' T(x')

 <Bn'> = (1/A') ∫S'dA' B(x') • n̂' . (10.10.10)

In spherical coordinates, A' = 4πR2, n̂' = r̂ and dA' = R2sinθdθdφ. This area measure can be deduced by
looking at a picture of spherical coordinates where dA' = (Rdθ)(Rsinθdφ) is a surface patch. Then,

 <T> = (1/4π) ∫
0

 2π dφ ∫
0

 π dθ sinθ T(Rsinθcosφ, Rsinθsinφ, Rcosθ)

 <Bn'> =
 = (1/4π) ∫
0

 2π dφ ∫
0

 π dθ sinθ Br(Rsinθcosφ, Rsinθsinφ, Rcosθ) . (10.10.11)

In the language of our earlier sections, we can think of this surface being defined by an underlying
transformation

 x' = F(θ,φ) : x' = Rsinθcosφ
 y' = Rsinθsinφ
 z' = Rcosθ (10.10.12)

where we would draw "parameter space" = Rn = R2 on the left (with coordinates θ and φ) and Rm = R3 on
the right. So one has (θ,φ)-space on the left, and x'-space on the right. In writing dA' = R2sinθdθdφ, we
are "pulling back" an area patch on the sphere in x'-space to a rectangular area dθdφ in (θ,φ)-space, and
we pick up an area conversion factor R2sinθ. Similarly, the functions T and Br are "pulled back" so they
are written in the form T(F(θ,φ) and Br(F(θ,φ). Although nothing has been said about "differential
forms", one suspects that this example can somehow be cast into a 2-form scenario.

Comment: We hope the reader will overlook the fact that if B really is a magnetic field, then <Bn'> = 0
when integrated over any closed surface S' (like a spherical shell) due to the divergence theorem and the
non-existence of magnetic monopoles, div B = 0. The concerned reader can think of B as some other
vector field.

Chapter 10: Differential Forms

 225

Example 1b: Compute the average temperature on an arbitrary smooth surface S' in x'-space.
Example 2b: Compute the average normal component of a magnetic field B on such a surface.
 (10.10.13)
Start again with (10.10.10),

 <T> = (1/A') ∫S' dA' T(x')

 <Bn'> = (1/A')∫S' dA' B(x') • n̂' = (1/A')∫S dA' • B(x') , dA' = dA' n̂' . (10.10.10)

The meaning of these integrals is clear: dA' is a local area element at point x' on the surface, n̂' is a local
unit normal at a point x' on the surface, and A' is the total area of the surface. One just has to figure out

what these quantities are for a given surface. Notice that ∫S' dA' • B(x') is the classic "surface integral

of a vector field" as one might encounter in an electrostatic flux calculation (B = E) or in a fluid flow
situation (B = v).

At point x' on the surface there is a tangent space Tx'M (Section 10.2) which is spanned by the tangent
base vectors u'1 and u'2 which appear in the kinematics package (10.6.a.1). Recall that these vectors are
generally not orthogonal. The magnitude of the area of the 2-piped subtended by these vectors is |u'1 x
u'2|. But we want a differential 2-piped at point x' with some small extents dξ1 and dξ2 in these two
directions, so then dA' = | (dξ1u'1) x (dξ2u'2) | = dξ1dξ2 | u'1 x u'2| .

Meanwhile, we know from (10.6.e.2) that u'1 = Ru1 and u'2 = Ru2, these being vector transformations
under x' = F(x). Therefore,

 R(dx1u1) = dx1u'1
 R(dx2u2) = dx2u'2 . (10.10.14)

Thus, the small rectangle spanned by (dx1u1,dx2u2) in x-space is mapped into a small 2-piped spanned
by (dx1u'1,dx'2u2) in x'-space. We can take this 2-piped to be the 2-piped discussed above by setting dξ1
= dx1 and dξ2 = dx2 and then we have dA' = | u'1 x u'2 | dx1dx2.

Recall from (10.6.e.3) that u'3 is constructed "as needed" so as to form a complete basis for R3 at point x'
on the surface S'. We can take u'3 = u'1 x u'2 and then u'3 can be identified with n', a normal vector at
point x' on the surface. We then need to know that magnitude of this vector to know dA'. Since Rm = R3 is
a Cartesian space, up and down vector component indices are the same, so (implied sums)

 | u'3|2 = | n' |2 = | u'1 x u'2 |2 = (u'1 x u'2) • (u'1 x u'2) = (u'1 x u'2)i(u'1 x u'2)i

 = [εiab (u'1)a(u'2)b] [εicd (u'1)c(u'2)d]

 = εiabεicd(u'1)a(u'2)b(u'1)c(u'2)d

Chapter 10: Differential Forms

 226

 = (δacδbd - δadδbc) (u'1)a(u'2)b(u'1)c(u'2)d // see e.g. Tensor (D.10.22)

 = (u'1)a(u'2)b(u'1)a(u'2)b – (u'1)a(u'2)b(u'1)b(u'2)a

 = Ra

1Ra
2 Ra

1Rb
2 – Ra

1Rb
2 Rb

1Ra
2 // kin. package (10.6.a.1) item (e)

 = Σa (Ra

1)2 Σb (Rb
2)2 – (ΣaRa

1Ra
2) (ΣbRb

1Rb
2)

 = [Σa (Ra

1)2] [Σa (Ra
2)2] – [ΣaRa

1Ra
2]2

 ≡ [K(x)]2 // since Ri

j = Ri
j(x) in general

or
 | u'3| = | n'| = K(x) = [Σa (Ra

1)2] [Σa (Ra
2)2] – [ΣaRa

1Ra
2]2 . (10.10.15)

We could have used the vector identity (A x B) • (A x B) = A2B2 – (A•B)2 in place of the εε product
method, but εε products are good to know about and we give a reasonable source above for the reader
interested in their generalizations. Finally then we have an expression for differential area dA',

 dA' = | u'1 x u'2 | dx1dx2 = | u'3| dx1dx2 = | n' | dx1dx2 = K(x) dx1dx2 . (10.10.16)

The vector n' = u'3 has the following components.

 (n')i = (u'1 x u'2)i = εiab (u'1)a(u'2)b = εiab Ra

1Rb
2 // Ri

j ≡ (∂x'i/∂xj)

so

 (n')1 = ε1ab Ra
1Rb

2 = R2
1R3

2 - R3
1R2

2 = det ⎝
⎛

⎠
⎞ R2

1 R2
2

 R3
1 R3

2
 =

∂(x'2, x'3)
∂(x1, x2)

 (n')2 = ε2ab Ra
1Rb

2 = R3
1R1

2 - R1
1R3

2 = det ⎝
⎛

⎠
⎞ R3

1 R3
2

 R1
1 R1

2
 =

∂(x'3, x'1)
∂(x1, x2)

 (n')3 = ε3ab Ra
1Rb

2 = R1
1R2

2 - R2
1R1

2 = det ⎝
⎛

⎠
⎞ R1

1 R1
2

 R2
1 R2

2
 =

∂(x'1, x'2)
∂(x1, x2) . (10.10.17)

On the far right we use a common Jacobian-like notation for the 2x2 determinants, where recall from
(2.1.2) that Ri

j ≡ (∂x'i/∂xj). We thus obtain this alternate expression for K2,

 K2 = | n'|2 = det2 ⎝
⎛

⎠
⎞ R2

1 R2
2

 R3
1 R3

2
 + det2 ⎝

⎛
⎠
⎞ R3

1 R3
2

 R1
1 R1

2
 + det2 ⎝

⎛
⎠
⎞ R1

1 R1
2

 R2
1 R2

2

 = [
∂(x'2, x'3)
∂(x1, x2)]2 + [

∂(x'3, x'1)
∂(x1, x2)]2 + [

∂(x'1, x'2)
∂(x1, x2)]2 . (10.10.18)

From (10.10.17) the vector n' and the unit normal vector n̂' = n' / |n'| = n'/ K may then be written,

Chapter 10: Differential Forms

 227

 n' = (
∂(x'2, x'3)
∂(x1, x2) ,

∂(x'3, x'1)
∂(x1, x2) ,

∂(x'1, x'2)
∂(x1, x2)) = (det ⎝

⎛
⎠
⎞ R2

1 R2
2

 R3
1 R3

2
 , det ⎝

⎛
⎠
⎞ R3

1 R3
2

 R1
1 R1

2
 , det ⎝

⎛
⎠
⎞ R1

1 R1
2

 R2
1 R2

2
)

 n̂' =
1

K(x) (
∂(x'2, x'3)
∂(x1, x2) ,

∂(x'3, x'1)
∂(x1, x2) ,

∂(x'1, x'2)
∂(x1, x2)) . (10.10.19)

Using (10.10.18) for dA' the solutions to our problems are,

 <T> = (1/A') ∫S' dA' T(x') = (1/A') ∫S T(F(x)) K(x) dx1dx2

 <Bn'> = (1/A')∫S' dA' B(x') • n̂' = (1/A')∫S B(F(x)) • n̂' K(x) dx1dx2

 = (1/A')∫S B(F(x)) • n' dx1dx2 (10.10.20)

where n̂' and K(x) are as shown above. Notice that the resulting integral is over the region S in x-space
which maps into the surface S' in x'-space under x' = F(x). The area A' is given by

 A' = ∫S' dA' = ∫S K(x) dx1dx2 . (10.10.21)

The scalar integral shown in (10.10.20) appears on Buck page 368 (7-3) where T = f, S' = Σ, S = D, and
where x1,x2 = u,v. The vector integral appears on p 403 where B = F .

The reader will no doubt notice that in writing dA' = K(x) dx1dx2 we are in fact "pulling back" some
tilted non-rectangular 2-piped patch dA' on the surface S' in x'-space to a rectangular patch dx1dx2 in x-
space and in doing so we pick up a Jacobian-like factor K(x). We are also "pulling back" the integrand
functions T(x') and B(x') by writing them as T(F(x)) and B(F(x)). Again we arrive at this "pulling back"
concept without ever mentioning "differential forms". The pullback integrals shown above are completely
well-defined and it is then just a matter of doing the integrals analytically or numerically.
 Recall that the square of the area transformation factor K is given by either

 K2 = [Σa=13 (Ra

1)2] [Σa=13 (Ra
2)2] – [Σa=13Ra

1Ra
2]2 . (10.10.15)

or

 K2 = det2 ⎝
⎛

⎠
⎞ R2

1 R2
2

 R3
1 R3

2
 + det2 ⎝

⎛
⎠
⎞ R1

1 R1
2

 R3
1 R3

2
 + det2 ⎝

⎛
⎠
⎞ R1

1 R1
2

 R2
1 R2

2
 . (10.10.18)

In the second form K2 is the sum of the squares of the three 2 x 2 minors of the 3 x 2 "tall" R matrix. See
for example Buck page 299 where K = k and Ri

j = aij. The two expressions above for K2 look totally
unrelated and it seems strange that they are equal. It turns out that K2 can be written in yet another way,

 K2 = det(RTR) (10.10.22)

where RT is the "matrix transpose" of R and not the "covariant transpose" discussed in Section 2.11 (f).
Recall from Fig (10.6.c.1) that RTR is a square n x n matrix and therefore has a determinant.

Chapter 10: Differential Forms

 228

Lest one have doubts, we have Maple compute K2 in all three ways and show that the three results are the
same:

Create a general 3 x 3 R matrix:

Compute K2 using (10.10.15) and call it K2a:

Extract the three 2x2 submatrices from R and call them A,B,C:

Compute K2 using (10.10.18), call it K2b:

Compute the matrix RTR:

Compute K2 using (10.10.22), call it K2c:

Show that all three K2 expressions are the same:

Chapter 10: Differential Forms

 229

Appendix F shows why K2 = det(RTR) in more generality and then Appendix G shows why K2 may
always be written as the sum of the squares of the full-width minors of R as in (10.10.18).

INTEGRATION OF FUNCTIONS OVER CURVES

As much as possible, this section mimics the previous section on integration of surfaces.

Example 3: Compute the average temperature on a piece of straight wire C' of length a in R3 in x'-space.
 (10.10.23)

Let t̂ ' be a unit vector which is tangent to the wire at some point x' on the wire. Let dx' be an arbitrary
differential distance vector whose tail is located at position x' on the wire. Then ds' = dx' • t̂ ' is a small
distance along the wire. In analogy with the flat plate of Example 1, the length-weighted average
temperature of a straight wire is

 <T> = (1/L')∫C'ds' T(x') ds' = dx' • t̂ ' . (10.10.24)

In this particular example, the wire is placed on the x' axis so L' = a, t̂ ' = x̂' , ds' = dx' • t̂ '= dx' . Then,

 <T> = (1/a) ∫
0

 a dx' T(x',0,0) . (10.10.25)

Example 4: Compute the average tangential magnetic field B on this same straight wire C'. (10.10.26)

This problem is similar to Example 2 (but n̂' → t̂ ') and the solution is

 <Bt'> = (1/L') ∫C'ds' Bt'(x') = (1/L') ∫C'ds' B(x') • t̂ ' , ds' = dx' • t̂ ' = dx'

 = (1/L') ∫C'dx' • B(x') , ds' t̂ ' = dx' . (10.10.27)

so

 <Bt'> = (1/a) ∫
0

 a dx' Bx'(x') . (10.10.28)

Example 3a: Compute the average temperature on a ring of wire C' of radius R in the x',y' plane of R3.
Example 4a: Compute the average normal component of a magnetic field B on this ring.
 (10.10.29)

Treating this smooth curve as behaving locally like a straight wire, we use the general expressions
(10.10.24) and (10.10.27) obtained for Example 3 and 4 above,

 <T> = (1/L')∫C'ds' T(x')

 <Bt'> = (1/L') ∫C'dx' • B(x') . (10.10.30)

Chapter 10: Differential Forms

 230

The ring is assumed centered at the origin of the x',y' plane so we use cylindrical coordinates with z' = 0,
which then is just polar coordinates, so t̂ ' = θ̂, dx' = Rdθ θ̂, ds' = dx' • t̂ ' = Rdθ, and L' = 2πR. Then,

 <T> = (1/2π) ∫
0

 2π dθ T(Rcosθ,Rsinθ,0)

 <Bt'> = (1/2π) ∫
0

 2π dθ Bθ(Rcosθ,Rsinθ,0) (10.10.31)

where the last argument of the integrand functions indicates z' = 0 for our placement of the ring in R3.

Again, the differential distance element ds' = Rdθ is being "pulled back" from x'-space = R3 to θ-space =
R1, and the integrand functions are pulled back according to T(F(θ)) and Bθ(F(θ)) where

 x' = F(θ) : x' = Rcosθ
 y' = Rsinθ
 z' = 0 . (10.10.32)

Example 3b: Compute the average temperature on an arbitrary smooth wire C' in R3.
Example 4b: Compute the average normal component of a magnetic field B on this wire. (10.10.33)

Start again with (10.10.30),

 <T> = (1/L')∫C' ds' T(x') = (1/L')∫C'dx' • t̂ ' T(x')

 <Bt> = (1/L') ∫C'ds' B(x') • t̂ ' = (1/L') ∫C'dx' • B(x'), ds' = dx' • t̂ ' . (10.10.34)

The curve C' exists in x'-space Rm = R3 and we take x-space to be Rn = R1. Then curve C in x-space is
just the line segment there from x1 = 0 to a and this maps into curve C' under x' = F(x). In other words,
the curve C' in x'-space is being pulled back to a straight line segment C of x-space. To be consistent, we
should be calling the x'-space curve F instead of C', and in Example 2b we should call the surface F
instead of S', since in both cases the curve and surface are generated by x' = F(x), but we shall sacrifice
consistency for clarity.
 The most pressing issue now is how to compute the unit tangent vector t̂ '. Reaching into our
kinematics package (10.6.a.1) and nearby discussion, we realize that

 t' = u'1 , t̂ ' = u'1 / | u'1| . (10.10.35)

This is because the tangent space Tx'M is spanned by the single tangent base vector u'1, while the other
two vectors u'2 and u'3 are selected "as needed" to span the perp space to Tx'M in R3. We invent some
differential distance dξ so that dx' = dξ u'1 = dξ t' points along the curve C' at point x'.

We know from (10.6.e.2) that u'1 = Ru1, this being a vector transformation under x' = F(x). Therefore

Chapter 10: Differential Forms

 231

 R(dx1u1) = dx1u'1 . (10.10.36)

Thus, the small differential vector dx = dx1u1 in x-space (tangent to C) is mapped into a small
differential vector dx' = dx1u'1 in x'-space, tangent to C' at point x' on C'. Thus we select dξ = dx1 and
conclude that

 dx' = dx1 u'1 so ds' = |dx'| = | dx1 u'1| = | u'1| dx1 = | t' | dx1 . (10.10.37)

The distance ds' in x'-space is thus being pulled back to distance dx1 in x-space with scaling factor | t' | .

The components of the vector t' = u'1 are, from (10.6.a.1) item (e),

 (t')i = Ri

1(x)

 t' = (R1

1, R2
1, R3

1) = ((∂x'1/∂x1), (∂x'2/∂x1), (∂x'3/∂x1)) (10.10.38)

and then

 | t'| 2 = (R1

1)2 + (R2
1)2 + (R3

1)2 = (∂x'1/∂x1)2 + (∂x'2/∂x1)2 + (∂x'3/∂x1)2

 ≡ K2(x) // a new and different K from that of Example 2b
or
 | u'1| = | t' | = K(x) = (R1

1)2 + (R2
1)2 + (R3

1)2 (10.10.39)

and then

 ds' = | t'| dx1 = K(x) dx1. // x = x1 (10.10.40)

Just as in (10.10.15), (10.10.18) and (10.10.22), the factor K2(x) can be written three ways,

 K2(x) = (R1

1)2 + (R2
1)2 + (R3

1)2 = Σa=13(Ra
1)2

 K2(x) = det2(R1

1) + det2(R2
1) + det2(R3

1) // minors of R are all 1 x 1

 K2(x) = det[RTR] = RTR = (R1
1, R2

1, R3
1)

⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞ R1

1

 R2
1

 R3
1

 = (R1
1)2 + (R2

1)2 + (R3
1)2

or
 K2(x) = det[RTR] = (RTR)11 = Σa=13 (RT)1aRa

1 = Σa=13 Ra
1Ra

1 = Σa=13(Ra
1)2 . (10.10.41)

Here we don't need a Maple program to verify that all three forms give the same result. Note that the
"tall" R matrix is the 3x1 matrix shown on the second last line above.

The solutions to our two exercise problems are then (we write <Bt'> in many equivalent ways),

Chapter 10: Differential Forms

 232

 <T> = (1/L') ∫C'ds' T(x') = (1/L') ∫
0

 a dx1 K(x) T(F(x))

 <Bt'> = (1/L') ∫C'ds' B(x') • t̂ ' = (1/L') ∫C'dx' • B(x')

 = (1/L') ∫C dx • B(F(x)) = (1/L') ∫
0

 a dx1 B(F(x)) • u1 = (1/L') ∫
0

 a dx1 B(F(x)) • t'

 = (1/L') ∫
0

 a dx1 Bi(F(x)) (t')i = (1/L') ∫
0

 a dx1 Bi(F(x)) Ri
1(x) (10.10.42)

where

 dx = dx1u1 // below (10.10.36)

 dx' = dx1 u'1 = dx1 t' // (10.10.37) and (10.10.35)

 ds' = | t' | dx1 = K(x) dx1 // (10.10.40)

 L' = ∫C'ds' = ∫
0

 a dx1 K(x) = arc length of the curve C' in x'-space . (10.10.43)

 Notice that ∫C' dx' • B(x') is the classic "line integral of a vector field".

If the variable x1 = x were time t, then the above K2(t) = (∂x'1/∂t)2 + (∂x'2/∂t)2 + (∂x'3/∂t)2 could be
interpreted as the square of the velocity of a particle moving along the curve C',

 K2(t) = v'12 + v'22 + v'32 = (v')2 ⇒ K(t) = | v' | = | ∂tx' | = | ∂tF(t) | . (10.10.44)

The scalar integral in (10.10.42) appears on Buck page 367 (7-1) where

 T = f, C' = γ , x = t, [0,a] → [a,b] and K = |∂tγ|
so

 ∫
0

 a dx1 K(x) T(F(x)) → ∫
a

 b dt |∂tγ| f(γ(t)) . // Buck 367 (7-1)

The vector integral in (10.10.42) appears for R2 on Buck page 376 (7-7) where

 B = (A,B), (x'1, x'2) = (φ,ψ), t' = ((∂x'1/∂t), (∂x'2/∂t)) = (∂tφ,∂tψ), and [0,a] → [a,b]
so

 <Bt'> = ∫
0

 a dx1 B(F(x)) • t' → ∫
a

 b dt [A(γ(t)) (∂tφ) + B(γ(t)) ∂tψ] . // Buck 376 (7-7)

Chapter 10: Differential Forms

 233

Comments on the above examples

As will be seen formally in the next section, the surface and curve integrations discussed above fall into
the realm of 2-form and 1-form integrations. In the above examples, there was no mention of
"functionals" or "dual spaces" or "wedge products" or "cosmetic notation" or even of "differential forms".
No mention was made of "surface orientation". The calculations were performed on an ad hoc basis as
any journeyman might approach these problems. There was, however, some discussion of "pulling back"
integrand functions and differential areas and differential lengths from Rm to Rn, but there was no mention
of pulling back functionals between the corresponding dual spaces.
 The method of differential forms provides a systematic method for doing integrations over "surfaces"
(manifolds) of any dimension embedded in a space of any same or larger dimension, where the spaces can
have arbitrary metric tensors, and where orientation is tracked.

10.11 Integration of differential k-forms over Surfaces

Using our cosmetic notation for k-form functionals, we write

 αx' = Σ'I fI(x') dx'^I // original k-form in Λ'k(Rm) (10.8.15) 6

 F*(αx') = Σ'I fI(F(x)) Σ'J det(RI

J) dx^J // k-form pulled back into Λk(Rn) . (10.8.19)

The pulled back k-form can be rewritten compactly as

 βx ≡ F*(αx') = Σ'J gJ(x) dx^J where gJ(x) = Σ'I fI(F(x)) det(RI

J) . (10.11.1)

Besides grouping terms into gJ(x) we have assigned the name βx to the pulled-back k-form. This pulled-
back k-form is written out in detail in (10.8.3) with a display of the RI

J matrix in (10.8.4)

The point x' lies on a "surface" in x'-space which is generated by a defining transformation x' = F(x). A
region we shall call S in x-space maps into a region S' on the manifold as shown in Fig (10.2.1) with S=U
and S'=V. The letter S suggests the word "Surface".

The integral of the original k-form αx' over surface S' is then set equal to the integral of the pulled-back
k-form F*(αx') over the pulled-back surface S,

 ∫S'αx' ≡ ∫S βx . (10.11.2)

Below we shall refer to this as our first definition, as if the right side defines the meaning of the left side.
That is to say, the integral of a k-form αx' over some complicated surface (manifold) in x'-space is
reduced to an integral of a different k-form βx over a relatively simple surface in x-space. This is
reminiscent of our examples in Section 10.10 where we had, for example,

 ∫S' dA' B(x') • n̂' = ∫S B(F(x)) • n̂' K(x) dx1dx2 (10.10.20)

Chapter 10: Differential Forms

 234

where ∫S' is over an arbitrary surface in x'-space while ∫S is a straightforward integral in Cartesian x-

space. The big difference however is that in Section 10.10 we were dealing with calculus integrals,
whereas here we are dealing with k-forms which are functionals in certain dual spaces. In the case of the
calculus integral examples, one can regard the shift from x'-space to x-space as nothing more than a
"change of variables" and there is no "first definition" of anything.

We then come to our second definition which is this:

 ∫S βx = ∫S [Σ'J gJ(x) dx^J] ≡ ∫S Σ'J gJ(x) dxj1dxj2 ... dxjk (10.11.3)

and one ends up the a well-defined multivariable calculus integral.
 One must ask: how is it that the functional

 dx^J = λ^J = λj1 ^ λj2^ ... ^ λjk = dxj1 ^ dxj2 ^ ... ^ dxjk

disappears and is replaced by dxj1dxj2 ... dxjk? This transition is not so easy to detect in some sources
because the wedge product hats are suppressed and dxj and dxj are typeset identically.

One answer to this question is the following. One writes

 βx(S) ≡ ∫S βx ≡ ∫S Σ'J gJ(x) dxj1dxj2 ... dxjk . (10.11.4)

In this point of view, one regards the k-form βx as a functional which acts on regions of Rn to produce a
real number so there is a mapping (a "functional" is any mapping to the reals),

 βx : S ⊂ Rn → R . (10.11.5)

This is a different kind of functional from the functional dx^J = λ^J ∈ Λk(Rn) which is a vector in the
dual space shown. Whereas dx^J is a linear functional, βx(S) is not a linear functional, for example, since
doubling the region S is not likely to double the resulting real number βx(S).

This seems to be the approach taken by Loring Tu, where we quote from his p 263,

 (10.11.6)

Chapter 10: Differential Forms

 235

Here he is stating our "second definition". Buck also takes this approach, referring in his Definition on
page 381 to a k-form ω as a "region-functional". He writes as a 3-form example,

 ω = A(x,y,z) dxdydz // meaning ω = A(x,y,z) dx^dy^dz

 ω(Ω) = ∫∫∫Ω A(x,y,z) dxdydz Ω = a region in the definition domain of ω

Arm-waving comment: We know that an exterior derivative increases the rank of a k-form by one unit. It
is not unreasonable then to say that a k-fold integration of a k-form reduces the rank of that k-form by k
units down to rank 0, which is a scalar function and in the above situation just a number, the value of the
integral.

In any event, the end result for the integral of a k-form over a manifold region S' in x'-space is this:

 ∫S' αx' = ∫S'[Σ'I fI(x') dx'i1 ^ dx'i2 ^ ... ^ dx'ik] // αx' = Σ'I fI(x') dx'^I

 ≡ ∫S [Σ'J gJ(x) dxj1 ^ dxj2 ^ ... ^ dxjk] // first definition (pullback)

 ≡ ∫S [Σ'J gJ(x) dxj1dxj2 ... dxjk] // second definition

where
 gJ(x) = Σ'I fI(F(x)) det(RI

J) and x' = F(x) , R = (DF) . (10.11.7)

As we shall see in Section 10.12, this specification reproduces the "journeyman" integration results shown
in the examples of Section 10.10. Recall that Σ'I and Σ'J are ordered sums.

An Alternate Approach

In this thread we take a narrower view of the functional sense of the k-form integral. We treat ∫S' αx' as

if it were a discrete sum over the points x' on the surface S'. Since αx' is a certain functional, the integral

∫S' αx' is then also a functional, being a sum of functionals. In some sense the analysis below is a

microscale interpretation of the region-functional approach noted above. The development below is done
in Dirac notation, but it could be restated using the pullback function F* .

In a first step, we write the pullback of the original k-form "sum" as,

 [∫S' αx'] R = ∫S βx (10.11.8)

where R is the Dirac pullback operator used in Section 10.7. Recall that the pulled-back k-form is,

 βx = Σ'J [gJ(x)] dx^J = Σ'J [gJ(x)] λ^J // (10.11.1) and definition (10.1.9) that dx^J ≡ λ^J

 = Σ'J [Σ'I fI(F(x)) det(RI

J)] λ^J // insert gJ(x) from (10.11.1)

Chapter 10: Differential Forms

 236

 = Σ'I fI(F(x)) [Σ'J det(RI

J) λ^J] // reorder

 = Σ'I fI(F(x)) [ΣJ RI

J λ^J] // (10.8.1) to get symmetric J sum and no det

 = Σ'I fI(F(x)) [ΣM RI

M λ^M] . // rename dummy multiindex J→M (10.11.9)

Since λ^M = <u^M | from (2.11.c.2), we rewrite (10.11.8) in Dirac notation,

 <∫S' αx' | R = ∫S <βx| = ∫S Σ'I fI(F(x)) ΣM RI
M <u^M | (10.11.10)

which is interpreted as a functional in Λk(Rn) (see fiber comment below).

 In a second step we close this functional with a certain "measure ket" |μ> defined as

 | μ> ≡ Σ'J | dxJ> = Σ'J | dxj1> ⊗ | dxj2>.⊗ ... ⊗ | dxjk>

 = Σ'J | dxj1, dxj2 ... dxjk > (10.11.11)

where the differential vectors are aligned with the axes of x-space Rn,

 dxj ≡ dxj uj // no sum on j or | dxj> = dxj | uj> . (10.11.12)

Here dxj is a vector in Rn and | dxJ> is a vector in (Rn)k called Vk in Chapter 5. Thus,

 | μ > = Σ'J dxj1dxj2 ... dxjk | uj1, uj2 ... ujk >

 = Σ'J dxJ | uJ > // multiindex notation, dxJ ≡ dxj1dxj2 ... dxjk . (10.11.13)

For example, for k = 1,2,3 in Rn = R3 the vector | μ> would be

 | μ > = | dx1> + | dx2> + | dx3> // k = 1

 | μ > = | dx1, dx2> + | dx1, dx3> + | dx2, dx3> // k = 2

 | μ > = | dx1, dx2, dx3> . // k = 3 (10.11.14)

We then define "the integral of the k-form αx' in x'-space" as follows,

 " ∫S' αx'" ≡ < ∫S' αx' | R | μ > = < ∫S βx | μ > = ∫S <βx | μ > (10.11.15)

where we end up with the integral of a certain tensor function over S. Next, write

Chapter 10: Differential Forms

 237

 ∫S <βx | μ > = ∫S Σ'I fI(F(x)) ΣM RI
M <u^M | μ > // (10.11.10)

 = ∫S Σ'I fI(F(x)) ΣM RI
M Σ'J <u^M | dxJ> // (10.11.11)

 = ∫S Σ'I fI(F(x)) ΣM RI
M Σ'J dxJ <u^M | uJ > . // (10.11.13) (10.11.16)

In our Chapter 8 normalization for wedge products, we write

 <u^M | uJ > = (λm1 ^ λm2 ^ ... ^ λmk) (uj1,uj2, ...ujk) // (2.11.c.2) λi ≡ <ui|

 = (1/k!) det(δMJ) . // (8.3.9.b) (10.11.17)

In the Spivak normalization of the wedge product (see below (8.1.3) the (1/k!) is replaced by 1, and we
shall now continue in the Spivak normalization, so

 <u^M | uJ > = det(δMJ) . // using Spivak wedge product normalization (10.11.18)

Inserting this into (10.11.16) gives

 ∫S < βx | μ > = ∫S Σ'I fI(F(x)) Σ'J dxJ [ΣM RI
M det(δMJ)] (10.11.19)

where we have shifted the M sum to the right. Now consider,

 ΣM RI

M [det(δMJ)]

 = ΣM RI

M [ΣP (-1)S(P) δMP(J)] // (A.1.21)

 = ΣP (-1)S(P) ΣM RI

M δMP(J) // reorder

 = ΣP(-1)S(P) RI

P(J) // k matrix multiplications

 = det(RI

J) . // (A.1.21) (10.11.20)

Inserting this result into (10.11.19) gives

 ∫S < βx | μ > = ∫S Σ'I fI(F(x)) Σ'J dxJ det(RI
J)]

 = ∫S Σ'I fI(F(x)) Σ'J det(RI
J) dxJ . (10.11.21)

Chapter 10: Differential Forms

 238

The final result then is

 " ∫S' αx'" ≡ < ∫S' αx' | R | μ > = < ∫S βx | μ > = ∫S < βx | μ >

 = ∫S Σ'I fI(F(x)) Σ'J det(RI
J) dxj1dxj2 ... dxjk

 = ∫S gJ(x) dxj1dxj2 ... dxjk . (10.11.22)

This result then is the same as (10.11.7) obtained by making the "two definitions". Our resulting tensor
function turns out to be just a constant function which is a real number which is the result of doing the
above regular calculus multivariable integration.
 Our alternate approach lacks rigor since the integration is treated as a sum over points x' on a
manifold and this really means that the Dirac space used above is some kind of fiber bundle space (the
tangent bundle of Section 10.2). Moreover, the measure ket |μ> = Σ'J | dxJ> seems arbitrary, but it does
manage to "sweep up" all contributions to the integration and we do get the correct result. The method
does at least provide an alternative explanation of how the functional dx^J wedge product is replaced by
the calculus product dxJ.

10.12 Integration of 1-forms

General Review of k-form integration

This section is presented in the x = φ(t) notation introduced in Section 10.9 and illustrated in hybrid Fig
(10.9.3) which we replicate here,

 (10.9.3)
The main result of Section 10.11 is this description of the integration of a k-form over a surface,

Chapter 10: Differential Forms

 239

 ∫S' αx' = ∫S'[Σ'I fI(x') dx'i1 ^ dx'i2 ^ ... ^ dx'ik] // αx' = Σ'I fI(x') dx'^I

 ≡ ∫S [Σ'J gJ(x) dxj1 ^ dxj2 ^ ... ^ dxjk] // first definition (pull back)

 ≡ ∫S [Σ'J gJ(x) dxj1dxj2 ... dxjk] // second definition

where
 gJ(x) = Σ'I fI(F(x)) det(RI

J) and x' = F(x) , R = (DF) . (10.11.7)

Using the x = φ(t) notation we rewrite the above (with some specialization) as,

 ∫φ αx = ∫φ Σ'I fI(x) dxi1 ^ dxi2 ^ ... ^ dxik // αx = Σ'I fI(x) dx^I

 ≡ ∫[0,1]k Σ'J gJ(t) dtj1 ^ dtj2 ^ ... ^ dtjk // first definition (pull back)

 ≡ (∫
0

 1 ∫
0

 1 ... ∫
0

 1) Σ'J gJ(t) dtj1dtj2 ... dtjk // second definition

where
 gJ(t) = Σ'I fI(φ(t)) det(RI

J) and x = φ(t) , R = (Dφ) . (10.12.1)

Here the pulled-back integration region formerly called S is taken to be the unit cube in k dimensions,
written above as [0,1]k and referred to as a k-cube. The pre-pullback integration region formerly called S'
is here called φ, with the idea that this region is φ([0,1]k).

Note: A k-chain is a linear combination of k-cubes and is used by both Sjamaar (p 65) and Spivak (p 97)
in their derivations of Stokes' Theorem. In fact, Spivak's entire Chapter 4 which includes his discussion of
tensor products, wedge products and tensor functions is entitled Integration on Chains.

Integration of 1-forms

We wish now to look in more detail at the integration of 1-forms. There is much repetition of statements
below because the meaning of objects tends to quietly diffuse away as one proceeds.

Consider this general 1-form in x-space Rm ,

 αx = Σi fi(x) xλi = Σi fi(x) dxi . (10.12.2)

We wish to define a meaning for the integration of this 1-form αx over a piece of the curve x = φ(t),

 ∫φ αx = ∫φ Σi fi(x) dxi = integral of a 1-form over a piece of the curve φ in Rm . (10.12.3)

The transformation x = φ(t) is a mapping φ: t → Rm. Variable t is often called "the parameter".

Chapter 10: Differential Forms

 240

Comment: Officially it is the mapping φ which is "the curve", but one loosely refers to the image (trace)
of this mapping in Rm as "the curve". The distinction is necessary because many mappings can have the
same image curve, such as φ(t) and φ(t2), where the parameter is "re-speeded" (reparametrized). This
picture shows the general respeeding idea :

 (10.12.4)

Here the same red curve is the image of two different transformations x = φ(t) and x = ψ(t) with different
domain intervals, and ψ(t) = φ(f(t)) where f(t) is a monotonic respeeding function. A special case would
be [a,b] = [c,d] = [0,1] to which our example φ(t) and ψ(t) = φ(t2) would apply. Mappings φ and ψ are

called smoothly equivalent curves and ∫φ αx is the same for any two such curves (Buck p 386 Theorem 2

(i)). A similar but generalized reparametrization comment applies to integration of 2-forms and k-forms.

So imagine that we have a curved line hanging in Rm space and as t varies perhaps from 0 to 1 in t-space,
we move along the image curve in Rm. The problem is how to integrate a 1-form along this curve.

We can define the calculational meaning of the above integral in two steps, each being a definition, as
outlined in Section 10.11.

First definition:

 ∫φ αx ≡ ∫[0,1] φ*(αx)

 = the integral in t-space of the pullback of αx over the 1-cube [0,1] (10.12.5)

On the left is an integral of the 1-form αx over a curve φ in Rm.
On the right is an integral of a different 1-form φ*(αx) (the pullback of αx) over a 1-cube [0,1] in R1.
Note that αx lies in xΛ1(Rm) while φ*(αx) lies in tΛ1(R).
Since our usual 1-form pullback mapping is φ* : xΛ1(Rm) → tΛ1(Rn), we have n = 1 (see (10.7.18)).

The "tall" m x n R-matrix for this problem is then an m x 1 matrix which is just a column vector of m
elements ∂tφi ,

 Ri

1 = (D(t)φ)i1 = ∂φi(t)/∂t . // t1 ≡ t, the only coordinate in t-space (10.12.6)

Chapter 10: Differential Forms

 241

We then compute the pullback of φ*(αx) of αx :

 αx = Σi fi(x) xλi = Σi fi(x) dxi = f(x) • dx , dx ≡ (dx1, dx2, dxm)

 φ*(αx) = Σi φ*(fi(x)) φ*(dxi) // (10.9.5) 3

 = Σi fi(φ(t)) Σj=1n Ri

j dtj // (10.9.5) 1 and 5

 = Σi fi(φ(t)) Ri

1 dt1 // n = 1

 = Σi fi(φ(t)) [∂φi(t)/∂t] dt // (10.12.6) and t1 = t

 = g(t) dt (10.12.7)

where

 g(t) ≡ Σi fi(φ(t)) [∂φi(t)/∂t] = Σi fi(φ(t)) ∂tφi(t) = f(φ(t)) • (∂tφ) . (10.12.8)

The object φ*(αx) = g(t) dt is a 1-form in dual t-space tΛ1(R).

Using the definition given above, one then has,

 ∫φ αx = ∫φ αx = ∫[0,1] φ*(αx) = ∫[0,1] g(t) dt . (10.12.9)

Thus the integral of the 1-form αx over the curve φ in x-space is defined to be equal to the integral of the
1-form g(t) dt over a 1-cube in t-space. So far no regular calculus integrals have appeared.

Second definition:

 ∫[0,1] g(t) tλ = ∫[0,1] g(t) dt ≡ ∫
0

 1 g(t) dt . (10.12.10)

On the left is the integral of a 1-form on a 1-cube, on the right is an ordinary calculus integral of a
function over the interval [0,1] of the real axis. It is this second definition that motivates giving the dual
space basis vector tλ the cosmetic name dt.
 If one flips the "orientation" of the integration domain, so that [0,1] becomes [1,0], the result changes

sign, and of course this fact agrees with the usual notion that ∫
1

 0 g(t) dt = - ∫
0

 1 g(t) dt .

 We have then shown that the integral of a 1-form is described by,

Chapter 10: Differential Forms

 242

 ∫φ αx = ∫φ f(x) • dx = ∫[0,1] g(t) dt

 = ∫
0

 1 f(φ(t)) • (∂tφ(t)) dt = ∫
0

 1 fi(φ(t)) [∂φi(t)/∂t] dt . (10.12.11)

This result appears in Sjamaar Ch 4 Eq (4.1) with φ = c and m = n.

Notice that the only locations where f(x) is "sensed" in this integral are points on the curve x = φ(t).

Since dx = (∂tφ(t)) dt, the above can be written concisely as

 ∫φ αx = ∫φ f(x) • dx = ∫
0

 1 f(φ(t)) • dx where dx = (∂tφ(t)) dt . (10.12.12)

We redisplay the earlier Fig (10.9.3b) to illustrate the above discussion, where βt = g(t) dt :

 (10.12.13)
Recall now our "no differential forms" integration done in (10.10.42),

 L' <Bt> = ∫
0

 a dx Σj=13 Bi(F(x)) Ri
1(x) . // Bt means Btangent (10.12.14)

In the x = φ(t) notation this reads, setting a = 1 and replacing 3 by m,

 L <Bt> = ∫
0

 1 dt Σj=1m Bi(φ(t)) (Dφ)i1(t)

 = ∫
0

 1 dt Σj=1m Bi(φ(t)) ∂iφ(t)

 = ∫
0

 1 B(φ(t)) • ∂φ(t) dt (10.12.15)

Chapter 10: Differential Forms

 243

which is the same integral appearing in (10.12.11) with f = B. Therefore, we can interpret (10.12.15) as
being the integral of the 1-form,

 αx = Σi Bi(x) xλi = Σi Bi(x) dxi = B(x) • dx (10.12.16)

and one then has

 ∫φ αx = ∫φ B(x) • dx = ∫
0

 1 B(φ(t)) • ∂φ(t) dt = ∫
0

 1 B(φ(t)) • dx (10.12.17)

where dx = (∂tφ(t)) dt. This integral is normally written ∫φ B(x) • dx showing again the motivation for

the cosmetic functional notation dx. This is the "line integral of a vector field B over a curve φ ".

Now return to (10.12.11),

 ∫φ αx = ∫
0

 1 f(φ(t)) • (∂tφ(t)) dt . (10.12.11)

Suppose the vector field f(φ(t)) happens to be tangent to the curve φ for all values of t. In this case

 f(φ(t)) • (∂tφ(t)) = | f(φ(t)) | | (∂tφ(t)) | (10.12.18)

since ∂tφ(t) is tangent to the curve at t. Note that

 | (∂tφ(t)) |2 = Σi=1m (∂tφi(t))2 = Σi=1m (Ri

1) 2 . (10.12.19)

which we recognize as the K2 object of (10.10.41). Setting | f(φ(t)) | = T(φ(t)), we find that

 ∫φ αx = ∫
0

 1 T(φ(t)) K(t) dt (10.12.20)

and this shows how the temperature integral of (10.10.42) can be fitted into the 1-form framework.

Example for Rm = R2: The "angle form" problem mentioned in (10.5.10). (10.12.21)

In this problem we have specific functions f1 and f2, a specific range [0,2π] for the t-space domain, and a
specific curve (a circle) x = φ(t) = (x1,x2).

 αx = Σi=12 fi(x) xλi = f1(x) dx1 + f2(x) dx2

 = - (x2/r2) dx1 + (x1/r2) dx2 where r2 ≡ (x1)2 + (x2)2

Chapter 10: Differential Forms

 244

 x1 = φ1(t) = cos t ∂tφ1(t) = -sin t t = [0,2π]
 x2 = φ2(t) = sin t ∂tφ2(t) = cos t t is the polar angle of the vector x = (x1,x2)

 r2 = (x1)2 + (x2)2 = cos2 t + sin2 t = 1 vector x lies on the unit circle in x-space

 f1(φ(t)) = - (x2/r2) = - sin t
 f2(φ(t)) = + (x1/r2) = cos t

 αx = - sin t dx1 + cos t dx2

 φ*(αx) = g(t) dt pullback of αx (10.12.7)

 g(t) = fi(φ(t)) [∂φi(t)/∂t] = [f1(φ(t))∂tφ1(t) + f2(φ(t))∂tφ2(t)] = [(-sin t)(-sin t) + (cos t)(cos t)]

 = 1
so
 φ*(αx) = 1 dt

 ∫φ αx = ∫[0,2π] φ*(α) = ∫[0,2π] g(t) dt = ∫[0,2π] dt = ∫
0

 2π dt

 = 2π .

So the integral of this particular 1-form α around the unit circle gives the number 2π. In this example we
are trying to "cover" a full circle with a single mapping x = φ(t) and the circle has a "seam" which maps
back to both t = 0 and t = 2π resulting in the 2π above. See comments below (10.5.9) concerning how this
1-form example provides a counterexample to the Poincaré Lemma and shows that αx is not exact.

Integration of 1-forms over more general regions of t-space

In the general mapping picture where φ : Rn → Rm one is allowed to have k-forms with k ≤ n but we are
usually interested in the case that k = n since this makes the most "efficient" use of t-space on the left. But
there is no reason not to consider k < n.

Consider then this 1-form situation in the context φ: R2 → R3 :

Chapter 10: Differential Forms

 245

 (10.12.22)

Now the simple 1-cube in R1 t-space is replaced by a general curve U in R2, but we are still mapping a
curve U to a curve V. We go through the steps above:

 αx = Σi fi(x) xλi = Σi fi(x) dxi . (10.12.2)

 ∫φ αx = ∫V Σi fi(x) dxi = integral of a 1-form over a piece of the curve V in Rm . (10.12.3)

First definition:

 ∫V αx ≡ ∫U φ*(αx)

 = the integral in t-space of the pullback of αx over the curve U in R2 (10.12.23)

We then compute the pullback of φ*(αx) of αx :

 αx = Σi fi(x) xλi = Σi fi(x) dxi = f(x) • dx , dx ≡ (dx1, dx2, dxm)

 φ*(αx) = Σi=1m φ*(fi(x)) φ*(dxi) // (10.9.5) 3

 = Σi=1m fi(φ(t)) Σj=12 Ri

j dtj // (10.9.5) 1 and 5

 = Σi Σj fi(φ(t)) [∂φi(t)/∂tj] dtj

 = Σj gj(t) dtj

 = g(t) • dt (10.12.24)
where

 gj(t) ≡ Σi fi(φ(t)) [∂φi(t)/∂tj] = Σi fi(φ(t)) ∂jφi(t) = f(φ(t)) • (∂jφ) . (10.12.25)

Chapter 10: Differential Forms

 246

Second definition:

 ∫U gj(t) tλj = ∫U g(t) • dt = ∫U g(t) • dt . (10.12.26)

Assembling the pieces,

 ∫V αx = ∫V f(x) • dx = ∫U φ*(αx) = ∫U g(t) • dt = ∫U g(t) • dt . (10.12.27)

When one curve is mapped into another by x = φ(t), this result shows how to reduce the integral of the 1-

form αx to a calculus line integral in t-space. In effect, the line integral ∫V f(x) • dx in x-space is

replaced by the line integral ∫U g(t) • dt in t-space.

10.13 Integration of 2-forms

We wish now to look in more detail at the integration of 2-forms. The general k-form integration result is
stated in (10.12.1). Once again, there is much repetition below intended to reinforce the meaning of
various objects.

For the moment we set m = 3 and consider this 2-form in x-space R3 ,

 αx = Σ'I fI(x) xλ^I = Σ'I fI(x) dx^I = Σ1≤i1<i2≤3 fi1i2(x) dxi1 ^ dxi2

 = f12(x) dx1 ^ dx2 + f13(x) dx1 ^ dx3 + f23(x) dx2 ^ dx3 . (10.13.1)

We wish to define a meaning for the integration of this 2-form α over a piece of the surface x = φ(t),

 ∫φ αx = ∫φ Σ'I fI(x) dxi1 ^ dxi2 = integral of a 2-form over the surface φ in R3 . (10.13.2)

The transformation x = φ(t) is a mapping φ: (t1,t2) → R3 where t1 and t2 are "parameters".

Comment: Officially it is the mapping φ which is the "surface", but we loosely refer to the image (trace)
of this mapping in R3 as "the surface". The distinction is necessary because many mappings can have the
same image surface, such as φ(t1,t2) and φ(t12,t22) where the parameters are "respeeded"
(reparametrized). If the integral of the 2-form αx is the same over surfaces φ and ψ which have the same
image surface, the two surfaces are called smoothly equivalent surfaces, see Buck p 386 Theorem 2 (ii).

So imagine that we have a 2D surface hanging in R3 and as t1 and t2 vary (each perhaps from 0 to 1 in t-
space), we move around on the image surface in R3. The problem is how to integrate a 2-form over this
surface.

Chapter 10: Differential Forms

 247

We can define the calculational meaning of the above integral in two steps, each being a definition, as
outlined in Section 10.11.

First definition:

 ∫φ αx ≡ ∫[0,1]2 φ*(αx)

 = the integral in t-space of the pullback of αx over the 2-cube [0,1]2 (10.13.3)

On the left is an integral of the 2-form αx over a surface φ in R3.
On the right is an integral of a different 2-form φ*(αx) (the pullback of αx) over a 2-cube [0,1]2 in R2.
Note that αx lies in xΛ2(R3) while φ*(αx) lies in tΛ2(R2).
Since our usual mapping is φ* : xΛ1(Rm) → tΛ1(Rn) we have m = 3 and n = 2 (see (10.7.18)).

The "tall" m x n R-matrix for this problem is then a 3 x 2 matrix,

 Ri
j = (Dφ)ij = ∂φi/∂tj = ∂jφi i = 1,2,3 j = 1,2 R =

⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞ ∂1φ1 ∂2φ1

 ∂1φ2 ∂2φ2

 ∂1φ3 ∂2φ3
 . (10.13.4)

We then compute the pullback φ*(αx) of αx :

 αx = Σ1≤i1<i2≤3 fi1i2(x) xλ^I = Σ1≤i1<i2≤3 fi1i2(x) dxi1 ^ dxi2

 φ*(αx) = Σ1≤i1<i2≤3 φ*(fi1i2(x)) φ*(dxi1 ^ dxi2) // (10.9.5) 3

 = Σ1≤i1<i2≤3 fi1i2(φ(t)) Σ1≤j1<j2≤2 det

⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞

∂φi1

∂tj1
∂φi1

∂tj2

∂φi2

∂tj1
∂φi2

∂tj2
 dtj1 ^ dtj2 // (10.9.16)

 = Σ1≤i1<i2≤3 fi1i2(φ(t)) det

⎝⎜
⎜⎛

⎠⎟
⎟⎞

∂φi1

∂t1
∂φi1

∂t2

∂φi2

∂t1
∂φi2

∂t2
 dt1 ^ dt2 // only one term in Σ1≤j1<j2≤2

 = Σ1≤i1<i2≤3 fi1i2(φ(t)) det
⎝
⎜
⎛

⎠
⎟
⎞ ∂1φi1 ∂2φi1

 ∂1φi2 ∂2φi2 dt1 ^ dt2 // more compact notation

 // these determinants are the 2x2 minors of the matrix R shown above

 = Σ1≤i1<i2≤3 fi1i2(φ(t))
∂(φi1, φi2)
∂(t1, t2) dt1 ^ dt2 // Jacobian notation for determinants

 = Σ1≤i1<i2≤3 gi1i2(t) dt1 ^ dt2

Chapter 10: Differential Forms

 248

where

 gi1i2(t) = fi1i2(φ(t))
∂(φi1, φi2)
∂(t1, t2) . (10.13.5)

Since in this example there are so few terms (three) in the sum Σ1≤i1<i2≤3 , we just write them out

 φ*(αx) = [f12(φ(t))
∂(φ1, φ2)
∂(t1, t2) + f13(φ(t))

∂(φ1, φ3)
∂(t1, t2) + f23(φ(t))

∂(φ2, φ3)
∂(t1, t2)] dt1 ^ dt2

 = G(t) dt1 ^ dt2
where

 G(t) ≡ [f12(φ(t))
∂(φ1, φ2)
∂(t1, t2) + f13(φ(t))

∂(φ1, φ3)
∂(t1, t2) + f23(φ(t))

∂(φ2, φ3)
∂(t1, t2)] . (10.13.6)

The pullback φ*(αx) = G(t) dt1 ^ dt2 is a 2-form in dual t-space tΛ2(R2).

Using the definition given above, one then has,

 ∫φ αx ≡ ∫[0,1]2 φ*(α) = ∫[0,1]2 G(t) dt1 ^ dt2 . (10.13.7)

Thus the integral of the 2-form αx over the surface φ in x-space is defined to be equal to the integral of
the 2-form G(t) dt1 ^ dt2 over a 2-cube in t-space. So far no regular calculus integrals have appeared.

Second definition:

 ∫[0,1]2 G(t) tλ1 ^tλ2 = ∫[0,1]2 G(t) dt1 ^ dt2 ≡ ∫
0

 1 ∫
0

 1 G(t1,t2) dt1dt2 . (10.13.8)

On the left is the integral of a 2-form on a 2-cube, on the right is an ordinary calculus integral of a
function over the 2-cube. It is this second definition that motivates giving the dual space basis vectors tλ1
and tλ2 the cosmetic names dt1 and dt2 .

Notice that the only locations where the functions fi1i2(x) are "sensed" in this integral are points on the
surface x = φ(t) .

Combining the two definitions gives

 ∫φ αx = ∫
0

 1 ∫
0

 1 G(t1,t2) dt1dt2 (10.13.9)

with G as in (10.13.6).

Chapter 10: Differential Forms

 249

We redisplay the earlier Fig (10.9.3a) to illustrate the above discussion, where βt = G(t) dt1 ^ dt2

 (10.13.10)
Here Rm = R3 and the torus is just a sample surface to illustrate the general surface x = φ(t).

Comment on orientation

Orientation of the domain surface is a tricky business in a k-form integral but can at worst cause
confusion about the sign of the result. To make things more "visible", suppose [a,b] = [c,d] = [1,0]. In t-
space R2, if [a,b] = (b-a) t̂ 1 = t̂ 1 and [c,d] = (d-c) t̂ 2= t̂ 2, then the 2-cube (unit square) integration domain
[0,1]2 can be regarded as being over region t̂ 1 x t̂ 2 , a vector area with two "sides" (orientations)

 ∫t̂1 x t̂2 dt1dt2 = 1 area of the front side of a unit square is 1 area unit

 ∫t̂2 x t̂1 dt1dt2 = -1 area of the back side of a unit square is -1 area unit . (10.13.11)

This is analogous to the 1D situation where [0,1] and [0,1] have opposite orientations.

 ∫
0

 1 dt 1 = 1

 ∫
1

 0 dt 1 = -1 .

 The integral appearing in (10.13.8) is this

 ∫[0,1]2 G(t) dt1 ^ dt2 = ∫t̂1 x t̂2 G(t) dt1 ^ dt2 = ∫
0

 1 ∫
0

 1 G(t1,t2) dt1dt2 . (10.13.12)

Now consider

 ∫t̂1 x t̂2 G(t) dt1 ^ dt2 = ∫t̂1 x t̂2 [- G(t) dt2 ^ dt1] = – ∫t̂1 x t̂2 G(t) dt2 ^ dt1

 (10.13.13)

 ∫t̂2 x t̂1 G(t) dt1 ^ dt2 = [- ∫t̂1 x t̂2] G(t) dt2 ^ dt1 = – ∫t̂1 x t̂2 G(t) dt2 ^ dt1 .

Chapter 10: Differential Forms

 250

In both these equations a minus sign is generated. In the first the minus sign arises because the 2-form
called G(t) dt2 ^ dt1 is the negative of the different 2-form called G(t) dt2 ^ dt1. In the second equation
the integration domain t̂ 1 ^ t̂ 2 refers to the front side of the unit square, while t̂2 ^ t̂1 refers to the back
side of the unit square, and these domains differ by a minus sign. If both changes are made at once one
gets

 ∫t̂1 x t̂2 G(t) dt1 ^ dt2 = + ∫t̂2 x t̂1 G(t) dt2 ^ dt1 (10.13.14)

If the integration domain is written simply as [0,1]2, one ends up with

 ∫[0,1]2 G(t) dt1 ^ dt2 = + ∫[0,1]2 G(t) dt2 ^ dt1 (10.13.15)

and this seems to be a contradiction since everyone knows that dt2 ^ dt1 = - dt1 ^ dt2 . The issue here is
that the two [0,1]2 domains are not the same, they just look the same. See Sjamaar's page 64 Remark 5.3
where he treats the domain t̂ 2 x t̂ 1 as a reparametrization of the domain t̂ 1 x t̂2 which reverses the
orientation of that domain.

Further processing:

Using the Hodge correspondence suggested in (4.3.17) we define three new function names Fi

 f12 ≡ F3
 f23 ≡ F1
 f13 ≡ - F2 (10.13.16)

with a minus in the last line since f13 is in anticyclic order compared to (4.3.17). Then (10.13.9) with
(10.13.6) for G(t) becomes,

 ∫φ αx = ∫
0

 1 ∫
0

 1 [F3(φ(t))
∂(φ1, φ2)
∂(t1, t2) – F2(φ(t))

∂(φ1, φ3)
∂(t1, t2) + F1(φ(t))

∂(φ2, φ3)
∂(t1, t2)] dt1dt2

 = ∫
0

 1 ∫
0

 1 [F1(φ(t))
∂(φ2, φ3)
∂(t1, t2) – F2(φ(t))

∂(φ1, φ3)
∂(t1, t2) + F3(φ(t))

∂(φ1, φ2)
∂(t1, t2)] dt1dt2

 = ∫
0

 1 ∫
0

 1 [F1(φ(t))
∂(φ2, φ3)
∂(t1, t2) + F2(φ(t))

∂(φ3, φ1)
∂(t1, t2) + F3(φ(t))

∂(φ1, φ2)
∂(t1, t2)] dt1dt2

 = ∫
0

 1 ∫
0

 1 F(φ(t)) • n(t) dt1dt2 (10.13.17)

where n below is a vector normal to the surface in R3 at point x = φ(t),

Chapter 10: Differential Forms

 251

 n(t) ≡ (
∂(φ2, φ3)
∂(t1, t2) ,

∂(φ3, φ1)
∂(t1, t2) ,

∂(φ1, φ2)
∂(t1, t2)) // Buck p 335, 403

 = (det ⎝
⎛

⎠
⎞ R2

1 R2
2

 R3
1 R3

2
 , + det ⎝

⎛
⎠
⎞ R3

1 R3
2

 R1
1 R1

2
 , det ⎝

⎛
⎠
⎞ R1

1 R1
2

 R2
1 R2

2
) . (10.13.18)

That n really is a normal vector can be verified by showing that n • xuj = 0 for any tangent base vector
xuj in the tangent space TxM, where from (E.2) (xuj)i = Ri

j = ∂jφi , see Buck p 336. But we know
that n(t) is a normal vector because the expression for n in (10.13.18) is the same as n' in (10.10.19)
(apart from change of notation) and that n' was constructed as a cross product of two vectors on the
surface so it was a normal.
 The vector n(t) is not in general a unit vector, so we define

 n̂(t) = n(t) / | n(t) | (10.13.19)

where

 | n(t) |2 = [
∂(φ2, φ3)
∂(t1, t2)]2 + [

∂(φ3, φ1)
∂(t1, t2)]2 + [

∂(φ1, φ2)
∂(t1, t2)]2

 = det2 ⎝
⎛

⎠
⎞ R2

1 R2
2

 R3
1 R3

2
 + det2 ⎝

⎛
⎠
⎞ R3

1 R3
2

 R1
1 R1

2
 + det2 ⎝

⎛
⎠
⎞ R1

1 R1
2

 R2
1 R2

2

 ≡ K(t)2 (10.13.20)

which we recognize as the same object K2 appearing in (10.10.18). Then with

 n(t) = K(t) n̂(t) (10.13.21)

 equation (10.13.17) may now be written,

 ∫φ αx = ∫
0

 1 ∫
0

 1 F(φ(t)) • n̂(t) K(t) dt1dt2 . (10.13.22)

Going back to the original 2-form αx (10.13.1) one can write,

 αx = Σ1≤i1<i2≤3 fi1i2(x) dxi1 ^ dxi2

 = f12(x) dx1 ^ dx2 + f13(x) dx1 ^ dx3 + f23(x) dx2 ^ dx3

 = F1(x) dx2 ^ dx3 + F2(x) dx3 ^ dx1 + F3(x) dx1 ^ dx2

 = F1(x) dA1 + F2(x) dA2 + F3(x) dA3

 = F(x) • dA // dA1 = *dx1 etc, so can say dA = *dx (10.13.23)

Chapter 10: Differential Forms

 252

where in cyclic order we define the following differential area 2-forms

 dA1 ≡ dx2 ^ dx3 dA2 ≡ dx3 ^ dx1 dA3 ≡ dx1 ^ dx2 . (10.13.24)

Then our result (10.13.22) can be concisely written,

 ∫φ αx = ∫φ F(x) • dA = ∫
0

 1 ∫
0

 1 [F(φ(t)) • n̂(t)] K(t) dt1dt2.

 = ∫
0

 1 ∫
0

 1 [F(φ(t)) • n̂(t)] dA dA = K(t) dt1dt2

 = ∫
0

 1 ∫
0

 1 F(φ(t)) • dA dA = dA n̂ = K(t) dt1dt2 n̂(t) . (10.13.25)

Normally this is written ∫φ F(x) • dA showing the motivation for the cosmetic functional notation dA as

defined above. This is the "integral of a vector field F over a surface φ ".

Recall now our "no differential forms" surface integration done in (10.10.20)

 A' <Bn> = ∫S' dA' B(x') • n̂' = ∫S B(F(x)) • n̂' K(x) dx1dx2 . (10.10.17)

In the x = φ(t) notation this reads

 A <Bn> = ∫S dA B(x) • n̂ = ∫S B(φ(t)) • n̂ K(t) dt1dt2 (10.13.26)

which is the same integral appearing in (10.13.25) with F = B. Therefore, we can interpret (10.13.26) as
being the integral of the 2-form,

 αx = B(x) • dA (10.13.27)

and one then has

 ∫φ αx = ∫φ B(x) • dA = ∫
0

 1 ∫
0

 1 [B(φ(t)) • n̂(t)] K(t) dt1dt2

 = ∫
0

 1 ∫
0

 1 B(φ(t)) • dA . (10.13.28)

Now return to (10.13.25),

 ∫φ αx = ∫φ F(x) • dA = ∫
0

 1 ∫
0

 1 F(φ(t)) • n̂(t) K(t) dt1dt2 . (10.13.25)

Chapter 10: Differential Forms

 253

Suppose the vector field F(φ(t)) happens to be normal to the surface φ for all values of t. In this case,

 [F(φ(t)) • n̂(t)] = | F(φ(t)) | . (10.13.29)

Then setting | F(φ(t)) | = T(φ(t)) we find that

 ∫φ αx = ∫
0

 1 ∫
0

 1 T(φ(t)) K(t) dt1dt2 (10.13.30)

and this shows how the temperature integral of (10.10.20) can be fitted into the 2-form framework.

Generalization from φ: R2→ R3 to φ: R2→ Rm

If the 2D surface lies in Rm instead of R3, the above results are easily generalized. The 2-form αx is then,

 αx = Σ1≤i1<i2≤m fi1i2(x) xλ^I = Σ1≤i1<i2≤m fi1i2(x) dxi1 ^ dxi2 = Σ'I fI(x) dx^I (10.13.31)

where there are (m,2) = m(m-1)/2 terms in the ordered sum Σ'I. The pullback also has (m,2) terms, being

 φ*(αx) = Σ1≤i1<i2≤m fi1i2(φ(t))
∂(φi1, φi2)
∂(t1, t2) dt1 ^ dt2 = Σ'I fI(φ(t)) det

⎝
⎜
⎛

⎠
⎟
⎞ Ri11 Ri12

 Ri21 Ri22
 dt1 ^ dt2

 = Σ1≤i1<i2≤m gi1i2(t) dt1 ^ dt2 gi1i2(t) = fi1i2(φ(t))
∂(φi1, φi2)
∂(t1, t2)

 = G(t) dt1 ^ dt2 G(t) = Σ1≤i1<i2≤m fi1i2(φ(t))
∂(φi1, φi2)
∂(t1, t2) . (10.13.32)

The pullback φ*(αx) = G(t) dt1 ^ dt2 is still a 2-form in dual t-space tΛ2(R2). Then

 ∫φ αx ≡ ∫[0,1]2 φ*(αx) = ∫[0,1]2 G(t) dt1 ^ dt2 ≡ ∫
0

 1 ∫
0

 1 G(t) dt1dt2 (10.13.33)

Here G(t) is a sum of (m,2) terms each of which is a 2x2 Jacobian weighted by a function fi1i2.

Example: φ: R2→ R4

 αx = f12(x) dx1 ^ dx2 + f13(x) dx1 ^ dx3 + f14(x) dx1 ^ dx4 // 2-form in xΛ2(R4)
 + f23(x) dx2 ^ dx3 + f24(x) dx2 ^ dx4 + f34(x) dx3 ^ dx4

 φ*(αx) = G(t) dt1 ^ dt2 // 2-form in tΛ2(R2)

Chapter 10: Differential Forms

 254

where

 G(t) = [f12(x)
∂(φ1, φ2)
∂(t1, t2) + f13(x)

∂(φ1, φ3)
∂(t1, t2) + f14(x)

∂(φ1, φ4)
∂(t1, t2)

 + f23(x)
∂(φ2, φ3)
∂(t1, t2) + f24(x)

∂(φ2, φ4)
∂(t1, t2) + f34(x)

∂(φ3, φ4)
∂(t1, t2)] (10.13.34)

and the integrated 2-form is

 ∫φ αx ≡ ∫[0,1]2 φ*(α) = ∫
0

 1 ∫
0

 1 dt1dt2 G(t) . (10.13.35)

Generalization to φ: Rn→ Rm with k = n

This generalization is discussed in Appendix G.2 where the x' = F(x) context is used. It turns out that
there is still a unit vector m̂ having binomial (n,m) components which is similar to the n̂ discussed above.
The Appendix G.2 discussion relies on a theorem, proven in Appendix G.1, showing that det(RTR) is the
sum of the squares of the full-width minors of R. The significance of det(RTR) as a volume measure is
presented in Appendix F.

Appendix A: Permutation Support

 255

Appendix A: Permutation Support

This is a very long and detailed appendix, so a summary is in order:

Section A.1 describes our ΣP permutation notation and comments on the permutation group. It then
proves three different "rearrangement theorems" and states various determinant expansions using ΣP
notation. It is shown that det(M) = det(MT) = det(MT) for any index positions of a rank-2 tensor M.

Section A.2 describes the action of a permutation operator on a generic function f(1,2...k), and states
several theorems concerning multiple permutation operators. At the same time, the Alt operator is defined
and various facts are proven concerning this operator. The notion of a totally antisymmetric generic
function is directly related to the Alt operator.

Section A.3 mimics Section A.2 for the Sym operator in place of the Alt operator. The notion of a totally
symmetric generic function is directly related to the Sym operator.

Section A.4 states some facts which concern both the Alt and the Sym operators together.

Up to this point, the various facts and theorems have taken place in a "generic permutation space" which
consists of functions of k arguments which are a permutation of 1,2...k, such as f(2,1,3...k).

Section A.5 applies all the previous facts and theorems to the permutation space whose elements are the
component indices of a rank-k tensor, so f(1,2,3...k) = Ti1i2...ik. The results of Sections A.2, A.3 and
A.4 are adapted to the tensor world in subsections (a), (b) and (c).

Section A.6 deals with the permutation tensor εi1i2...ik and shows how it can provide an alternative to
the permutation notation in some situations associated with the Alt operator.

Section A.7 adapts the above generic results to the case f(1,2,....k) = (vj1 ⊗ vj2 ⊗ ⊗ vjk) which is
the tensor product of k vectors. Then the wedge product of k vectors is defined in terms of this application
of the Alt operator, so that (vj1 ^ vj2 ^ ^ vjk) ≡ Alt(vj1 ⊗ vj2 ⊗ ⊗ vjk).

Section A.8 is similar to Section A.5, but the facts and theorems are applied not to tensors, but to "tensor
functions", so here f(1,2...k) = T(vi1,vi2....vik). The permutation space is now the set of label subscripts
on the k vector arguments of a tensor function. The results of Sections A.2, A.3 and A.4 are adapted to the
tensor function world in subsections (a), (b) and (c). Subsection (d) then derives special-purpose theorems
that apply to objects with two multiindices, and then to objects which have a factored form.

Section A.9 proves an obscure ordered permutation sum theorem that is used in (7.4.12).

Section A.10 defines the generic function space tensor product and then relates it to the tensor product of
tensors and then to the tensor product of tensor functions.

Appendix A: Permutation Support

 256

A.1 Rearrangement Theorems and Determinants

Definition: A permutation P (of order k) reorders the list of integers [1,2,3...k] in some manner to give
[i1,i2,i3...ik] . (A.1.1)

Including the initial ordering [1,2,3...k], there are k! possible permutations.

Fact: ΣP(1) = k! . // there are k! equal terms in this sum (A.1.2)

The permutation group rearrangement theorem states the following:

 ΣP f(QP) = ΣP f(PQ) = ΣP f(P) . (A.1.3)

Here ΣP is a sum over all k! permutations of [1,2...k], and Q is any one of these permutations.
The first two sums are just reorderings or rearrangements of the third sum and so equal the third sum.

Proof: This theorem is true because the permutations P of [1,2...k] form a group G :

 • P1P2 = P3 ∈ G // closure
 • (P1P2)P3 = P1(P2P3) // associative
 • P = I // identity exists, permutation that does nothing to [1,2...k]
 • P-1 exists for any P // just the inverse permutation. (A.1.4)

 It is a fact that, for any group G with k elements gi,

 ga [g1, g2,gk] = [gag1, gag2,gagk] = [g'1, g'2,g'k] = reordering of [g1, g2,gk]
 [g1, g2,gk]ga = [g1ga, g2ga,gkga] = [g"1, g"2,g"k] = reordering of [g1, g2,gk] .
 (A.1.5)

To show that [g'1, g'2,g'k] is a reordering of [g1, g2,gk], we have to show that no two elements of
[g'1, g'2,g'k] are the same. Suppose for example g'1 = g'2 . That would imply gag1 = gag2. Since ga-1
exists in a group for any ga, apply ga-1 to both sides to get ga-1gag1 = ga-1gag2 or g1 = g2. But that
contradicts the basic starting point that [g1, g2,gk] enumerates the distinct group elements. Therefore

 Σi f(gagi) = Σif(giga) = Σif(gi) . (A.1.6)

This is valid only if the sum is over all elements of the group, which in the rearrangement theorem (A.1.3)
means the sum ΣP must be over all permutations P.
 In any group, if g exists, so does g-1, and it is just some element of the group. For the permutation
group P-1 exists and is in fact the permutation which reverses the permutation of P :

 P[1,2...k] = [i1,i2...ik] ⇒ [1,2...k] = P-1[i1,i2...ik] PP-1 = P-1P = 1 . (A.1.7)

Appendix A: Permutation Support

 257

In the above, since [i1,i2...ik] is a permutation of [1,2...k], one can get from [1,2...k] to [i1,i2...ik] by
making some number of swaps of the integers in [1,2...k].

Comment: We are following a Maple convention that [a,b,c...] is a "list" where order is significant,
whereas {a,b,c...} is a "set" where order is not significant.

The swap count S(P)

Any two permutations of [1,2,...k] can be linked by a number of pairwise swaps of the integers. For
example, if we have P[1,2,...k] = [i1,i2,...ik], one can get from the first integer sequence to the second by
doing some number S(P) of pairwise swaps. The integer S(P) is not unique, but whether it is an even or an
odd integer is unique, so the factor (-1)S(P) is unique to a particular P (we leave it to the reader to prove
this fact) . Sometimes (-1)S(P) is called the parity of permutation P.

Example: [1,2,3] → [2,1,3] S(P) = 1 (-1)S(P) = -1

 [1,2,3] → [1,3,2] → [2,3,1] → [2,1,3] S(P) = 3 (-1)S(P) = -1 (A.1.8)

It seems clear that the number of position swaps to get from [1,2...k] to [i1,i2...ik] is the same as it is going
the other direction, so

 S(P-1) = S(P) . (A.1.9)

Finally, consider

 P1P2[1,2...k] = P[1,2...k] = [i1,i2...ik] . P = P1P2

If P2 causes S2 position swaps and then P1 causes S1 more, then P does S2+S1 total swaps. Thus

 S(P) = S(P1P2) = S(P1) + S(P2)
so
 (-1)S(P1P2) = (-1)S(P1) (-1)S(P2) = (-1)S(P2P1) . (A.1.10)

From the above these trivial corollaries follow :

 (-1)S(PP) = 1, (-1)S(PQ) = (-1)S(QP).

 (-1)S(P) (-1)S(P) = 1 (-1)S(P) = (-1)S(Q) (-1)S(PQ) (A.1.11)

Fact: ΣP(-1)S(P) = 0 . (A.1.12)

Proof : By the rearrangement theorem (A.1.3) and then (A.1.11) we know that, for any permutation Q,

 ΣP(-1)S(P) = ΣP(-1)S(QP) = (-1)S(Q)ΣP(-1)S(P) .

Select a Q which has (-1)S(Q) = -1. Then ΣP(-1)S(P) = - ΣP(-1)S(P) ⇒ ΣP(-1)S(P) = 0. QED

Appendix A: Permutation Support

 258

Another Rearrangement Theorem

Another version of the rearrangement theorem is the following,

 ΣQ f(Q) = ΣQ f(Q-1) . (A.1.13)

Again, this is just a reordering of the sum. Consider,

 {g1-1, g2-1,gk-1} = {g1', g2',gk'} = reordering of {g1, g2,gk} .

To show that {g1', g2',gk'} is a reordering of {g1, g2,gk} we have to show that no two elements are
the same. Suppose for example that g1' = g2' . That would say g1-1 = g2-1 which in turn says g1 = g2, but
that contradicts the basic starting point that {g1, g2,gk} enumerates the distinct group elements.
Therefore,

 Σi f(gi) = Σif(gi-1) . (A.1.14)

Comment: For continuous groups (like the rotation group SO(3)) , the rearrangement theorems become

 ∫dg f(gag) = ∫dg f(gga) = ∫dg f(g)

 ∫dg f(g) = ∫dg f(g-1) (A.1.15)

where dg is called the invariant Haar measure. For SO(3) it is dg = dφd(cosθ)dψ (Euler angles).

Determinants of a rank-2 tensor

It is well known that the determinant of a kxk matrix M can be written two equivalent ways in which the
rows and columns are swapped (this is the statement that det(M) = det(MT)),

 det(M**) = Σi1i2...ik εi1i2...ikMi11Mi22 ...Mikk
 = Σi1i2...ik εi1i2...ikM1i1M2i2 ...Mkik (A.1.16)

where the permutation tensor ε is described below in Section A.6.

 In permutation notation the above equations are written,

 det(M**) = ΣP (-1)S(P) MP(1)1MP(2)2 ...MP(k)k
 = ΣP (-1)S(P) M1P(1)M2P(2) ...MkP(k) . (A.1.17)

If we start over with the "up-tilt" matrix Ma

b (mixed rank-2 tensor) then (A.1.16) becomes.

Appendix A: Permutation Support

 259

 det(M*
*) = Σi1i2...ik εi1i2...ikMi1

1Mi2
2 ...Mik

k
 = Σi1i2...ik εi1i2...ikM1

i1M2
i2 ...Mk

ik (A.1.18)

which in permutation notation becomes

 det(M*

*) = ΣP (-1)S(P) MP(1)
1MP(2)

2 ...MP(k)
k

 = ΣP (-1)S(P) M1
P(1)M2

P(2) ...Mk
P(k) . (A.1.19)

Statements for det(M**) and det(M*

*) are similar,

 det(M**) = ΣP (-1)S(P) MP(1)1MP(2)2 ...MP(k)k
 = ΣP (-1)S(P) M1P(1)M2P(2) ...MkP(k) (A.1.20)

 det(M*

*) = ΣP (-1)S(P) MP(1)
1MP(2)

2 ...MP(k)
k

 = ΣP (-1)S(P) M1
P(1)M2

P(2) ...Mk
P(k) . (A.1.21)

Notice that in all the equation pairs above, the second line involves the matrix transposes of elements in
the first line. For example (MT)ab = Mba and (MT)ab = Mb

a where the two indices are just swapped,
corresponding to a swap of rows and columns. So in all these cases we have det(M) = det(MT) for any
position of the asterisk index position markers, for example, det(M*

*) = det([MT]**) .

This conclusion is also true for the covariant transpose, so for example det(M*

*) = det([MT]**), but this
fact is less obvious. In the covariant transpose defined in (2.11.f.1) one has Mab = (MT)ba and Ma

b =
(MT)ba. The covariant transpose is formed not by swapping indices but by reflecting the indices in a
vertical line between the indices. We shall now show that

Fact: det([MT]**) = det(M*

*) and similarly for all other index positions. (A.1.22)

Proof: Consider that

 ΣijgaiMi

jgjb = Ma
b = (MT)ba

where we use the raising and lowering functionality of the metric tensor shown in (2.2.1). In order to get
all indices "down", define these three indices-down matrices,

 (gdn)ab = gab (gup)ab = gab Nab = Ma

b

so that

 (MT)ba = Σij (gdn)ai Nij (gup)jb = (gdn N gup)ab .

Then

 det([MT]**) = det [(gdn N gup)**] = det(gdn) det(N**) det(gup) .

Appendix A: Permutation Support

 260

As shown in (2.2.2), gdngup = 1 so det(gdn)det(gup) = 1, and therefore

 det([MT]**) = det(N**) = det(M*

*) .

A similar argument shows that det([MT]**) = det(M*

*). For both asterisks up or both down, there is no
difference between MT and MT and we already know that det(MT) = det(M).

The final conclusion is this:

Fact: det(M) = det(MT) = det(MT) for any index positions. (A.1.23)

Symmetric Sum Rearrangement Theorem

For any particular permutation P of [1,2...k],

 Σi1i2...ik fi1i2...ik = Σi1i2...ik fiP(1)iP(2)...iP(k)
or
 ΣI fI = ΣI fP(I) . // multiindex notation (A.1.24)

Proof: Since ΣI is a symmetric sum, one is free to shuffle the dummy summation index names at will,
and this shuffle is indicated by permutation P. For example

 ΣI fI = Σi1i2...ik fi1i2...ik = Σi2i1...ik fi2i1...ik = Σi1i2...ikfi2i1...ik

 = Σi1i2...ik fiP(1)iP(2)...iP(k) = ΣI fP(I) where P[1,2...k] = [2,1..k]

A.2 The Alt Operator in Generic Notation

The generic Alt operator acts on a function f of the integers [1,2....k] to create a new function, g = Alt(f),
as follows:

 g(1,2...k) = [Alt(f)](1,2...k) ≡ (1/k!) ΣP (-1)S(P)f(P(1),P(2)...P(k)) (A.2.1)

where f is any function and P are the k! permutations of the set of integers [1,2....k]. Informally we write
the above as

 g(1,2...k) = (1/k!) [f(1,2...k) - f(2,1...k) + other signed permutations] .

Examples:

 g(1,2) = [Alt(f)](1,2) = (1/2) [f(1,2) - f(2,1)] (A.2.2)

 g(1,2,3) = [Alt(f)](1,2,3) = (1/6) [f(1,2,3) - f(1,3,2) + f(3,1,2) - f(3,2,1) + f(2,3,1) - f(2,1,3)] .

Appendix A: Permutation Support

 261

Now, let R be some permutation of [1,2....k]. We write

 R[1,2....k] = [R(1),R(2).....R(k)] (A.2.3)

where for example R(1) gives the integer into which 1 is converted by the permutation R. We can apply
the operator R to a function of 1,2...k in this manner,

 R f(1,2,...k) = f(R(1),R(2).....R(k)) . (A.2.4)

Fact: Any permutation R is a linear operator, so R(Σiaifi) = Σiai(Rfi) (A.2.5)

Proof: Let h(1,2,...k) ≡ Σiaifi(1,2,...k). Then

 R h(1,2,...k) = h(R(1),R(2).....R(k)) // (A.2.4) applied to h

 = Σiaifi(R(1),R(2).....R(k)) // definition of h

 = Σiai R fi(1,2,...k) . // (A.2.4) applied to fi QED

Now suppose R = QP, the product of two permutations Q and P. Then starting with (A.2.3),

 (QP) f(1,2,...k) = f((QP)(1),(QP)(2).....(QP)(k))

 = f(Q(P(1), Q(P(2)).... Q(P(k))

 ≡ f(QP(1), QP(2)... .QP(k)) . (A.2.6)

But from (A.2.4),

 (QP) f(1,2,...k) = Q { P f(1,2,...k)} = Q f(P(1),P(2).....P(k)) (A.2.7)

Therefore we have shown that

 Q f(P(1),P(2).....P(k)) = f(QP(1), QP(2)... .QP(k)) . (A.2.8)

Definition: A function f(1,2..k) is totally antisymmetric if it changes sign when any two arguments are
swapped. (A.2.9)

Examples: f(1,2) = - f(2,1) ⇒ f is totally antisymmetric

 f(1,2,3) = -f(2,1,3)
 f(1,2,3) = -f(3,2,1) ⇒ f is totally antisymmetric
 f(1,2,3) = -f(1,3,1)

Appendix A: Permutation Support

 262

Fact: f(1,2..k) totally antisymmetric ⇔ P f(1,2,3..k) = (-1)S(P) f(1,2,3..k) (A.2.10)

Proof: [⇒] S(P) is the number of pairwise swaps going from [1,2,3...k] to P[1,2,3...k] = [i1,i2,i3...in]. If f
is totally antisymmetric by the definition above, each such swap causes a minus sign, and the product of
these minus signs is then (-1)S(P). [⇐] If P = any pairwise swap, (-1)S(P) = -1, so f(1,2..k) is then totally
antisymmetric.

Fact: The function g(1,2..k) ≡ [Alt(f)](1,2...k) is totally antisymmetric in its arguments. (A.2.11)

Proof: Let Q be some permutation of [1,2....k]. Then apply Q to the function g(1,2..k),

 Q g(1,2..k) = Q { (1/k!) ΣP (-1)S(P)f(P(1),P(2)...P(k)) } // definition of g

 = (1/k!) ΣP (-1)S(P) Q f(P(1),P(2)...P(k)) // (A.2.5), Q is linear

 = (1/k!) ΣP (-1)S(P) f(QP(1),QP(2)...QP(k)) // (A.2.8)

 = (-1)S(Q) (1/k!) ΣP (-1)S(QP) f(QP(1),QP(2)...QP(k)) // (A.1.11)

 = (-1)S(Q) (1/k!) ΣP (-1)S(P) f(P(1),P(2)...P(k)) // (A.1.3), rearrangement thm.

 = (-1)S(Q) g(1,2..k) . // definition of g

By (A.2.10⇐) it follows that g(1,2,..k) is totally antisymmetric. QED

Fact: Alt is a linear operator, so Alt(Σiaifi) = Σiai Alt(fi) . (A.2.12)

 Proof: Let h(1,2,...k) ≡ Σiaifi(1,2,...k). Then

 [Alt(h)](1,2,...k) = (1/k!) ΣP (-1)S(P)h(P(1),P(2)...P(k)) // (A.2.1) def of Alt(h)

 = (1/k!) ΣP (-1)S(P){ Σiaifi(P(1),P(2)...P(k)) } // definition of h

 = Σiai [(1/k!) ΣP (-1)S(P) fi(P(1),P(2)...P(k))] // reorder sums

 = Σiai Alt(fi) // (A.2.1) def of Alt(fi)

Fact: Alt is a projection operator, so Alt(Alt(f)) = Alt(f) . (A.2.13)

Comment: This is why (1/k!) is included in the definition of Alt.

Proof: By (A.2.11) we know that Alt(f) is a totally antisymmetric function, and therefore from (A.2.10),

 P [Alt(f)](1,2...k)] = (-1)S(P)[Alt(f)](1,2...k)] . (A.2.14)

Appendix A: Permutation Support

 263

Next, consider that

 [Alt(f)](P(1),P(2)...P(k)) = P [Alt(f)](1,2...k) // (A.2.4) applied with f→ Alt(f), R→P

 = (-1)S(P)[Alt(f)](1,2...k) . // (A.2.14) (A.2.15)

Now examine Alt(Alt(f)) :

 [Alt(Alt(f))](1,2...k) = (1/k!) ΣP (-1)S(P)[Alt(f)](P(1),P(2)...P(k))

 = (1/k!) ΣP (-1)S(P){(-1)S(P)[Alt(f)](1,2...k)]} // (A.2.15)

 = (1/k!) ΣP[Alt(f)](1,2...k)]} // (-1)S(P)(-1)S(P) = 1

 = [Alt(f)](1,2...k)] {(1/k!)ΣP(1)} // reorder factors

 = [Alt(f)](1,2...k)] {1} . // (A.1.2) QED

Fact: If f is a totally antisymmetric function, then Alt(f) = f . (A.2.16)

Proof:

 Alt(f)(1,2...k) = (1/k!) ΣP (-1)S(P)f(P(1),P(2)...P(k)) // definition of Alt(f) (A.2.1)

 = (1/k!) ΣP (-1)S(P) P f(1,2,...k) // (A.2.4) with R→P

 = (1/k!) ΣP (-1)S(P) (-1)S(P) f(1,2,...k) // (A.2.10)

 = (1/k!) ΣP f(1,2,...k) // (A.1.11)

 = (1/k!) f(1,2,...k) { ΣP (1) } // reorder

 = f(1,2,...k) // (A.1.2)

Fact: If f is totally antisymmetric, then

 f(1,2,3...k) =(-1)k-1 f(2, 3,... k-1, k, 1) forward cyclic (A.2.17)
 f(1,2,3...k) = (-1)k-1 f(k, 1, 2, 3,... k-1) backward cyclic

Proof: Let B be the particular permutation which does this: B[1,2,3..k-1,k] = [2,3,...k-1,k,1] (Backward
cyclic). One then has S(B) = k-1 because it takes k-1 swaps to move the 1 from one end to the other. If f
is totally antisymmetric, then according to (A.2.10) one has B f(1,2,3..k) = (-1)S(B) f(1,2,3..k) so then

 f(2,3,... k,1) = B f(1,2,3..k) = (-1)S(B) f(1,2,3..k) = (-1)k-1 f(1,2,3...k) .

Appendix A: Permutation Support

 264

On the other hand, if F[1,2,3..k-1,k] = [k, 1, 2, 3,... k-1] (Forward cyclic), S(F) = k-1 for the same reason,
and then

 f(k, 1, 2, 3,... k-1) = F f(1,2,3..k) = (-1)S(F) f(1,2,3..k) = (-1)k-1 f(1,2,3...k) .

Example: A very commonly used fact is that, for k = 3, (-1)k-1 = (-1)2 = 1 and so

 f(1,2,3) = f(2,3,1) = f(3,1,2) f totally antisymmetric (A.2.18)

A.3 The Sym Operator in Generic Notation

This section is an obvious copy, paste and edit job on the previous section. We omit what would be
(A.3.3) through (A.3.8) since they would be the same as (A.2.3) through (A.2.8). The changes are mainly
these:

 antisymmetric → symmetric (-1)S(P) → 1 Alt → Sym .

The Sym operator acts on a function of the integers [1,2....k] to create a new function, g = Sym(f), as
follows:

 g(1,2...k) = [Sym(f)](1,2...k) ≡ (1/k!) ΣPf(P(1),P(2)...P(k)) (A.3.1)

where f is any function and P are the k! permutations of the set of integers [1,2....k]. Informally we write
the above as

 g(1,2...k) = (1/k!) [g(1,2...k) + g(2,1...k) + other permutations]

Examples:

 g(1,2) = [Sym(f)](1,2) = (1/2) [f(1,2) + f(2,1)] (A.3.2)

 g(1,2,3) = [Sym(f)](1,2,3) = (1/6) [f(1,2,3) + f(1,3,2) + f(3,1,2) + f(3,2,1) + f(2,3,1) + f(2,1,3)]

Definition: A function f(1,2..k) is totally symmetric if it is unchanged when any two arguments are
swapped. (A.3.9)

Examples: f(1,2) = f(2,1) ⇒ f is totally symmetric

 f(1,2,3) = f(2,1,3)
 f(1,2,3) = f(3,2,1) ⇒ f is totally symmetric
 f(1,2,3) = f(1,3,1)

Appendix A: Permutation Support

 265

Fact: f(1,2..k) totally symmetric ⇔ P f(1,2,3..k) = f(1,2,3..k) (A.3.10)

Proof: [⇒] S(P) is the number of pairwise swaps going from [1,2,3...k] to P[1,2,3...k] = [i1,i2,i3...in]. If f
is totally symmetric by the definition above, each such swap causes a plus sign, and the product of these
plus signs is then 1. [⇐] If P = any pairwise swap, (-1)S(P) = 1, so f(1,2..k) is then totally symmetric.

Fact: The function g(1,2..k) ≡ [Sym(f)](1,2...k) is totally symmetric in its arguments. (A.3.11)

Proof: Let Q be some permutation of [1,2....k]. Then apply Q to the function g(1,2..k),

 Q g(1,2..k) = Q { (1/k!) ΣP f(P(1),P(2)...P(k)) } // definition of g

 = (1/k!) ΣP Q f(P(1),P(2)...P(k)) // (A.2.5), Q is linear

 = (1/k!) ΣP f(QP(1),QP(2)...QP(k)) // (A.2.8)

 = (1/k!) ΣP f(P(1),P(2)...P(k)) // (A.1.3), rearrangement thm.

 = g(1,2..k) // definition of g

By (A.3.10⇐) it follows that g(1,2,..k) is totally symmetric. QED

Fact: Sym is a linear operator, so Sym(Σiaifi) = Σiai Sym(fi) (A.3.12)

 Proof: Let h(1,2,...k) ≡ Σiaifi(1,2,...k). Then

 [Sym(h)](1,2,...k) = (1/k!) ΣP h(P(1),P(2)...P(k)) // (A.3.1) def of Sym(h)

 = (1/k!) { Σiaifi(P(1),P(2)...P(k)) } // definition of h

 = Σiai [(1/k!) fi(P(1),P(2)...P(k))] // reorder sums

 = Σiai Sym(fi) // (A.3.1) def of Sym(fi)

Fact: Sym is a projection operator, so Sym(Sym(f)) = Sym(f) . (A.3.13)

Comment: This is why (1/k!) is included in the definition of Sym.

Proof: By (A.3.11) we know that Sym is a totally symmetric function, and therefore from (A.3.10),

 P [Sym(f)](1,2...k)] = [Sym(f)](1,2...k)] . (A.3.14)

Next, consider that

Appendix A: Permutation Support

 266

 [Sym(f)](P(1),P(2)...P(k)) = P [Sym(f)](1,2...k)] // (A.2.4) applied with f→ Sym(f), R→P

 = [Sym(f)](1,2...k)] . // (A.3.14) (A.3.15)

Now examine Sym(Sym(f)) :

 [Sym(Sym(f))](1,2...k) = (1/k!) ΣP [Sym(f)](P(1),P(2)...P(k))

 = (1/k!) ΣP {[Sym(f)](1,2...k)]} // (A.3.15)

 = [Sym(f)](1,2...k)] {(1/k!)ΣP(1)} // reorder

 = [Sym(f)](1,2...k)] {1} // (A.1.2) QED

Fact: If f is a totally symmetric function, then Sym(f) = f . (A.3.16)

Proof:

 Sym(f)(1,2...k) = (1/k!) ΣP f(P(1),P(2)...P(k)) // definition of Sym(f) (A.3.1)

 = (1/k!) ΣP P f(1,2,...k) // (A.2.4) with R→P

 = (1/k!) ΣP f(1,2,...k) // (A.3.10)

 = (1/k!) f(1,2,...k) { ΣP (1) } // reorder

 = f(1,2,...k) // (A.1.2)

Fact: If f is totally symmetric, then

 f(1,2,3...k) = f(2, 3,... k-1, k, 1) forward cyclic (A.3.17)
 f(1,2,3...k) = f(k, 1, 2, 3,... k-1) backward cyclic

This is just a special case of (A.3.10) which says Q f(1,2,3..k) = f(1,2,3..k) for any Q, so it certainly true
for F = forward cyclic or B = backward cyclic permutations.

Example:

 f(1,2,3) = f(2,3,1) = f(3,1,2) f totally symmetric (A.3.18)

For comparison, recall (A.2.18) which said

 f(1,2,3) = f(2,3,1) = f(3,1,2) f totally antisymmetric (A.2.18)

Appendix A: Permutation Support

 267

A.4 Alt, Sym and decomposition of functions

Fact: The projection operators Alt and Sym are orthogonal, so Alt(Sym(f)) = Sym(Alt(f)) = 0 . (A.4.1)

Proof left: Alt(Sym(f)) = Alt({(1/k!) ΣPf(P(1),P(2)...P(k)) }

 = (1/k!) ΣP [Alt(f)](P(1),P(2)...P(k))] // (A.2.12), Alt is linear

 = (1/k!) ΣP (-1)S(P)[Alt(f)](1,2...k) // (A.2.15)

 = {(1/k!) [Alt(f)](1,2...k)} {ΣP (-1)S(P)} // reorder

 = {(1/k!) [Alt(f)](1,2...k)} {0} // (A.1.12)

 = 0

Proof right: Sym(Alt(f)) = Sym({(1/k!) ΣP (-1)S(P)f(P(1),P(2)...P(k)) }

 = (1/k!) ΣP (-1)S(P)[Sym(f)](P(1),P(2)...P(k))] // (A.3.12), Sym is linear

 = (1/k!) ΣP (-1)S(P)[Sym(f)](1,2...k) // (A.3.15)

 = {(1/k!) [Sym(f)](1,2...k)} {ΣP (-1)S(P)} // reorder

 = {(1/k!) [Sym(f)](1,2...k)} {0} // (A.1.12)

 = 0

We can define a third projection operator this way,

 Else() ≡ 1 - Alt() - Sym() // projection operator

 Else(f) = f - Alt(f) - Sym(f) . // applied to f(1,2,3...k) (A.4.2)

One can then decompose an arbitrary function f into three pieces,

 f = Alt(f) + Sym(f) + Else(f)
 = a + s + e // a = a(1,2....k) etc (A.4.3)

where the "else" piece is whatever is left over, which is to say, e ≡ f - a - s. Then consider,

Appendix A: Permutation Support

 268

 Alt(f) = Alt(a + s + e) = Alt(a) + Alt(s) + Alt(e) // (A.2.12), Alt is linear

 = Alt(Alt(f)) + Alt(Sym(f)) + Alt(Else(f)) // (A.4.3)

 = Alt(f) + 0 + Alt(Else(f)) // (A.2.13) and (A.4.1)

 ⇒ Alt(Else(f)) = 0 . (A.4.4)

 Sym(f) = Sym(a + s + e) = Sym(a) + Sym(s) + Sym(e) // (A.2.12), Alt is linear

 = Sym(Alt(f)) + Sym(Sym(f)) + Sym(Else(f)) // (A.4.3)

 = 0 + Sym(f) + Sym(Else(f)) // (A.3.13) and (A.4.1)

 ⇒ Sym(Else(f)) = 0 . (A.4.5)

This verifies that the "else" piece e of a function has neither a totally antisymmetric nor a totally
symmetric component.

Example 1: For a function f(1,2) one has from (A.2.2) and (A.3.2),

 a(1,2) = (1/2) [f(1,2) - f(2,1)]
 s(1,2) = (1/2) [f(1,2) + f(2,1)] ⇒ e(1,2) = f(1,2) - a(1,2) - s(1,2) = 0 (A.4.6)

so the leftover else piece e(1,2) is null.

Example 2: On the other hand, for a function f(1,2,3) one has from (A.2.2) and (A.3.2)

 a(1,2,3) = (1/6) [f(1,2,3) - f(1,3,2) + f(3,1,2) - f(3,2,1) + f(2,3,1) - f(2,1,3)] // (A.2.2)
 s(1,2,3) = (1/6) [f(1,2,3) + f(1,3,2) + f(3,1,2) + f(3,2,1) + f(2,3,1) + f(2,1,3)] // (A.3.2)

e(1,2,3) = f(1,2,3) - (1/6) [f(1,2,3) - f(1,3,2) + f(3,1,2) - f(3,2,1) + f(2,3,1) - f(2,1,3)]
 - (1/6) [f(1,2,3) + f(1,3,2) + f(3,1,2) + f(3,2,1) + f(2,3,1) + f(2,1,3)]

 = f(1,2,3) - (1/3) [f(1,2,3) + f(3,1,2) + f(2,3,1)]

 = (2/3) f(1,2,3) - (1/3) [f(3,1,2) + f(2,3,1)] (A.4.7)

so in this case the leftover piece e(1,2,3) is not null. In the case that f is either totally antisymmetric or
totally symmetric, we know from (A.2.18) and (A.3.18) that all cyclic permutations of f are the same (for
k = odd). In these cases, we can see explicitly from (A.4.7) that e(1,2,3) = 0, as expected.

Appendix A: Permutation Support

 269

A.5 Application to Tensors

We now restate the "generic" results of Sections A.2, A.3 and A.4 for this special case:

 f(1,2...k) = Ti1i2...ik . // a "tensor" T ∈ Vk . (A.5.1)

Here T is any rank-k tensor (either in the weak or strong sense mentioned below (4.1.8)). This f seems
perhaps an odd looking "function", but one can consider it to be just an evaluation of this more
respectable mapping,

 f(a,b,c,...q) = Tiaibic...iq a,b,c... ∈ {1,2...k}

 f: {1,2...k}k → Vk . (A.5.2)

This technical mapping issue is not important because we are just regarding Ti1i2...ik as a "carrier" of
the labels 1,2,3..k, from the point of view of doing permutations. The actual indices like i1 could be
arbitrary objects (labeled pancakes) as far as the permutation theorems are concerned, but in our
applications we have in mind that i1 is an integer in the range 1,2....n where n = dim(V) and n is unrelated
to the tensor rank k.

In Section A.8 we shall instead apply our results to "tensor functions",

 f(1,2,3...k) = T(vi1, vi2,vik) .

Again, from a permutation point of view, T(vi1, vi2,vik) is just a carrier of the labels 1,2...k. The
permutation theorems don't care whether or not vi1 happens to be a vector in V labeled by i1, or even
whether or not vi1 happens to be an argument of a function T.

Here then are some Section A.2, A.3, A.4 results translated according to f(1,2,3...k) = Ti1i2...ik . For
some of the translations, we show the actual equation from above, then its translation. For others we just
state the translated result.

In all the results below, one can always specialize to the case i1,i2...ik → 1,2,...k. The resulting equations
are then as if our mapping were f(1,2...k) = T12...k. Note then that iP(r) → i(r) in a superscript.

(a) Alt Equations (translated from Section A.2)

The basic Alt definition of (A.2.1)

 g(1,2...k) = [Alt(f)](1,2...k) ≡ (1/k!) ΣP (-1)S(P)f(P(1),P(2)...P(k)) (A.2.1)

becomes,

Appendix A: Permutation Support

 270

 Gi1i2...ik = [Alt(F)]i1i2...ik = (1/k!) ΣP (-1)S(P) FiP(1)iP(2)...iP(k)

or
 G = Alt(F) . // definition of Alt acting on a tensor (A.5.3a)

We can define the object AltI[Fi1i2...ik] in the following obvious manner

 AltI[Fi1i2...ik] ≡ (1/k!) ΣP (-1)S(P) FiP(1)iP(2)...iP(k)
 = [Alt(F)]i1i2...ik . (A.5.3b)
In multiindex notation :

 [Alt(F)]I = AltI[FI] = (1/k!) ΣP (-1)S(P) F P(I) . (A.5.3c)

Examples:

 Gi1i2 = [Alt(F)]i1i2 = (1/2) [Fi1i2 - Fi2i1] = AltI [Fi1i2]

 Gi1i2i3 = [Alt(F)]i1i2i3 = (1/6) [Fi1i2i3 - Fi2i1i3 + the other four terms] . (A.5.4)

In practice, we might more easily write

 Gabc = [Alt(F)]abc = (1/6) (Fabc - Facb + Fcab - Fcba + Fbca - Fbac)

but when it comes time to prove permutation-related theorems, we use indices like i1i2i3 .

Continuing on, R[1,2....k] = [R(1),R(2).....R(k)] of (A.2.3) becomes, with R→ P,

 P Ti1i2...ik = TiP(1)iP(2)...iP(k) (A.2.3) (A.5.5)

Fact: Any permutation P is a linear operator, so P(ΣiaiTi

i1i2...ik) = Σiai(PTi
i1i2...ik) .

 (A.2.5) (A.5.6)

Definition: A tensor Ti1i2...ik is totally antisymmetric if it changes sign when any two superscripts
are swapped. (A.2.9) (A.5.7)

Example: Ti1i2...ik = - Ti2i1...ik or Tabc = -Tbac

Fact: Ti1i2...ik totally antisymmetric ⇔ P Ti1i2...ik = (-1)S(P) Ti1i2...ik , where P is any
permutation of [1,2..k]. (A.2.10) (A.5.8)

Fact: The function Ti1i2...ik ≡ [Alt(F)]i1i2...ik is totally antisymmetric in its indices.
 (A.2.11) (A.5.9)

Fact: Alt is a linear operator, so Alt (ΣjajTj

i1i2...ik) = Σjaj [Alt(Tj)]i1i2...ik.

Appendix A: Permutation Support

 271

 (A.2.12) (A.5.10)

Fact: Alt is a projection operator, so Alt(Alt(T)) = Alt(T) . (A.2.13) (A.5.11)

Fact: If T is a totally antisymmetric rank-k tensor, then Alt(T) = T . (A.2.16) (A.5.12)

(b) Sym Equations (translated from Section A.3)

The basic Sym definition of (A.3.1)

 g(1,2...k) = [Sym (f)](1,2...k) ≡ (1/k!) ΣP f(P(1),P(2)...P(k)) (A.3.1)

becomes,

 Gi1i2...ik = [Sym (F)]i1i2...ik = (1/k!) ΣP FiP(1)iP(2)...iP(k) (A.5.13)

 G = Sym (F) . // definition of Sym acting on a tensor

Examples:

 Gi1i2 = [Sym(F)]i1i2 = (1/2) [Fi1i2 + Fi2i1]

 Gi1i2i3 = [Sym(F)]i1i2i3 = (1/6) [Fi1i2i3 + Fi2i1i3 + the other four terms] (A.5.14)

 Gabc = [Sym(F)]abc = (1/6) (Fabc + Facb + Fcab+ Fcba + Fbca + Fbac)

Definition: A tensor Ti1i2...ik is totally symmetric if it is unchanged when any two superscripts are
swapped. (A.3.9) (A.5.15)

Example: Ti1i2...ik = Ti2i1...ik or Tabc = Tbac = Tacb

Fact: Ti1i2...ik totally symmetric ⇔ P Ti1i2...ik = Ti1i2...ik, where P is any permutation of
[1,2..k]. (A.3.10) (A.5.16)

Fact: The function Ti1i2...ik ≡ [Sym(F)]i1i2...ik is totally symmetric in its indices.
 (A.3.11) (A.5.17)

Fact: Sym is a linear operator, so Sym (ΣjajTj

i1i2...ik) = Σjaj [Sym(Tj)]i1i2...ik.
 (A.3.12) (A.5.18)

Fact: Sym is a projection operator, so Sym (Sym (T)) = Sym (T) . (A.3.13) (A.5.19)

Fact: If T is a totally symmetric rank-k tensor, then Sym(T) = T . (A.3.16) (A.5.20)

Appendix A: Permutation Support

 272

(c) Alt, Sym and decomposition of tensors (translated from Section A.4)

Fact: The projection operators Alt and Sym are orthogonal, so Alt(Sym(f)) = Sym(Alt(f)) = 0 .
 (A.4.1) (A.5.21)

Fact: A tensor Ti1i2...ik can be decomposed in the following manner: (A.5.22)

 Ti1i2...ik = Ai1i2...ik + Si1i2...ik + Ei1i2...ik (A.4.3)

 Alt(A) = A Sym(A) = 0 Alt(E) = 0 (A.4.4)
 Alt(S) = 0 Sym(S) = S Sym(E) = 0 (A.4.5)

where A is totally antisymmetric, S is totally symmetric, and E is whatever is left over.

A.6 The permutation tensor ε

The permutation tensor ε of rank k is written εi1i2...ik where each subscript must be an element of
{1,2...k}. The values of the tensor are these:

 • ε12..k = +1
 • εi1i2...ik changes sign if any two indices are swapped .
 • Therefore, if two or more indices are the same, εi1i2...ik = 0 .

 • εi1i2...ik ≡ εi1i2...ik (A.6.1)

The tensor εi1i2...ik has kk components, but only k! of those components are non-zero. One arrives at
k! by allowing k values for i1, then only (k-1) values for i2, and so on.

The tensor εi1i2...ik is totally antisymmetric by (A.5.7) since any index swap causes a minus sign.

Fact: Apart from scale, the εi1i2...ik tensor is the only totally antisymmetric tensor one can construct.
 (A.6.2)

Proof: From the definition of εi1i2...ik, we see that if Ai1i2...ik is a arbitrary totally antisymmetric
tensor, then one can write

 Ai1i2...ik = [A12...k] εi1i2...ik . (A.6.3)

Here εi1i2...ik does the bookkeeping for swaps of index pairs. The scale factor is then A12...k .

Use of the ε tensor

We noted already that all our permutation results can be specialized to ir → r. For example,

Appendix A: Permutation Support

 273

 [Alt(T)]i1i2...ik = (1/k!) ΣP (-1)S(P) TiP(1)iP(2)...iP(k) (A.5.3b)

then becomes

 [Alt(T)]12...k = (1/k!) ΣP (-1)S(P) TP(1)P(2)...P(k) . (A.6.4)

Now we make the following claim,

 ΣP (-1)S(P) TP(1)P(2)...P(k) = Σi1i2...ik εi1i2...ik Ti1i2...ik, ir = 1,2...k . (A.6.5)

Each of the ir sums runs from 1 to k. Notice that each side has k! non-vanishing terms in its sum.

Suppose P[1,2,3...k] = [i1, i2, i3 ...ik]. Then we claim that the parity of the permutation is given by

 (-1)S(P) = εi1i2...ik . (A.6.6)

To see why this is so, start off with the identity permutation P = 1 which has (-1)S(P) = (-1)0 = 1. In this
case P[1,2...k] = [1,2...k] and conveniently ε123...k = 1, so both sides of (A.6.6) agree. Now swap 1↔2
and then the left side is (-1)1 = -1 and the right side is ε213...k = - ε123...k = - 1 and again both sides
agree. Now swap 2↔3. The left side is (-1)2 and the right side is - ε132...k = ε123...k = 1, and again
both sides agree. In this way one can exhaust all permutations P and the equation is always true.

On the left side of (A.6.5) the permutations are enumerated by P, while on the right they are enumerated
by i1, i2, i3 ...ik which is restricted by the ε tensor to be a permutation of 1,2,3...k.

Basically the notation on each side of (A.6.5) is describing the same instructions for forming the sum.

Example with k = 3 (A.6.7)

 ΣP (-1)S(P) TP(1)P(2)P(3)

 = T123 - T213 + T231 - T321 + T312 - T132 .

The only simple way to form this sum is to keep doing swaps. We show in red the pair that will be
swapped to make the next term on the right. Compare then to

 Σi1i2i3 εi1i2i3 Ti1i2ik .

To enumerate the terms, we use the 3! = 6 non-zero values of εi1i2i3 in the same order as above

Appendix A: Permutation Support

 274

 Σi1i2i3 εi1i2i3 Ti1i2ik

 = ε123 T123 + ε213 T213 + ε231 T231 + ε321T321 + ε312 T312 + ε132 T132

 = (1) T123 + (-1) T213 + (1) T231 + (-1) T321 + (1) T312 + (-1)T132

 = T123 - T213 + T231 - T321 + T312 - T132 .

Here the signs of the ε factors alternate as shown because each one is obtained by an index pair swap on
the preceding term.

Application Consider,

 Ti1i2...ik = (vi1 ⊗ vi2 ⊗ ⊗ vik) .

We can specialize this to say

 T12...k = (v1 ⊗ v2 ⊗ ⊗ v3)

and then apply P using (A.2.4) with R→P to get

 TP(1)P(2)...P(k) = (vP(1) ⊗ vP(2) ⊗ ⊗ vP(k)) .

Then (A.6.5)

 ΣP (-1)S(P) TP(1)P(2)...P(k) = Σi1i2...ik εi1i2...ik Ti1i2...ik, ir = 1,2...k (A.6.5)

becomes

 ΣP (-1)S(P) (vP(1) ⊗ vP(2) ⊗ ⊗ vP(k))

 = Σi1i2...ik εi1i2...ik (vi1 ⊗ vi2 ⊗ ⊗ vik), ir = 1,2...k (A.6.8)

which appears as part of (7.1.3).

Appendix A: Permutation Support

 275

A.7 The wedge-product-of-vectors Alt equation

Here we consider a new application for our generic function f[1,2...k], namely,

 f[1,2,....k] = (vj1 ⊗ vj2 ⊗ ⊗ vjk) . (A.7.1)

Here the js label the generic objects vjs and ⊗ is for the moment some generic operator. Then, consider
the generic Alt definition,

 [Alt(f)](1,2...k) ≡ (1/k!) ΣP (-1)S(P)f(P(1),P(2)...P(k)) . (A.2.1)

Formally speaking, the left side would have to be written something like this,

 [Alt(f)](1,2...k) = [Alt((vj* ⊗ vj* ⊗ ⊗ vj*))](1,2...k)

 = Alt(vj1 ⊗ vj2 ⊗ ⊗ vjk) . (A.7.2)

On the first line the asterisks are place holders which will get the arguments in the argument list. This lets
us make a formal association f → (vj* ⊗ vj* ⊗ ⊗ vj*) for a function without arguments.

On the right side of (A.2.1) just above we have

 f(P(1),P(2)...P(k)) = (vjP(1) ⊗ vjP(2) ⊗ ⊗ vjP(k)) . (A.7.3)

From the last three equations we end up then with this statement,

 Alt(vj1 ⊗ vj2 ⊗ ⊗ vjk) = (1/k!) ΣP (-1)S(P) (vjP(1) ⊗ vjP(2) ⊗ ⊗ vjP(k)) . (A.7.4)

If it happens that ⊗ means the tensor product, and if the vj1 happen to be vectors in V, then the above
expression happens to be our definition (7.1.2) for the wedge product of k vectors:

 (vj1 ^ vj2 ^ ^ vjk) = Alt(vj1 ⊗ vj2 ⊗ ⊗ vjk) . (A.7.5)

As noted earlier, we can always specialize replacing jr → r. Then

 f[1,2,....k] = (v1 ⊗ v2 ⊗ ⊗ vk) .

 Alt(v1 ⊗ v2 ⊗ ⊗ vk) = (1/k!) ΣP (-1)S(P) (vP(1) ⊗ vP(2) ⊗ ⊗ vP(k)) (A.7.6)

 (v1 ^ v2 ^ ^ vk) = Alt(v1 ⊗ v2 ⊗ ⊗ vk) . (A.7.7)

Appendix A: Permutation Support

 276

A.8 Application to Tensor Functions

We now restate the "generic" results of Sections A.2, A.3 and A.4 for this special case:

 f(1,2...k) = T(vi1,vi2....vik) // a "tensor function" T ∈ V*k . (A.8.1)

We apologize for copy, paste and edit, but things really are exactly parallel to the tensor discussion above.

Here T is any rank-k tensor function. This f seems perhaps an odd looking "function", but one can
consider it to be just an evaluation of this more respectable mapping,

 f(a,b,c,...q) = T(via,vib....viq) a,b,c... ∈ {1,2...k}

 f: {1,2...k}k → Vf*k . (A.8.2)

This technical mapping issue is not important because we are just regarding T(vi1,vi2....vik) as a
"carrier" of the labels 1,2,3..k, from the point of view of doing permutations. The actual indices like i1
could be arbitrary objects (labeled cupcakes) as far as the permutation theorems are concerned, but in our
applications we have in mind that i1 is an integer in the range 1,2....n where n = dim(V) and n is unrelated
to the tensor rank k.

Here then are some Section A.2, A.3 ,A.4 results translated according to f(1,2,3...k) = T(vi1,vi2....vik) .
For some of the translations, we show the actual equation from above, then its translation. For others we
just state the translated result.

In all the results below, one can always specialize to the case i1,i2...ik → 1,2,...k. The resulting equations
are then as if our mapping were f(1,2...k) = T(v1,v2....vk). Note then that iP(r) → i(r) in a subscript.

(a) Alt Equations (translated from Section A.2)

The basic Alt definition of (A.2.1)

 g(1,2...k) = [Alt(f)](1,2...k) ≡ (1/k!) ΣP (-1)S(P)f(P(1),P(2)...P(k)) (A.2.1)

becomes,

 G(vi1,vi2....vik) = [Alt(F)](vi1,vi2....vik) = (1/k!) ΣP (-1)S(P)F(viP(1),viP(2)....viP(k)) (A.8.3)

 G = Alt(F) . // definition of Alt acting on a tensor function

Appendix A: Permutation Support

 277

Examples:

 G(vi1,vi2) = [Alt(F)](vi1,vi2) = (1/2)[F(vi1,vi2) - F(vi2,vi1)] (A.8.4)

 G(vi1,vi2,vi3) = [Alt(F)](vi1,vi2,vi3) = (1/6)[F(vi1,vi2,vi3) - F(vi2,vi1,vi3)+ the other four terms]

In practice, we might more easily write

 G(va,vb,vc) = [Alt(F)](va,vb,vc) = (1/6) [F(va,vb,vc) - F(vb,va,vc) + the other four terms]

but when it comes time to prove permutation-related theorems, we use subscripts like i1.

Continuing on, R[1,2....k] = [R(1),R(2).....R(k)] of (A.2.3) becomes, with R→ P,

 P T(vi1,vi2....vik) = T(viP(1),viP(2)....viP(k)) . (A.2.3) (A.8.5)

Fact: Any permutation P is a linear operator, so P(ΣrarTr(vi1,vi2....vik)) = Σrar(PTr(vi1,vi2....vik))
 (A.2.5) (A.8.6)

Definition: A tensor function T(vi1,vi2....vik) is totally antisymmetric if it changes sign when any two
arguments are swapped. (A.2.9) (A.8.7)

Example: T(vi1,vi2....vik) = - T(vi2,vi1....vik) or T(va,vb....vq) = - T(vb,va....vq)

Fact: T(vi1,vi2....vik) totally antisymmetric ⇔

 P T(vi1,vi2....vik) = (-1)S(P) T(vi1,vi2....vik) , where P is any permutation of [1,2..k].
 (A.2.10) (A.8.8)

Fact: The function G(vi1,vi2....vik) ≡ [Alt(T)](vi1,vi2....vik) is totally antisymmetric in its labels.
 (A.2.11) (A.8.9)

Fact: Alt is a linear operator, so Alt (ΣjajTj(vi1,vi2....vik)) = Σjaj [Alt(Tj)](vi1,vi2....vik).
 (A.2.12) (A.8.10)

Fact: Alt is a projection operator, so Alt(Alt(T)) = Alt(T) . (A.2.13) (A.8.11)

Fact: If T is a totally antisymmetric rank-k tensor, then Alt(T) = T . (A.2.16) (A.8.12)

Appendix A: Permutation Support

 278

(b) Sym Equations (translated from Section A.3)

The basic Sym definition of (A.3.1)

 g(1,2...k) = [Sym (f)](1,2...k) ≡ (1/k!) ΣP f(P(1),P(2)...P(k)) (A.3.1)

becomes,

 G(vi1,vi2....vik) = [Sym(F)](vi1,vi2....vik) = (1/k!) ΣP F(viP(1),viP(2)....viP(k)) (A.8.13)

 G = Sym(F) . // definition of Alt acting on a tensor

Examples:

 G(vi1,vi2) = [Sym(F)](vi1,vi2) = (1/2)[F(vi1,vi2) + F(vi2,vi1)] (A.8.14)

 G(vi1,vi2,vi3) = [Sym(F)](vi1,vi2,vi3) = (1/6)[F(vi1,vi2,vi3)+F(vi2,vi1,vi3+ the other four terms]

In practice, we might more easily write

 G(va,vb,vc) = [Sym(F)](va,vb,vc) = (1/6) [F(va,vb,vc) + F(vb,va,vc) + the other four terms]

but when it comes time to prove permutation-related theorems, we use subscripts like i1.

Definition: A tensor function T(vi1,vi2....vik) is totally symmetric if it is unchanged when any two
arguments are swapped. (A.3.9) (A.8.15)

Example: T(vi1,vi2....vik) = T(vi2,vi1....vik) or T(va,vb....vq) = T(vb,va....vq)

Fact: T(vi1,vi2....vik) totally symmetric ⇔ P T(vi1,vi2....vik) = T(vi1,vi2....vik), where P is any
permutation of [1,2..k]. (A.3.10) (A.8.16)

Fact: The function G(vi1,vi2....vik) ≡ [Sym(F)](vi1,vi2....vik) is totally symmetric in its labels.
 (A.3.11) (A.8.17)

Fact: Sym is a linear operator, so Sym(ΣjajTj(vi1,vi2....vik)) = Σjaj [Sym(Tj)](vi1,vi2....vik).
 (A.3.12) (A.8.18)

Fact: Sym is a projection operator, so Sym (Sym (T)) = Sym (T) . (A.3.13) (A.8.19)

Fact: If T is a totally symmetric rank-k tensor, then Sym(T) = T . (A.2.16) (A.8.20)

Appendix A: Permutation Support

 279

(c) Alt/Sym and Other Equations (translated from Section A.4, A.6 and A.7)

Fact: The projection operators Alt and Sym are orthogonal, so Alt(Sym(T)) = Sym(Alt(T)) = 0 .
 (A.4.1) (A.8.21)

Fact: A tensor function T(vi1,vi2....vik) can be decomposed in the following manner: (A.8.22)

 T(vi1,vi2....vik) = A(vi1,vi2....vik) + S(vi1,vi2....vik) + E(vi1,vi2....vik) (A.4.3)

 Alt(A) = A Sym(A) = 0 Alt(E) = 0 (A.4.4)
 Alt(S) = 0 Sym(S) = S Sym(E) = 0 (A.4.5)

where A is totally antisymmetric, S is totally symmetric, and E is whatever is left over.

The following are based on Section A.6 and concern use of the ε tensor with tensor functions.

If A is totally antisymmetric, then

 A(vi1,vi2....vik) = [A(v1,v2....vk)] εi1i2...ik . (A.6.3) (A.8.23)

The tensor function [Alt(T)](v1,v2....vk) can be expressed as,

 ΣP (-1)S(P) T(vP(1),vP(2)....vP(k)) = Σi1i2...ik εi1i2...ik T(vi1,vi2....vik)
 (A.6.5) (A.8.24)
Let
 T(vi1,vi2....vik) = (αi1 ⊗ αi2 ⊗ ⊗ αik)(vi1,vi2....vik)
so
 T(v1,v2....vk) = (α1 ⊗ α2 ⊗ ⊗ αk)(v1,v2....vk) .

Then (A.8.24) gives this way to write (αj1 ^ αj2 ^ ^ αjk) :

 ΣP (-1)S(P) (αP(1) ⊗ αP(2) ⊗ ⊗ αP(k)) (A.6.8) (A.8.25)

 = Σi1i2...ik εi1i2...ik (αi1 ⊗ αi2 ⊗ ⊗ αik), ir = 1,2...k .

 The following is based on Section A.7,

 (αj1 ^ αj2 ^ ^ αjk) = Alt(αj1 ⊗ αj2 ⊗ ⊗ αjk) (A.7.5) (A.8.26)

Appendix A: Permutation Support

 280

(d) Alt/Sym when there are two sets of indices

It is not uncommon to encounter objects like the following

 (Xj1j2...jk)i1i2...ik XJ

I

where the jr are labels and the ir are tensor component indices. An example would be the components of
a wedge product of k vectors

 (vj1^ vj2^ ^ vjk)i1i2...ik .

In this situation, we have to clarify which of the two sets of indices is being acted upon by the Alt
operator. We might do this as follows, using AltI and AltJ ,

 AltI[(Xj1j2...jk)i1i2...ik] = (1/k!) ΣP (-1)S(P) (Xj1j2...jk)iP(1)iP(2)...iP(k)

 AltJ[(Xj1j2...jk)i1i2...ik] = (1/k!) ΣP (-1)S(P) (XjP(1)jP(2)...jP(k))i1i2...ik

In general, the above two objects are different.

Now recall Fact (A.5.12) from above,

Fact: If T is a totally antisymmetric rank-k tensor, then Alt(T) = T . (A.2.16) (A.5.12)

If it happens that (Xj1j2...jk)i1i2...ik is totally antisymmetric in the ir , then

 AltI[(Xj1j2...jk)i1i2...ik] = (Xj1j2...jk)i1i2...ik

If it happens that (Xj1j2...jk)i1i2...ik is totally antisymmetric in the jr , then

 AltJ[(Xj1j2...jk)i1i2...ik] = (Xj1j2...jk)i1i2...ik

If it happens that (Xj1j2...jk)i1i2...ik is totally antisymmetric separately in the ir and the jr, then we
have

 AltI[(Xj1j2...jk)i1i2...ik] = AltJ[(Xj1j2...jk)i1i2...ik]

since both are equal to (Xj1j2...jk)i1i2...ik .

Recalling Fact (A.5.20),

Fact: If T is a totally symmetric rank-k tensor, then Sym(T) = T , (A.3.16) (A.5.20)

Appendix A: Permutation Support

 281

we conclude a similar fact for SymI and SymJ . We then summarize these results

Fact: If (Xj1j2...jk)i1i2...ik is totally antisymmetric in both sets of indices, then

 AltI[(Xj1j2...jk)i1i2...ik] = AltJ[(Xj1j2...jk)i1i2...ik] (A.8.27)

Fact: If (Xj1j2...jk)i1i2...ik is totally symmetric in both sets of indices, then

 SymI[(Xj1j2...jk)i1i2...ik] = SymJ[(Xj1j2...jk)i1i2...ik] . (A.8.28)

Example: According to (7.2.9) the object (vj1^ vj2^ ^ vjk)i1i2...ik is totally antisymmetric in both
sets of indices. Therefore,

 AltI (vj1^ vj2^ ^ vjk)i1i2...ik = AltJ (vj1^ vj2^ ^ vjk)i1i2...ik . (A.8.29)

Another case of interest is when (Xj1j2...jk)i1i2...ik is an outer product of identical rank-2 tensors,

 (Xj1j2...jk)i1i2...ik = Tj1

i1 Tj2
i2 Tjk

ik .

Then

 AltI[(Xj1j2...jk)i1i2...ik] = (1/k!) ΣP(-1)S(P) Tj1

iP(1) Tj2
iP(2) Tjk

iP(k)

 = (1/k!) det(Tj*
i*) .

According to (A.1.19) we can move the P(..) operators from the i subscripts to the j subscripts to get

 = (1/k!) ΣP(-1)S(P) TjP(1)

i1 TjP(2)
i2 TjP(k)

ik = AltJ[(Xj1j2...jk)i1i2...ik] .

We are just swapping the rows and columns in the determinant shown above. Thus,

Fact: AltI [Tj1

i1 Tj2
i2 Tjk

ik] = AltJ [Tj1
i1 Tj2

i2 Tjk
ik] = (1/k!) det(Tj*

i*) . (A.8.30)

Either form gives the same expression (1/k!) [Tj1

i1 Tj2
i2 Tjk

ik + all signed permutations].

In multiindex notation, we rewrite this last Fact as

Fact: If TJ

I has factored form, then AltI [TJ
I] = AltJ [TJ

I] = (1/k!) det(TJ
I). (A.8.31)

The above is of course true for TI

J or any other index positions. Next,

Appendix A: Permutation Support

 282

Fact: If TJ
I has factored form, then TJ

I = TP(J)
P(I) where P = any permutation of the index subscripts .

 (A.8.32)

Proof: Reordering the index subscripts this way just reorders the factors in the product of factors. For
example if TJ

I = Tj1
i1 Tj2

i2 then if P[1,2] = [2,1] one gets TP(J)
P(I) = Tj2

i2Tj1
i1 = TJ

I.

Fact : If TJ

I has factored form, then, ΣJ det(TI
J) xJ = ΣJ k! TI

J x^J. (A.8.33)

Here xJ = xj1 ⊗ xj2⊗ xjk , x^J = xj1 ^ xj2^ xjk and each xj is a vector labeled by j . That is to
say, xj is not the jth component of vector x.

Proof: LHS = ΣJ det(TI

J) xJ

 = ΣJ [k! AltI(TI
J)] xJ // (A.8.31)

 = ΣJ k! [(1/k!) ΣP (-1)S(P) TP(I)

J] xJ // (A.2.1) for AltI

 = ΣP (-1)S(P) [ΣJ TP(I)

J xJ] // reorder

 = ΣP (-1)S(P) [ΣJ TP(I)

P(J) xP(J)] // (A.1.24) that ΣJ fJ = ΣJ fP(J)

 = ΣP (-1)S(P) ΣJTI

J xP(J) // (A.8.32)

 = k! ΣJTI

J [(1/k!) ΣP (-1)S(P) xP(J)] // reorder

 = k! ΣJTI

J AltJ(xJ) // (A.2.1) for AltJ

 = k! ΣJTI

J x^J = RHS . // (7.4.3) █

Fact : ΣI TI u^I = Σ'I k! AltI(TI) u^I for any tensor TI (A.8.34)
 ΣI TI u^I = Σ'I k! AltI(TI) u^I for any tensor TI .

This theorem (first line) says that if the symmetric sum ΣI is replaced by the ordered sum Σ'I , then the
coefficients TI get replaced by k! AltI(TI) .

Example: Ti1i2 gets replaced by 2! AltI(Ti1i2) = 2! ((1/2!)[Ti1i2 -Ti2i1]) = [Ti1i2 -Ti2i1] . Then

 ΣI TI u^I = Σi1i2 Ti1i2 ui1^ ui2 = Σi1<i2 [Ti1i2 -Ti2i1] ui1^ ui2 .

Proof: This theorem (first line) was proved in (7.4.4) through (7.4.16). Here we just review that proof
using multiindex notation:

Appendix A: Permutation Support

 283

 T^ = ΣI TI u^I u^I = ui1^ ui2^^ uik (7.4.4)

 T^ = Σ'I AI u^I . (7.4.7)

 T^ = Σi1≠i2≠...≠ik TI u^I (7.4.9)

 T^ = ΣP ΣiP(1)<iP(2)<...<iP(k) TI u^I (7.4.12)

 T^ = Σi1<i2<...<ik ΣP TP(I) u^P(I) // using (A.9.1) below (7.4.13)

 u^P(I) = (-1)S(P)u^I (7.4.14)

 T^ = Σi1<i2<...<ik [ΣP (-1)S(P) TP(I)] u^I = Σ'I [k! Alt(T)I] u^I (7.4.15)

 AI = k! [Alt(T)]I by comparing (7.4.7) and (7.4.15) (7.4.16)

The theorem goes through with the I-tilt the other way, which is the second line of (A.8.34).
Alternatively, we can take the first result and apply the "tilt reversal rule" (2.9.1) to get the second line
from the first line. █

Fact : ΣI TI x^I = Σ'I k! AltI(TI) x^I for any tensor TI (A.8.35)
 ΣI TI x^I = Σ'I k! AltI(TI) x^I for any tensor TI

Proof: In the proof of the previous Fact, the basis vectors ui played a placeholder role and the same proof
works with any set of vectors xi where x^I is the wedge product of those vectors. █

Fact : ΣI TI

J x^I = Σ'I k! AltI(TI
J) x^I for any tensor TI

J (A.8.36)
 ΣI TJ

I x^I = Σ'I k! AltI(TJ
I) x^I for any tensor TJ

I

Proof: The first line is the first line of the previous Fact where a bystander J multiindex has been added.
The same idea for the second line.

Fact : If TI

J has factored form, then ΣI TI
J x^I = Σ'I det(TI

J) x^I . (A.8.37)
 If TJ

I has factored form, then ΣI TJ
I x^I = Σ'I det(TJ

I) x^I,

Proof: ΣI TI

J x^I = Σ'I k! AltI(TI
J) x^I // (A.8.36)

 = Σ'I det(TI
J) x^I // (A.8.31)

 ΣI TJ

I x^I = Σ'I k! AltI(TJ
I) x^I // (A.8.36)

 = Σ'I det(TJ
I) x^I // (A.8.31) █

Appendix A: Permutation Support

 284

A.9 The Ordered Sum Theorem

The ordered sum theorem states that,

 (ΣP [ΣP(i1)<P(i2)<...<P(ik)]) fi1i2...ik = Σi1<i2<...<ik [ΣP fP(i1)P(i2)...P(ik)] . (A.9.1)

Rather than present a formal proof, we look at the two simplest cases and the general case is then obvious.

k = 2: First, consider

 Q ≡ Σi1≠i2 fi1i2 = [Σi1<i2 + Σi1>i2] fi1i2

 = [Σi1<i2 + Σi2<i1] fi1i2= (ΣP[ΣP(i1)<P(i2)]) fi1i2 . (A.9.2)

On the other hand,

 Q = [Σi1<i2 + Σi2<i1] fi1i2 = Σi1<i2 fi1i2 + Σi2<i1 fi1i2

 = Σi1<i2 fi1i2 + Σi1<i2 fi2i1 //dummy swap i1↔i2 in 2nd term

 = Σi1<i2 [fi1i2 + fi2i1] = Σi1<i2 [ΣP fP(i1)P(i2)] . (A.9.3)

Thus we have proven the Theorem for k = 2,

 (ΣP [ΣP(i1)P(i2)]) fi1i2 = Σi1<i2 [ΣP fP(i1)P(i2)] (A.9.4)

k = 3: First, consider

 Q ≡ Σi1≠i2≠i3 fi1i2i3

 = (Σi1<i2<i3 + Σi1<i3<i2 + Σi2<i1<i3 + Σi2<i3<i1 + Σi3<i1<i2 + Σi3<i2<i1) fi1i2i3

 = (ΣP [ΣP(i1)<P(i2)<P(i3)]) fi1i2i3 . (A.9.5)

On the other hand we can rename the summation indices in all but the first sum to get

 Q = (Σi1<i2<i3 + Σi1<i3<i2 + Σi2<i1<i3 + Σi2<i3<i1 + Σi3<i1<i2 + Σi3<i2<i1) fi1i2i3

 as is 2↔3 1↔3
 = Σi1<i2<i3 fi1i2i3 + Σi1<i2<i3 fi1i3i2 + Σi1<i2<i3 fi3i2i1 + 3 more sums

 = Σi1<i2<i3 [fi1i2i3 + fi1i3i2 + fi3i2i1 + 3 more terms]

Appendix A: Permutation Support

 285

 = Σi1<i2<i3 [ΣP fP(i1)P(i2)P(i3)]. (A.9.6)

Thus we have proven the Theorem for k =3,

 (ΣP [ΣP(i1)<P(i2)<P(i3)]) fi1i2i3 = Σi1<i2<i3 [ΣP fP(i1)P(i2)P(i3)] . (A.9.7)

The argument for a k-fold sum proceeds in the same manner, and we end up with

 (ΣP [ΣP(i1)<P(i2)<...<P(ik)]) fi1i2...ik = Σi1<i2<...<ik [ΣP fP(i1)P(i2)...P(ik)] . (A.9.1)

A.10 Tensor Products in Generic Notation

In Section A.2 above we use a set of generic function arguments (1,2..k) and their permutations to define
the Alt and Sym operators, detached from the world of tensors and tensor functions. In this same generic
vein one can define a generic tensor product as follows,

Definition: Tensor product: (f⊗g)(1,2,....k+k') ≡ f(1,2...k) g(k+1,k+2....k+k') . (A.10.1)

If we translate this definition in the same way we translated everything else, we arrive at this
corresponding statement in the tensor world,

Definition: Tensor product: (T⊗S)i1i2...ik+k' ≡ Ti1i2...ik Sik+1ik+2...ik+k',
where the ranks of tensors T,S are k,k'. (A.10.2)

Since (A.10.2) is already defined to be true using the "outer product definition" of the ⊗ symbol in
Section 2.8, it seems that here we are just lucky to obtain a consistent result. We put this issue on hold for
a moment, and consider next the way (A.10.1) translates into the tensor function world,

Definition: Tensor product: (T⊗S)(vi1,vi2....vik+k') ≡ T(vi1,vi2....vik) S(vik+1,vik+2....vik+k'),
where the ranks of dual tensors T,S are k,k'. (A.10.3)

In Section 6.6 it seemed that we had to do quite a bit of work to obtain (A.10.3) as stated in (6.6.13), and
here suddenly this same result just drops out as some kind of definition.

Both these issues can be clarified by use of the Dirac notation which reveals the underlying "tensor
product of vector spaces" structure. First, we can write (A.10.1) in the generic world as

 (f⊗g)(1,2,....k+k') ≡ f(1,2...k) g(k+1,k+2....k+k') (A.10.1)

 k+k'<f⊗g | 1,2,.....k+k'>k+k' = k<f | 1,2,.....k>k * k'<g | k+1,k+2.....k+k'>k' (A.10.4)

where for example

Appendix A: Permutation Support

 286

 | 1,2,.....k>k = |1>1 ⊗ |2>1 ⊗ ...⊗ |k>1 (A.10.5)

 k+k'<f⊗g| = k<f| ⊗ k'<g| . (A.10.6)

The subscript k labels a ket in Vk and a bra in V*k, for example. Suddenly we are interpreting the generic
argument set (1,2,...k) as if it were a tensor product of "generic kets" in their own vector spaces. By itself,
this does not really make much sense, but when we think of the generic description as being a stand-in for
our tensor and tensor-function cases, then it does make sense. We show in Appendix D (D.1.2) and
(D.1.3), and also in the main text (2.11.e.7) and (2.11.e.9), that

 T(vi1,vi2, vik) = <T | vi1,vi2, vik >

 where | vi1,vi2, vik > = |vi1> ⊗ |vi2> ⊗ ⊗ |vik> (A.10.7)

 Ti1i2....ik = <T | ui1,ui2, uik >

 where | ui1,ui2, uik > = |ui1> ⊗ |ui2> ⊗ ⊗ |uik> (A.10.8)

and here we see the real meanings of the generic stand-in tensor product |1> ⊗ |2> ⊗ ...⊗ |k>.
 For the tensor case we then write

 (T⊗S)i1i2...ik+k' = < T⊗S| ui1,ui2, uik+k' >

 = [k<T| ⊗ k'<S|] [| ui1,ui2, uik >k ⊗ | uik+1,uik+2, uik+k' >k']

 = k< T | ui1,ui2, uik >k k'< S | uik+1,uik+2, uik+k' >k'

 = Ti1i2...ik Sik+1ik+2...ik+k' (A.10.9)

and the Dirac tensor product space structure then directly implies the tensor "outer product" rule defined
in Chapter 2.

In the tensor-function case we do exactly the same thing but with u→v,

 (T⊗S)(vi1,vi2....vik+k') = < T⊗S | vi1,vi2....vik+k'>

 = [k<T| ⊗ k'<S|] [| vi1,vi2, vik >k ⊗ | vik+1,vik+2, vik+k' >k']

 = k< T | vi1,vi2, vik >k k'< S | vik+1,vik+2, vik+k' >k'

 = T(vi1,vi2....vik) S(vik+1,vik+2....vik+k') (A.10.10)

and again the vector space structure forces this tensor function result. In fact, this is exactly how we
derived this result in (6.6.12) for a more general case.

Appendix B: Direct Sums

 287

Appendix B: Direct Sum of Vector Spaces

There are nine short numbered sections below. Here are the headings:

1. Axioms for ⊕
2. Direct Sum Space V⊕W
3. Basis for V⊕W
4. Z = V⊕W is a vector space
5. v⊕w does not commute
6. Visualization of the Direct Sum
7. Extension to multiple ⊕ products
8. Application: adding tensor products
9. Direct sum of operators (matrices): Block Diagonal Form

1. Axioms for ⊕

Let vi ∈ V and wi ∈ W where V and W are vector spaces, and α ∈ K is a scalar. The direct sum operator
⊕ can be defined by these rules (axioms) for any k > 1,

 v1⊕w1 + v2⊕w2 + ... + vk⊕wk = (v1+v2 + ...+ vk) ⊕ (w1+w2 + ... + wk) (B.1)

 (αv)⊕(αw) = α(v⊕w) . (B.2)

In slightly more concise notation (B.1) can be written Σi=1k (vi⊕wi) = (Σi=1kvi) ⊕ (Σi=1kwi).

For k = 2 (B.1) becomes,

 v1⊕w1 + v2⊕w2 = (v1+v2) ⊕ (w1+w2) . (B.3)

Since V and W are vector spaces, each has a 0 element and one can write

 v1⊕0 + 0⊕w2 = (0+v1) ⊕ (0+w2) = v1⊕w2 // (B.3) with w1 = 0 and v2 = 0 (B.4)

 (αv)⊕0 = α(v⊕0) // w = 0
 0⊕(αw) = α(0⊕w) // v = 0 (B.5)

2. Direct Sum Space V⊕W

Define space Z by

 Z ≡ V⊕W (B.6)

and let

 zi ≡ vi⊕wi ∈ Z. (B.7)

Appendix B: Direct Sums

 288

One might write

 ⊕ : (V,W) → V⊕W ⊕ : (v,w) ↦ (v⊕w)

Lemma: Given some zi, we can find vi and wi such that zi = vi⊕wi . (B.8)

Proof: When we say Z ≡ V⊕W, we mean these spaces are the same, so there is a 1-to-1 correspondence
between elements of zi ∈ Z and elements vi⊕wi ∈ V⊕W.

3. Basis for V⊕W

Let us assume that:
 ei form a basis of dimension n for V
 e'j form a basis of dimension n' for W

Fact: A basis for Z can be written as

 {e1⊕0, e2⊕0en⊕0, 0⊕e'1, 0⊕e'2,0⊕e'n'} (B.9)

Proof: Let vi be components of vector v, and wi the components of vector w. Consider:

 { v1(e1⊕0) + v2(e2⊕0) + ... + vn(en⊕0)} + {w1(0⊕e'1) + w2(0⊕e'2) + ... + wn'(0⊕e'n')}

 ={ (v1e1)⊕0 + (v2e2)⊕0 + ...+ (vnen)⊕0} + {0⊕(w1e'1) + 0⊕(w2e'2) + ... + 0⊕(wn'e'n')} // (B.5)

 = { (v1e1+ v2e2 + ...+ vnen)⊕(0+0+..+0)} + {(0+0+..+0)⊕ (w1e'1+ w2e'2 + ...+ wne'n)} // (B.1)

 = (v1e1+ v2e2 + ...+ vnen) ⊕ 0 + 0 ⊕ (w1e'1+ w2e'2 + ...+ wne'n)

 = (v1e1+ v2e2 + ...+ vnen) ⊕ (w1e'1+ w2e'2 + ...+ wne'n) // (B.4)

 = v ⊕ w

This z = v ⊕ w is an arbitrary element of Z, and we have therefore shown that an arbitrary element of Z
can be expanded on the basis shown in (B.9) and that no smaller basis will do the job. QED

Fact: If dim(V) = n and dim(W) = n'. then dim(V⊕W) = n + n' (B.10)

Proof: Count the basis elements shown in (B.9).

Compare this Fact with that shown in (4.1.1) :

Fact: If dim(V) = n and dim(W) = n', then dim(V⊗W) = n * n' . (4.1.1)

Appendix B: Direct Sums

 289

4. Z = V⊕W is a vector space

Fact: If V and W are vector spaces, then Z = V⊕W is a vector space. (B.11)

Proof: We just run down the required axioms listed for example on the wiki vector space page. The
conclusion one reaches is that the vector space properties are "induced" from V and W into Z.

• The fact that + is commutative within V and W causes + to be commutative within Z :

 z1 + z2 = v1⊕w1 + v2⊕w2 = (v1+v2) ⊕ (w1+w2) = (v2+v1) ⊕ (w2+w1) = v2⊕w2 + v1⊕w1

 = z2 + z1 .

• Addition in Z is associative because it is associative in V and W:

 (z1+ z2) + z3 = (v1⊕w1 + v2⊕w2) + v3⊕w3 = (v1+v2)⊕(w1+w2) + v3⊕w3

 = (v1+v2+v3)⊕ (w1+w2+w3) = v1⊕w1 + (v2+v3)⊕(w2+w3)

 = v1⊕w1 + (v2⊕w2 + v3⊕w3) = z1 + (z2 + z3) .

• The zero element in Z is 0 = 0⊕0 since

 v⊗w + 0 = v⊗w + 0⊕0 = (v+0)⊗(w+0) = v⊗w .

• The additive inverse of z = v⊕w is -z = (-v)⊕(-w) since

 z + (-z) = v⊕w + (-v)⊕(-w) = (v-v)⊕(w-w) = 0⊕0 = 0 .

• For scalars a,b we have a(bz) = (ab)z compatibility since

 a(bz) = a(b[v⊕w]) = a[(bv)⊕(bw)] = (abv)⊕(abw) = (ab)(v⊗w) = (ab)z .

• Identity for scalar multiplication requires that 1(z) = z :

 1(z) = 1(v⊕w) = (1v)⊕(1w) = v⊕w = z .

• Distributive requirement #1: a(z1+z2) = az1+ az2 (a = scalar)

 a(z1+z2) = az3 = a(v3⊕w3) = (av3)⊕(aw3) = (av1+av2)⊕(aw1+aw2)

 = (av1)⊕(aw1) + (av2)⊕(aw2) = a(v1⊕w1) + a(v2⊕w2) = az1+ az2

Appendix B: Direct Sums

 290

• Distributive requirement #2 : (a+b)z = az + bz (a,b = scalars)

 (a+b)z = (a+b)(v⊕w) = [(a+b)v]⊕[(a+b)w] = [av+bv]⊕[aw+bw] = (av)⊕(aw) + (bv)⊕(bw)

 = a(v⊕w) + b(v⊕w) = az + bz QED

5. v⊕w does not commute

Fact: v⊕w ≠ w⊕v unless V = W and v = w. (B.12)

Proof:

V≠W: If V≠W, the object w⊕v makes no sense since it would require w ∈ V and v ∈ W.

V=W: v⊕w - w⊕v = v⊕w + (-w)⊕(-v) = (v-w)⊕(w-v) ≠ 0 unless v = w.

Compare (B.12) to the Fact stated in and below (4.1.1),

Fact: v⊗w ≠ w⊗v unless V = W and v = w. (4.1.1)

However, there is certainly an isomorphism between V⊕W and W⊕V. Writing V⊕W ~ W⊕V one could
certainly then say that v⊕w ~ w⊕v . The same could be said for the ⊗ operator.

6. Visualization of the Direct Sum

Consider this example

 v = ⎝
⎛

⎠
⎞ a

 b ∈ R2 w =
⎝
⎜
⎛

⎠
⎟
⎞ s

 t
 u

 ∈ R3 z = v⊕w = ⎝
⎛

⎠
⎞ v

 w =

⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞ a

 b
 s
 t
 u

 ∈ R5 . (B.13)

Here we visualize the direct sum vector z as a tall column vector which is the stacking of the two smaller
column vectors v and w. In the tall column vector, v and w each occupy a private region.

Here then are the rules (B.3) and (B.2) :

 v1⊕w1 + v2⊕w2 = ⎝
⎛

⎠
⎞ v1

 w1
 + ⎝

⎛
⎠
⎞ v2

 w2
 = ⎝

⎛
⎠
⎞ v1+v2

 w1+w2
 = (v1+v2) ⊕ (w1+w2) (B.14)

 (αv1)⊕(αv2) = ⎝
⎛

⎠
⎞ αv1

 αw1
 = α ⎝

⎛
⎠
⎞ v1

 w1
 = α(v1⊕v2) . (B.15)

The fact (B.10) that dim(V⊕W) = dim(V) + dim(W) is demonstrated by 5 = 2+3.

The fact (B.12) that v⊕w ≠ w⊕v is demonstrated since (a,b,s,t,u)T ≠ (s,t,u,a,b)T.

Appendix B: Direct Sums

 291

7. Extension to multiple ⊕ products

The axioms for a triple direct sum are these,

 v1⊕w1⊕x1 + v2⊕w2⊕x2 + ... + vk⊕wk⊕xk

 = (v1+v2 + ...+ vk) ⊕ (w1+w2 + ... + wk) ⊕ (x1+x2 + ... + xk) (B.16)

 (αv)⊕(αw)⊕(αx) = α(v⊕w⊕x) (B.17)

and from this one can imagine an arbitrary number of ⊕ involved in a direct sum. One can derive these
two equations from (B.1) and (B.2) by assuming associativity and then grouping things for example as

 v1⊕w1⊕x1 + v2⊕w2⊕x2 + ... + vk⊕wk⊕xk

 = (v1⊕w1)⊕x1 + (v2⊕w2)⊕x2 + ... + (vk⊕wk)⊕xk

 = [(v1⊕w1) + (v2⊕w2) + ... + (vk⊕wk)] ⊕ (x1 + x2 + ... + xk)

 = [(v1+v2+ .. +vk) ⊕ (w1+w2+ .. +wk)] ⊕ (x1 + x2 + ... + xk)

 = (v1+v2 + ...+ vk) ⊕ (w1+w2 + ... + wk) ⊕ (x1+x2 + ... + xk)

and
 (αv)⊕(αw)⊕(αx) =[(αv)⊕(αw)] ⊕ (αx) = [α(v⊕w)] ⊕ (αx) = α [(v⊕w ⊕x] = α[v⊕w⊕x] .

One can define

 Z ≡ V⊕W⊕X zi ≡ vi⊕wi⊕x1 ∈ Z (B.6)'

 ⊕ : (V,W,X) → V⊕W⊕X ⊕ : (v,w,x) ↦ (v⊕w⊕x)

We leave it to the reader to prove the following extended claims:

Lemma: Given some zi, we can find vi, wi and xi such that zi = vi⊕wi⊕xi . (B.8)'

Fact: If dim(V) = n, dim(W) = n' and dim(X) = n". then dim(V⊕W⊕X) = n + n' + n". (B.10)'

Fact: If V.W and X are vector spaces, then Z = V⊕W⊕X is a vector space. (B.11)'

The extension of the "tall vector" visualization to the triple ⊕ sum seems fairly obvious where one ends
up stacking three vectors to make a single tall vector.

Appendix B: Direct Sums

 292

8. Application: adding tensor products

Define the vector product space Vk as in (5.1).

• If T = V2⊕V3 one can write

 t = Σij Tij ui⊗uj ⊕ Σijk Tijk ui⊗uj⊗uk ∈ T // t = v⊕w

• If T = V1⊕V2⊕V3 one can write

 t = ΣiTiui ⊕ Σij Tij ui⊗uj ⊕ Σijk Tijk ui⊗uj⊗uk ∈ T // t = v⊕w⊕x

and in this manner we eventually arrive at (5.4.1) for T(V)

 T(V) ≡ V0 ⊕ V ⊕ V2 ⊕ V3 ⊕ (5.4.1)

 t = s ⊕ ΣiTi ui ⊕ Σij Tij ui⊗uj ⊕ Σijk Tijk ui⊗uj⊗uk ⊕ ... ∈ T(V), s ∈ K (5.4.2)

For the space V*k the objects being direct-summed are functionals instead of tensors, but the formalism is
exactly the same,

 T(V*) ≡ V*0 ⊕ V* ⊕ V*2 ⊕ V*3 ⊕ = Σ⊕

k=1
∞ V*k . (6.4.1)

 τ = s ⊕ ΣiTi λi ⊕ Σij Tij λi⊗λj ⊕ Σijk Tijk λi⊗λj⊗λk + s ∈ K (6.4.2)

9. Direct sum of operators (matrices): Block Diagonal Form

Let vector spaces V and W have dimension n and n'.
Let S, S1 and S2 be n x n matrices which we can regard as linear operators in V.
Let T, T1 and T2 be n' x n' matrices which we can regard as linear operators in W.

Then in the direct product space V⊕W we can write these operator equations,

 (S1+S2)⊕(T1+T2) = S1⊕T1 + S2⊕T2

 α(S⊕T) = αS ⊕ αT

 (S1⊕T1)(S2⊕T2) = (S1S2)⊕(T1T2) (B.18)

and the action of operator S ⊕ T of V⊗W on a vector of V⊗W is given by

 (S ⊕ T) (v⊕w) = (Sv)⊕(Tw) . (B.19)

Appendix B: Direct Sums

 293

Just as we visualized the direct sum of two vectors in (B.13), it is helpful to visualize the above three
matrix equations graphically:

 (B.20)

The direct sum operator S⊕T is represented as an (n+n')x(n+n') matrix that is in "block diagonal form"
where the matrix outside the blocks is filled with zeros. A triple direct sum has this visualization,

 (B.21)

In all cases, the entire area outside the diagonal blocks is set to 0. The rules for such operators are,

 (S1 + S2)⊕(T1 + T2)⊕(R1 + R2) = S1⊕T1⊕R1 + S2⊕T2⊕R2

 α(S⊕T⊕R) = αS ⊕ αT ⊕ αR

 (S1⊕T1⊕R1)(S2⊕T2⊕R2) = (S1S2)⊕(T1T2) ⊕(R1R2)

 (S⊕T⊕R) (v⊕w⊕x) = (Sv)⊕(Tw)⊕(Rx) . (B.22)

Appendix C: Pre-Symmetrization

 294

Appendix C: Theorems on Pre-Symmetrization

The Rearrangement Theorem (A.1.3) is used to prove three other theorems (One, Two and Three) where
we have attempted to abstract as much as possible the "permutational nature" of the objects involved by
using a generic permutation space with elements |1,2...k>. Then in Section C.4 the theorems are
summarized and are generalized to apply to arbitrary tensor products. Finally, the generic theorems are
applied to tensors and tensor functions. The reader uninterested in the theorem details would do well to
skip right to the summary presented in Section C.4.

It is assumed that the reader is familiar with Appendix A.1-3 and A.10.

C.1 Theorem One

Consider the following list of k+k' integers,

 [1,2....k, k+1,k+2....k+k'] = [1,2....k+k'] . (C.1.1)

Partition this list into a low and high group by defining

 z ≡ [1,2....k] Z = [k+1,k+2....k+k'] . (C.1.2)

Then

 [1,2....k+k'] = [z,Z] . (C.1.3)

Now let Q be a permutation of the lower integers [1,2...k] = z. There are k! possible permutations, so we
know that

 ΣQ (1) = k! . (C.1.4)

We can extend the meaning of Q so it applies to the entire list of integers [1,2....k+k'] merely by stating
that this extended Q' does not alter the higher integers. Then

 Q'[z] = Q[z] = z' = some permutation of the lower integers (C.1.5a)

 Q'[Z] = Z // since Q has no effect on the higher integers (C.1.5b)

 Q'[z, Z] = [Q'(z), Q'(Z)] = [Q(z), Z] . (C.1.5c)

Now imagine we have a function f of the lower integers and a function F of the higher ones,

 f[z] = f[1,2....k] F[Z] = F[k+1,k+2....k+k'] . (C.1.6)

Here are two applications we shall consider later on,

Appendix C: Pre-Symmetrization

 295

 f[z] = f[1,2....k] = Ti1i2...ik = components of a rank-k tensor

 f[z] = f[1,2....k] = T(vi1,vi2, vik) = a rank-k tensor function . (C.1.7)

Now let P be a general permutation of [1,2....k+k'] = [z,Z].

 P[z,Z] = [P(z), P(Z)] . (C.1.8)

Notice that QP and PQ are undefined since P and Q operate in different spaces, but Q'P and PQ' are both
defined since both permutations Q' and P operate in the space of [1,2....k+k'].

Recall now the meaning of S(Q) as the number of swaps required to go from z to Q(z) . This is the same
as the number of swaps required to go from [z,Z] to Q'[z,Z] = [Q(z),Z]. Therefore

 S(Q) = S(Q') . (C.1.9)

We shall now prove the following theorem :

Theorem One

 ΣP (-1)σS(P) f[P(z)] F[P(Z)] = ΣP (-1)σS(P) f^[P(z)] F[P(Z)] (C.1.10)
where
 f^[z] ≡ (1/k!) ΣQ (-1)σS(Q) f[Q(z)] σ = 1 or 0

The purpose of σ is to state the theorem with and without the (-1)S(P) factor.

We shall use the notation f^ in most of this section to apply for both values of σ, but at the end, we shall
distinguish these two cases by writing:

 f^[z] ≡ (1/k!) ΣQ (-1)S(Q) f[Q(z)] // = Alt(f), see (A.2.1)
 fs[z] ≡ (1/k!) ΣQ f[Q(z)] . // = Sym(f), see (A.3.1) (C.1.11)

At the end of this section we will show that the above Theorem One with σ = 1 and σ = 0 is equivalent to
the statements:

 Alt(f⊗F) = Alt(f^⊗F) f^ = Alt(f) σ = 1
 Sym(f⊗F) = Sym(fs⊗F) fs = Sym(f) σ = 0 . (C.1.12)

Proof of Theorem One: Our first task is to process the second line of (C.1.10),

 f^[z] = (1/k!) ΣQ (-1)σS(Q) f[Q(z)]
 = (1/k!) ΣQ (-1)σS(Q') f[Q'(z)] . // (C.1.9) and (C.1.5a) (C.1.13)

Apply permutation P to the above equation and use (A.2.8) to get

Appendix C: Pre-Symmetrization

 296

 P f^[z] = f^[P(z)] = (1/k!) ΣQ (-1)σS(Q') f [PQ'(z)] . (C.1.14)

Then,

 RHS (C.1.10) = ΣP (-1)σS(P) f^[P(z)] F[P(Z)]

 = ΣP (-1)σS(P) { (1/k!) ΣQ (-1)σS(Q') f[PQ'(z)] } F[P(Z)] // (C.1.14) for f^[P(z)]

 = (1/k!) ΣQ ΣP (-1)σS(PQ') f[PQ'(z)] F[P(Z)] // reorder and use (A.1.10)

 = (1/k!) ΣQ ΣP (-1)σS(PQ') f[PQ'(z)] F[PQ'(Z)] // Q'(Z) = Z from (C.1.5b)

 = (1/k!) ΣQ ΣP(-1)σS(P) f[P(z)] F[P(Z)] // rearrangement theorem (A.1.3)

 = ΣP(-1)σS(P) f[P(z)] F[P(Z)] { (1/k!) ΣQ (1)} // reorder

 = ΣP(-1)σS(P) f[P(z)] F[P(Z)] { 1 } // ΣQ (1) = k! from (C.1.4)

 = LHS (C.1.10) . QED (C.1.15)

Recall now definitions of the generic Alt and Sym operators,

 [Alt(f)](1,2...k) ≡ (1/k!) ΣP (-1)S(P)f(P(1),P(2)...P(k)) (A.2.1) (C.1.16)
 [Sym(f)](1,2...k) ≡ (1/k!) ΣP f(P(1),P(2)...P(k)) (A.3.1) (C.1.17)

Using (C.1.16) and (C.1.17) , the second line of (C.1.10) can be restated

 f^ = Alt(f) σ = 1 totally antisymmetric
 fs = Sym(f) σ = 0 totally symmetric . (C.1.18)

Recall next the definition of a tensor product ⊗ in our generic function space,

 (f⊗g)(1,2,....k+k') ≡ f(1,2...k) g(k+1,k+2....k+k') . (A.10.1) (C.1.19)

Then we can write

 (f⊗F)(1,2,....k+k') = f(1,2..k)F(k+1,k+2...k+k') = f(z) F(Z)
 (f^⊗F)(1,2,....k+k') = f^(1,2..k)F(k+1,k+2...k+k') = f^(z) F(Z) . (C.1.20)

Theorem One (with σ = 1) can then be stated in this manner,

 ΣP (-1)S(P)(f⊗F)(P(1),P(2),...P(k+k')) = ΣP (-1)S(P)(f^⊗F)(P(1),P(2),...P(k+k')) (C.1.10)σ=1

Add a factor 1/(k+k')! to both sides and use the Alt definition (C.1.16) with k→ k+k' to get,

Appendix C: Pre-Symmetrization

 297

 [Alt(f⊗F)](1,2...k+k') = [Alt(f^⊗F)](1,2...k+k')
or
 Alt(f⊗F) = Alt(f^⊗F) f^ = Alt(f) . (C.1.21)

Taking σ = 0 in (C.1.10) gives (f^ → fs as noted above),

 ΣP (f⊗F)(P(1),P(2),...P(k+k')) = ΣP (fs⊗F)(P(1),P(2),...P(k+k')) (C.1.10)σ=0

Use this with the Sym definition (C.1.17) with k→ k+k' to get

 Sym(f⊗F) = Sym(fs⊗F) fs = Sym(f) . (C.1.22)

C.2 Theorem Two

This section is a copy, paste and edit version of Section C.1. Equations that are the same have italicized
equation numbers.

Consider the following set of k+k' integers,

 [1,2....k, k+1,k+2....k+k'] = [1,2....k+k'] . (C.1.1)

Partition this list into a low and high half by defining

 z ≡ 1,2....k Z = k+1,k+2....k+k' (C.1.2)

Then

 [1,2....k+k'] = [z,Z] . (C.1.3)

Now let R be a permutation of the upper integers {k+1,k+2....k+k'} = Z. There are k'! possible
permutations, so we know that

 ΣR (1) = k'! . (C.2.4)

We can extend the meaning of R so it applies to the entire set of integers [1,2....k+k'] merely by stating
that this extended R' does not alter the lower integers. Then

 R'[Z] = R[Z] = Z' = some permutation of the upper integers (C.2.5a)

 R'[z] = z // since R has no effect on the lower integers (C.2.5b)

 R'[z, Z] = [R'(z), R'(Z)] = [z, R(Z)] . (C.2.5c)

Now imagine we have a function f of the lower integers and a function F of the higher ones,

Appendix C: Pre-Symmetrization

 298

 f[z] = f[1,2....k] F[Z] = F[k+1,k+2....k+k'] . (C.1.6)

Here are two applications we shall consider later on,

 F[Z] = F [k+1,k+2....k+k'] = Sik+1ik+2...ik+k' = components of a rank-k' tensor

 F[Z] = F [k+1,k+2....k+k'] = S(vik+1,vik+2, vik+k') = a rank-k' tensor function . (C.2.7)

Now let P be a general permutation of [1,2....k+k'] = [z,Z].

 P[z,Z] = [P(z), P(Z)] (C.1.8)

Notice that RP and PR are undefined since P and R operate in different spaces, but R'P and PR' are both
defined since both permutations R' and P operate in the space of [1,2....k+k'].

Recall now the meaning of S(R) as the number of swaps required to go from Z to R(Z) . This is the same
as the number of swaps required to go from [z,Z] to R'[z,Z] = [z,R(Z)]. Therefore

 S(R) = S(R') . (C.2.9)

We shall now prove the following theorem :

Theorem Two

 ΣP (-1)σS(P) f[P(z)] F[P(Z)] = ΣP (-1)σS(P) f[P(z)] F^[P(Z)] (C.2.10)
where
 F^[Z] ≡ (1/k'!) ΣR (-1)σS(R) F[R(Z)] σ = 1 or 0

The purpose of σ is to state the theorem with and without the (-1)S(P) factor.

We shall use the notation F^ in most of this section to apply for both values of σ, but at the end, we shall
distinguish these two cases by writing:

 F^[z] ≡ (1/k!) ΣQ (-1)S(Q) F[Q(z)] // = Alt(F), see (A.2.1)
 Fs[z] ≡ (1/k!) ΣQ F[Q(z)] // = Sym(F), see (A.3.1) (C.2.11)

At the end of this section we will show that the above Theorem Two with σ = 1 and σ = 0 is equivalent to
the statements:

 Alt(f⊗F) = Alt(f⊗F^) F^ = Alt(F) σ = 1
 Sym(f⊗F) = Sym(f⊗Fs) Fs = Sym(F) σ = 0 . (C.2.12)

Appendix C: Pre-Symmetrization

 299

Proof of Theorem Two: Our first task is to process the second line of (C.2.10),

 F^[Z] = (1/k'!) ΣR (-1)σS(R) F[R(Z)]
 = (1/k'!) ΣR (-1)σS(R') F[R'(Z)]. / (C.2.9) and (C.2.5a) (C.2.13)

Apply permutation P to the above equation and use (A.2.8) to get

 P F^[Z] = F^[P(Z)] = (1/k'!) ΣR (-1)σS(R') F [PR'(Z)] . (C.2.14)

Then,

 RHS (C.2.10) = ΣP (-1)σS(P) f[P(z)] F^[P(Z)]

 = ΣP (-1)σS(P) f[P(z)]{(1/k'!) ΣR (-1)σS(R') F [PR'(Z)]} // (C.2.14) for F^[P(Z)]

 = (1/k'!)ΣR ΣP(-1)σS(PR') f[P(z)] F [PR'(Z)] // reorder and (A.1.10)

 = (1/k'!)ΣR ΣP(-1)σS(PR') f[PR'(z)] F [PR'(Z)] // R'(z) = z from (C.2.5b)

 = (1/k'!)ΣR ΣP(-1)σS(P) f[P(z)] F [P(Z)] // rearrangement theorem (A.1.3)

 = ΣP(-1)σS(P) f[P(z)] F [P(Z)] { (1/k'!) ΣR (1) } // reorder

 = ΣP(-1)σS(P) f[P(z)] F [P(Z)] {1 } // ΣR (1) = k'! from (C.2.4)

 = LHS (C.2.10) . QED (C.2.15)

Using (C.1.15) and (C.1.16) , the second line of (C.2.10) can be restated

 F^ = Alt(F) σ = 1 totally antisymmetric
 Fs = Sym(F) σ = 0 totally symmetric . (C.2.18)

Following the same arguments used the end of Section C.1, one obtains the following equivalent
restatement of Theorem Two (just move the subscript from f to F)

 Alt(f⊗F) = Alt(f⊗F^) F^ = Alt(F) (C.1.21)
 Sym(f⊗F) = Sym(f⊗Fs) Fs = Sym(F) . (C.1.22)

Alternate Proof of Theorem 2

An alternate proof of Theorem Two is two start with Theorem One and just make these changes

 z ↔ Z f↔F k↔k' Q→R

Here is Theorem One

Appendix C: Pre-Symmetrization

 300

 ΣP (-1)σS(P) f[P(z)] F[P(Z)] = ΣP (-1)σS(P) f^[P(z)] F[P(Z)]
where
 f^[z] ≡ (1/k!) ΣQ (-1)σS(Q) f[Q(z)] σ = 1 or 0 (C.1.10)

and here is Theorem One with the above changes applied,

 ΣP (-1)σS(P) F[P(Z)] f[P(z)] = ΣP (-1)σS(P) F^[P(Z)] f[P(z)]
where
 F^[z] ≡ (1/k'!) ΣR (-1)σS(R) F[R(Z)] σ = 1 or 0 . (C.1.10)swap

This is the same as Theorem Two which we quote from above,

 ΣP (-1)σS(P) f[P(z)] F[P(Z)] = ΣP (-1)σS(P) f[P(z)] F^[P(Z)]
where
 F^[Z] ≡ (1/k'!) ΣR (-1)σS(R) F[R(Z)] σ = 1 or 0 . (C.2.10)

We went ahead with the detailed proof for two reasons. First, the swap proof might not be convincing to
the reader. Second, the detailed proof provides steps which are crucial to proving Theorem Three below.

C.3 Theorem Three

Now both functions have a ^ subscript :

 ΣP (-1)σS(P) f[P(z)] F[P(Z)] = ΣP (-1)σS(P) f^[P(z)] F^[P(Z)] (C.3.1)
where
 f^[z] ≡ (1/k!) ΣQ (-1)σS(Q) f[Q(z)]
 F^[Z] ≡ (1/k'!) ΣR (-1)σS(R) F[R(Z)] σ = 1 or 0

The purpose of σ is to state the theorem with and without the (-1)S(P) factor.

At the end of this section we will show that the above Theorem Three with σ = 1 and σ = 0 is equivalent
to the statements,

 Alt(f⊗F) = Alt(f^⊗F^) . f^ = Alt(f) F^ = Alt(F) (C.3.5)
 Sym(f⊗F) = Sym(fs⊗Fs) . fs = Sym(f) Fs = Sym(F) . (C.3.6)

This theorem will involve both R and Q, as well as R' and Q' from earlier sections. Note that

 R'Q' = Q'R' (C.3.3)

because Q' acts only on the lower integers in (1,2...k+k') while R' acts only on the upper integers.

Appendix C: Pre-Symmetrization

 301

Proof of Theorem Three: Recall these results from previous sections,

 f^[P(z)] = (1/k!) ΣQ (-1)σS(Q') f [PQ'(z)] (C.1.13)

 F^[P(Z)] = (1/k'!) ΣR (-1)σS(R') F [PR'(Z)] . (C.2.13)

Then,

 RHS (C.3.1) = ΣP (-1)σS(P) f^[P(z)] F^[P(Z)]

 = ΣP (-1)σS(P){ (1/k!) ΣQ (-1)σS(Q') f [PQ'(z)]}{ (1/k'!) ΣR (-1)σS(R') F [PR'(Z)]}

 = (1/k!)(1/k'!)ΣQΣR ΣP (-1)σS(PR'Q') f [PQ'(z)] F [PR'(Z)] // reorder and (A.1.10)

 = (1/k!)(1/k'!)ΣQΣR ΣP (-1)σS(PR'Q') f [PQ'R'(z)] F [PR'Q'(Z)] // Q'(Z) = Z from (C.1.5b)
 // R'(z) = z from (C.2.5b)

 = (1/k!)(1/k'!)ΣQΣR ΣP (-1)σS(PR'Q') f [PR'Q'(z)] F [PR'Q'(Z)] // (C.3.3) R'Q' = Q'R'

 = (1/k!)(1/k'!)ΣQΣR ΣP (-1)σS(P[R'Q']) f [P[R'Q'](z)] F [P[R'Q'](Z)]

 = (1/k!)(1/k'!)ΣQΣR ΣP (-1)σS(P) f [P(z)] F [P(Z)] // rearrangement theorem (A.1.3)

 = ΣP (-1)σS(P) f [P(z)] F [P(Z)] { (1/k!)ΣQ(1) }{ (1/k'!)ΣR(1) } // reorder

 = ΣP (-1)σS(P) f [P(z)] F [P(Z)] { 1 }{ 1 } // (C.1.4) and (C.2.4)

 = LHS (C.3.1) . QED (C.3.4)

The endgame steps of Section C.1 are identical here with the change F→F^, giving

 Alt(f⊗F) = Alt(f^⊗F^) . f^ = Alt(f) F^ = Alt(F) (C.3.5)
 Sym(f⊗F) = Sym(fs⊗Fs) . fs = Sym(f) Fs = Sym(F) . (C.3.6)

C.4 Summary and Generalization

Summary of the Three Theorems

Theorems One, Two and Three have shown that, in our generic function space,

 Alt[T⊗S] = Alt[T^⊗S] = Alt[T⊗S^] = Alt[T^⊗S^]
 where T^ = Alt(T) S^ = Alt(S) (C.4.1)

 Sym[T⊗S] = Sym[Ts⊗S] = Sym[T⊗Ss] = Sym[Ts⊗Ss]
 where Ts = Sym(T) Ss = Sym(S) . (C.4.2)

Appendix C: Pre-Symmetrization

 302

One can of course rewrite these statements as

 Alt[T⊗S] = Alt[Alt(T)⊗S] = Alt[T⊗Alt(S)] = Alt[Alt(T)⊗Alt(S)] (C.4.3)

 Sym[T⊗S] = Sym[Sym(T)⊗S] = Sym[T⊗Sym(S)] = Sym[Sym(T)⊗Sym(S)] . (C.4.4)

Intuitively these equations are easily interpreted:
 If one is going to totally antisymmetrize a tensor product, the act of pre-antisymmetrizing one or
more of the tensors makes no difference. So adding any ^ subscripts to objects inside an Alt makes no
difference.
 If one is going to totally symmetrize a tensor product, the act of pre-symmetrizing one or more of the
tensors makes no difference. So adding any s subscripts to objects inside an Alt makes no difference.

Various "theorems" can be generated by "adding hats" to the insides of an Alt expression.

Example: Consider.

 Alt[A⊗B⊗C] = Alt[(A⊗B)⊗C] = Alt[(A⊗B)^⊗C] = Alt[Alt(A⊗B)⊗C]
 Alt[A⊗B⊗C] = Alt[A⊗(B⊗C)] = Alt[A⊗(B⊗C)^] = Alt[A⊗Alt(B⊗C)] (C.4.5)

Therefore

 Alt[Alt(A⊗B)⊗C] = Alt[A⊗B⊗C] = Alt[A⊗Alt(B⊗C)] . (C.4.6)

Replacing A,B,C with the obscure names ω,η,θ gives

 Alt[Alt(ω ⊗ η) ⊗ θ] = Alt[ω ⊗ η ⊗ θ] = Alt[ω ⊗ Alt(η ⊗ θ)] . (C.4.7)

This may be compared with Spivak page 80 from which we quote,

 (C.4.8)

Generalization of the three theorems

The theorems derived above can be generalized in the following manner. Suppose for example we have a
set of integers [1,2,3......(k1+k2+...+kN)] = [1,2,3....κN]. Instead of partitioning this into 2 groups [z,Z] as
done above, we partition the integers into N groups [z1, z2....zN] as follows:

 κ1 = k1 // "cumulative ranks", as in (5.6.11)
 κ2 = k1+ k2
 κ3 = k1+ k2 + k3
 ...
 κN = k1 + k2 + ... + kN = Σi=1N ki . (5.6.11)

Appendix C: Pre-Symmetrization

 303

 [1,2,3....κN] = [z1, z2....zN] (C.4.9)

 z1 = [1,2,3...κ1] // the partitions
 z2 = [κ1+1,κ2+2,...κ2]
 z2 = [κ2+1,κ2+2,...κ3]
 ...
 zN = [κN-1, κN-1 + 1, ...κN] .

And instead of functions f and F, we have functions f1, f2....fN.

Whereas for N = 2 we had 22-1 = 3 theorems, for general N there will be 2N - 1 theorems. If we define

 L ≡ ΣP (-1)σS(P)f1[P(z1)]f2[P(z2)] ... fN[P(zN)] // Left side of theorems (C.4.10)

then here are those theorems: (exercise for the reader: use induction or brute force)

1. L = ΣP (-1)σS(P)(f1)^[P(z1)]f2[P(z2)] ... fN[P(zN)]
2. L = ΣP (-1)σS(P)f1[P(z1)](f2)^[P(z2)] ... fN[P(zN)]
3. L = ΣP (-1)σS(P)(f1)^[P(z1)](f2)^[P(z2)] ... fN[P(zN)]
4. L = ΣP(-1)σS(P)f1[P(z1)]f2[P(z2)](f3)^[P(z3)] ...fN[P(zN)]
......
(2N-1). L = ΣP(-1)σS(P)(f1)^[P(z1)](f2)^[P(z2)](f3)^[P(z3)] ...(fN)^[P(zN)] (C.4.11)

Translated to Alt/Sym, notation, we then find for the case N = 3,

 Alt[T⊗S⊗R] = Alt[T^⊗S⊗R] = Alt[T⊗S^⊗R] = Alt[T⊗S⊗R^]
 = Alt[T^⊗S^⊗R] = Alt[T^⊗S⊗R^] = Alt[T⊗S^⊗R^] = Alt[T^⊗S^⊗R^] (C.4.12)

 Sym[T⊗S⊗R] = Sym[Ts⊗S⊗R] = Sym[T⊗Ss⊗R] = Sym[T⊗S⊗Rs]
 = Sym[Ts⊗Ss⊗R] = Sym[Ts⊗S⊗Rs] = Sym[T⊗Ss⊗Rs] = Sym[Ts⊗Ss⊗Rs] (C.4.13)

One can write these using X^ = Alt(X) and Xs = Sym(X) to obtain nested equations as we did earlier.

In general one can write

 Alt[(T1)⊗(T2) ⊗(TN)] = Alt[(T1)a1⊗(T2)a2 ⊗(TN)aN] (C.4.14)

where each ai can independently be a blank, (Ti) , or can be a ^, (Ti)^. This then is the ultimate
statement that arbitrary pre-antisymmetrizing of one or more tensors in a totally antisymmetric product
makes no difference. Similarly,

 Sym[(T1)⊗(T2) ⊗(TN)] = Sym[(T1)a1⊗(T2)a2 ⊗(TN)aN] (C.4.15)

Appendix C: Pre-Symmetrization

 304

where each ai can independently be a blank, (Ti) , or can be an s, (Ti)s. This then is the ultimate
statement that arbitrary pre-symmetrizing of one or more tensors in a totally symmetric product makes no
difference.

Application to Tensors and Tensor Functions

All the work done above in Appendix C has been "generic", meaning the various operations are with
respect to generic permutation functions like f(1,2...k). The work can be applied to tensors or tensor
functions according to these simple translation rules

 f[1,2....k] = Ti1i2...ik = components of a rank-k tensor
 f[1,2....k] = T(vi1,vi2, vik) = a rank-k tensor function . (C.1.7) (C.4.16)

For example, consider our result (C.4.1) above that

 Alt(T⊗S) = Alt(T^⊗S) . (C.4.1) (C.4.17)

In the generic space this equation means

 [Alt(T⊗S)](1,2...k+k')= [Alt(T^⊗S)](1,2...k+k') . (C.4.18)

Translated from the generic space to the tensor space, one gets

 [Alt(T⊗S)]i1i2...ik+k' = [Alt(Alt(T)⊗S)]i1i2...ik+k' (C.4.19)

where for example

 [Alt(T)]i1i2...ik = (1/k!) ΣP (-1)S(P) TiP(1)iP(2)...iP(k) (C.4.20)

Translated from the generic space to the tensor function space, one gets instead,

 [Alt(T⊗S)](v1, v2.....vk+k') = [Alt(Alt(T)⊗S)](v1, v2.....vk+k') (C.4.21)

where for example

 [Alt(T)](v1, v2....vk) = (1/k!) ΣP (-1)S(P) T(vP(1), vP(2)....vP(k)) (C.4.22)

Here we follow our convention of putting dual-space tensor names into script/italic font.

Appendix D: Unified View

 305

Appendix D: A Unified View of Tensors and Tensor Functions

In this section multiindex notations are shown in red to the right.

D.1 Tensor functions in Dirac notation

The vector space V has dimension n, and k ≤ n.
The vector space is real, so <a|b> = <b|a>.

In the bra-ket notation (Paul Dirac, 1947), a rank-k tensor functional T is represented by the bra <T|
which is an element of the dual space V*k. Meanwhile, elements of the space Vk are written as kets
which are a tensor product of smaller kets,

 | vi1,vi2, vik > = |vi1> ⊗ |vi2> ⊗ ⊗ |vik> . | vI> (D.1.1)

Here the ir are labels, not components. Each vi1 is a vector in V having n components (vi1)j .

The tensor function T(vi1,vi2, vik) is then represented by the application of the functional <T| to
vectors in Vk so that,

 <T | vi1,vi2, vik > = T(vi1,vi2, vik) . T(vI) = <T | vI > (D.1.2)

Due to the tensor product (of vector spaces) construction of the "ket" shown in (D.1.1), the function
shown in (D.1.2) is manifestly k-multilinear. We call this a "tensor function".

The bra-ket notation represents an inner product (scalar product) so the spaces here are Hilbert spaces, not
just vector spaces.

As shown in (6.2.2), the covariant tensor Ti1i2....ik may be written (each label ir ranges from 1 to n),

 Ti1i2....ik = <T | ui1,ui2, uik > . TI = <T | uI > (D.1.3)

The vectors |ui> for i=1 to n form a basis for V, and the n*k kets | ui1,ui2, uik > form a basis for Vk.

From (D.1.2) and (D.1.3), one concludes that

 Ti1i2....ik = T(ui1,ui2, uik) ir = 1 to n TI = T(uI) (D.1.4)

in agreement with (6.2.5). The contravariant form is then

 Ti1i2....ik = T(ui1,ui2, uik) . TI = T(uI) (D.1.5)

Appendix D: Unified View

 306

Let us now assume that the n vectors |vi> for i=1 to n form some alternative basis for V, and then the n*k
kets | vi1,vi2, vik > form an alternative basis for Vk. The dual basis is {vi} where vi • vj = δij as in
(2.11.c.1) for the ui basis and its dual uj.

Looking at our two equations from above,

 <T | vi1,vi2, vik > = T(vi1,vi2, vik) ir = 1 to n (D.1.2)

 <T | ui1,ui2, uik > = Ti1i2....ik ir = 1 to n (D.1.3)

one can say that the tensor Ti1i2....ik and the tensor function T(vi1,vi2, vik) are both
representations of the same abstract tensor <T| in two different Vk bases, |vI> and |uI>. Both bases have
dimension n*k. Recall

 T = ΣI TIuI ∈ Vk = a tensor |T> = ΣI TI |uI >

 T = ΣI TIλI ∈ V*k = a tensor functional <T| = ΣI TI <uI|

 T ~ T by the isomorphism V*k ~ Vk [see below (2.11.b.1)] . (D.1.6)

Notice that for the basis {vi},

 <vI|vJ> = < vi1|vj1>< vi2|vj2> < vik|vjk>

 = (vi1 • vj1)(vi2 • vj2) (vik • vjk)

 = δi1j1δ

i2j2...δikjk // see (2.3.2) for basis {vr} with dual basis {vr}

 = δIJ . // orthonormal basis in the multiindex notation (D.1.7)

This result applies as well to the basis |uI>, so

 <uI|uJ> = <vI|vJ> = δIJ . (D.1.8)

D.2 Basis change matrix

The basis-change transformation matrix between the |vI> and |eI> bases is given by,

 MI

J ≡ < ui1,ui2, uik | vj1,vj2, vjk > MI
J = <uI|vJ> (D.2.1)

 = < ui1|vj1>< ui2|vj2> < uik|vjk> // see (2.9.17)

Appendix D: Unified View

 307

 = (ui1 • vj1)(ui2 • vj2) (uik • vjk)

 = λi1(vj1)λi2(vj2) λik(vjk) // see (2.11.c.5)

 = (vj1)i1 (vj2)i2 ...(vjk)ik

 = (vJ)I . // multiindex notation (D.2.2)

There are n*k values for I and n*k values for J, so matrix M has dimension nk x nk.

Entirely in multiindex notation (see (2.1.7)) ,

 MIJ = <uI|vJ> = (vJ)I // pure contravariant
 MI

J = <uI|vJ> = (vJ)I // mixed
 MI

J = <uI|vJ> = (vJ)I // mixed
 MIJ = <uI|vJ> = (vJ)I . // purecovariant (D.2.3)

The covariant transpose (see Section 2.11 (f)) is then,

 (MT)JI = MIJ = <uI|vJ> = <vJ| uI> = (vJ)I // Hilbert Space is real

 (MT)JI = MI

J = <uI|vJ> = <vJ| uI> = (vJ)I . (D.2.4)

In the bra-ket notation completeness of an orthonormal basis is expressed this way:

 1 = ΣJ |uJ><uJ| = ΣJ |uJ><uJ| // see Section 2.11 (h)
 = ΣJ |vJ><vJ| = ΣJ |vJ><vJ| . (D.2.5)

Proof: (example) Consider a general Vk tensor T :

(1) |T> = 1|T> = ΣJ |uJ><uJ| T> = ΣJ TJ |uJ> // so basis |uJ> must be complete

(2) |uI> = 1|uI> = ΣJ |uJ><uJ|uI> = ΣJ |uJ>δJI = |uI> // why orthonormal is needed

Therefore the basis-change matrix M has the property MMT = 1 or MT = M-1 :

 (MMT)IK = ΣJ MI

J(MT)JK = ΣJ <uI|vJ><vJ| uK> = <uI| (ΣJ|vJ><vJ|) |uK>

 = <uI | 1 | uK> = <uI | uK> = uI • uK = δIK // see (2.11.2)
so (D.2.6)
 MMT = 1 .

The connection then between the tensors and tensor functions is given by,

Appendix D: Unified View

 308

 TI = <uI| T> = <uI| 1 | T> = <uI| ΣJ |vJ><vJ| T>

 = ΣJ <uI|vJ><vJ| T> = ΣJ <uI|vJ><T| vJ>

 = ΣJ MI

J T(vJ) . (D.2.7)

Going the other direction,

 T(vI) = <vI | T > = <vI | 1 | T > = <vI | ΣJ |uJ><uJ| T >

 = ΣJ <vI|uJ> <uJ|T > = ΣJ <uJ|vI> <T| uJ >

 = ΣJ MJ

I TJ = ΣJ (MT)IJ TJ . (D.2.8)

Example of (D.2.7):

 Ti1i2 = Σj1,j2=1

n (vj1)i1(vj2)i2 T(vj1,vj2) ir = 1 to n
or
 Tij = Σa,b=1n (va)i(vb)j T(va,vb) . // n2 terms in the sum (D.2.7a)

Example of (D.2.8):

 T(vi1,vi2) = Σj1,j2=1

n (vi1)j1 (vi2)j2 Tj1j2 ir = 1 to n
or
 T(vi,vj) = Σa,b=1n (vi)a (vj)bTab . // n2 terms in the sum (D.2.8a)

Comment: These examples can be compared to a simple quantum mechanics case. Let |x> be a basis
vector describing a 1D particle at location x (coordinate representation), and let |p> be a basis vector
describing a plane-wave particle having momentum p (momentum representation). Then it turns out that
the basis change matrix is <x|p> = ψp(x) = C eip•x where C is a normalization constant. So the basis
change "matrix" (continuous matrix subscripts p and x) is a function of p, just as the basis change matrix
in (D.2.8a) is a function of vi and vj.

D.3 Transformations of tensors and tensor functions

In this section we write vectors in bold font.

Consider two sets of n vectors vi and v'i where vi form a basis for V. One can then write,

 v'i = Qi

jvj i = 1,2...n implied sum on j (D.3.1)

where Qi

j is a matrix describing the linear combinations of the vi that make up the v'i. Since the tensor
function T(vi1,vi2, vik) is k-multilinear, one can certainly write

Appendix D: Unified View

 309

 T(v'i1,v'i2, v'ik) = Qi1
j1Qi2

j2 Qik
jk T(vj1,vj2, vjk) (D.3.2)

or just showing the ket part,

 | v'i1,v'i2, v'ik > = Qi1
j1Qi2

j2 Qik
jk | vj1,vj2, vjk > . (D.3.3)

Equation (D.3.2) vaguely resembles the Chapter 2 transformation of a covariant tensor field,

 T 'i1i2...ik (x') = Ri1

j1Ri2
j2 Rik

jk Tj1j2...jk (x) (D.3.4)

where
 x' = F(x) and dx' = R dx. // R is the differential of F.

The resemblance is perhaps closer if we restrict x' = F(x) to be a linear transformation, so then

 x' = R x or x'i = Ri

jxj . (D.3.5)

The resemblance between (D.3.2) and (D.3.4) we claim is really superficial and misleading, which is the
main reason for bringing it up. We just make a few comments on this matter.

• The linearized transformations of Chapter 2 like v'i = Ri

jvj for a vector vi are component
transformations. The j on vj is a component index, and v'i = Ri

jvj (v' = Rv) is an instruction for creating
a new vector v' by linearly combining the components of v. Transformation (D.3.5) is such a component
transformation.

• In contrast, the transformation (D.3.1) that v'i = Qi

jvj is not a component transformation. It constructs
n new vectors v'i by linearly combining the n vectors vi. The j on vj is a label, not a component index.

• In (D.3.4), the left-side object T 'i1i2...ik(x') has a prime on T. It is a tensor different from Tj1j2...jk
(x), and this would be true even if there were no x dependence of the field.

• In (D.3.2), the left-side object T(v'i1,v'i2, v'ik) has no prime, it is the same T as on the right.

• In fact, as was shown in (2.11.e.8), the object T(v1, v2, ...vk) under any Chapter 2 component
transformation transforms as a scalar, so there are no Ri

j or Qi
j matrices involved,

 T'(v'1, v'2, ...v'k) = T(v1, v2, ...vk) . T'(v'Z) = T(vZ) (2.11.f.8)

where
 (v'r)i = Ri

j
 (vr)j r = 1...k implied sum on j i = 1...n

T(v1, v2, ...vk) is a scalar because it is the scalar product of a rank-k tensor functional T = <T| with a
rank-k tensor | v1, v2, ...vk >, just as <a | b> = a • b is a scalar.

• (D.3.2) is nothing more than a statement that the tensor function T(v1, v2, ...vk) is k-multilinear.

Appendix D: Unified View

 310

D.4 Tensor Functions and Quantum Mechanics

Eq. (D.1.2) defining a tensor function as a bra-ket combination

 <T | vi1,vi2, vik > = T(vi1,vi2, vik) (D.1.2)

has the following quantum mechanics incarnation, which was the original use Dirac intended for his bra-
ket notation,

 <ψ| r1, r2...rk> = ψ(r1, r2...rk) . (D.4.1)

Here object <ψ| plays the role of the abstract tensor <T|, and the generic arguments vir become the
physical positions ri of k particles. The object ψ is a functional in V*k which gets applied to |r1,r2....rk>
= |r1>⊗|r2>....⊗|rk> and the resulting function ψ(r1,r2...rk) is called a "wave function" which describes
the "probability amplitude" that the k particles are near spatial locations r1, r2,rk. The probability that
the k particles are near these spatial locations is given by |ψ(r1,r2...rk)|2dnr1dnr2 ...dnrk. "Near" means
that ri lies somewhere in the range ri to ri+dnri. Normally one uses n = 3 for 3D space.

It happens that in quantum mechanics literature it is the ket that is the functional in V*k and the bra which
is the element of Vk. So in a physics text one always sees equations like,

 ψ(r1, r2...rk) = <r1, r2...rk| ψ>. (D.4.2)

This is a long-standing convention difference between the physics and math worlds. When talking about a
functional f applied to a vector x, it seems natural to have f(x) = <f | x>, which is the math convention.
The physics person writes <x|ψ> = ψ(x) and says that the state vector |ψ> is being projected onto the
coordinate representation basis element <x|. Usually ψ is not called a "functional". A ket is thought of as a
vector v, while the bra is a transpose vector vT and then <v1|v2> = v1Tv2 in a matrix notation sense, so
here it seems logical to put "the vector", whether v, v2 or ψ, on the right.

Our functional T maps elements of Vk to the real numbers, and <a|b> = <b|a> = a • b, so one can "for
free" switch the role of which is the functional, and which is the ket acted upon by the functional. In
quantum mechanics the functional maps to complex numbers, and <a|b> = a* • b where * is complex
conjugation. Then <b|a> = b*• a = (a • b*)* = a* • b = <a|b>*. And <v1|v2> = v1T* v2 = v1†v2 . It is a
crucial element of quantum mechanics that the space Vk is complex and not real. In the math world, one
usually sees instead <b|a> = b • a* .

If the k particles are electrons or other half-integral spin particles which are in a "symmetric spin state",
then the wavefunction (D.1.4) must be replaced by [Alt(ψ)](r1, r2...rk) in order to make it be totally
antisymmetric in the coordinates ri, as required by "Fermi statistics" for half-integral spin particles. We
mention this just to show that both the Alt operator and more generally the permutation group of
Appendix A have important applications in quantum mechanics.

Appendix E: Kinematics Package

 311

Appendix E: Kinematics Package with x' = F(x) changed to x = φ(t)

The material here is just for completeness and is intended only for perusal. It shows how the development
of Chapter 10 appears for x = φ(t) in place of x' = F(x). In some ways, the x = φ(t) results concerning
differential forms are simpler that those expressed in the x' = F(x) notation. The less pleasant aspect is
that tensors (including metric tensors), basis vectors, and their spaces need an extra x or t label to
distinguish the two spaces (now t-space and x-space), whereas in the x' = F(x) approach this distinction is
accomplished by a prime versus no prime. We do use part of this notation in Section 10.9 since it brings
our results into a more standard form for comparison with other sources.

Translation Table

 →

 x-space → t-space
 x'-space → x-space

 F → φ general transformation name
 x' = F(x) → x = φ(t) general transformation equation
 R,S → R,S differential matrices (no change in name)
 F* → φ* pullback function

 V → tV vector in t-space
 V' → xV vector in x-space

 e → te tangent base vectors in t-space
 u → tu axis-aligned basis vectors in t-space
 g → tg metric tensor in t-space

 u' → xu tangent base vectors in x-space
 e' → xe axis-aligned basis vectors in x-space
 g' → xg metric tensor in x-space

 Λ'k → xΛk dual space to Rm

 Λk → tΛk dual space to Rn

 λ'i = dx'i →

xλi = dxi basis vector in dual space to Rm
 λi = dxi →

tλi = dti basis vector in dual space to Rm (E.1)

In this new notation, the "kinematics package" of (10.6.a.1) with adjustment (10.6.d.1) for "tall" R
appears as

Appendix E: Kinematics Package

 312

(a) x = φ(t) xform Ri

j ≡ (∂xi/∂tj) = ∂j(t)xi R = (Dφ)
 xV = R tV vector Sij ≡ (∂ti/∂xj) = ∂j(x)ti

(b) xei with (xei)j = δij axis-aligned basis vectors in x-space (i = 1..m)
 tei tei = S xei tangent base vectors in x-space (i = 1..n)

(c) tui with (tui)j = δij axis-aligned basis vectors in t-space (i = 1..n)
 xui xui= R tui tangent base vectors in t-space (i = 1..n)
 (xui)j = Rj

k (tui)k

(d) x1 = | xei> <xei| = | xei> <xei| = | xui> <xui| = | xui> <xui| completeness in x-space
 t1 = | tei> <tei| = | tei> <tei| = | tui> <tui| = | tui> <tui| completeness in t-space

(e) (tuj)i = tui • tuj = <tui | tuj > = tgij = xui • xuj = <xui | xuj >
 (tej)i = tui • tej = <tui | tej > = Sij = Rj

i
 (xej)i = xei • xej = <xei | xej > = xgij = tei • tej = <tei | tej >
 (xuj)i = xei • xuj = <xei | xuj > = Ri

j = Sji

(f) tei = xgij tej xei = xgij xej tui = tgij tuj xui = tgij xuj
 tei = xgij tej xei = xgij xej tui = tgij tuj xui = tgij xuj

(g) <tej | S | xei> = <xei | R | tej> = xgij
 <tej | S | xui> = <xui | R | tej> = Sij = Rj

i
 <tuj | S | xei> = <xei | R | tuj> = Ri

j = Sji
 <tuj | S | xui> = <xui | R | tuj> = tgij .

(h) S = RT Sij = (RT)ij = Rj

i

 R = ST Ri
j = (ST)ij = Sji

(i) SR = 1 SST = RTR = 1 (10.6.a.1) (E.2)

The uniqueness table of (10.6.d.2) becomes the following,

 Metric tensors
 tgij, tgij unique
 xgij unique, since xgij = Ri

aRj
b tgab

 xgij not unique, since xgij = Ri
aRj

b
tgab = SaiSbj tgab and Sij not unique

Appendix E: Kinematics Package

 313

 Transformation matrices
 Ri

j = Sji unique (tall R matrix from x' = F(x))
 Rij = Sji unique since Rij = tgjaRi

a and both tgja and Ri
a are unique

 Rj
i = Sij not unique, see (10.6.c.3)

 Rij = Sji not unique, since Rij = xgia Ra
j and xgia not unique

 Axis-aligned basis vectors
 (tuj)i unique since (tuj)i = tgji (xej)i unique since (xej)i = xgij (= δij)
 (tuj)i unique since (tuj)i = tgji (xej)i not unique since (xej)i = xgij
 (tuj)i unique since (tuj)i = tgji (xej)i unique since (xej)i = xgij
 (tuj)i unique since (tuj)i = tgji (xej)i unique since (xej)i = xgij

 Tangent base vectors
 (tej)i not unique since (tej)i = Rj

i (xuj)i unique since (xuj)i = Ri
j

 (tej)i not unique since (tej)i = Rji (xuj)i not unique since (xuj)i = Rij
 (tej)i unique since (tej)i = Rji (xuj)i unique since (xuj)i = Rij
 (tej)i unique since (tej)i = Rj

i (xuj)i not unique since (xuj)i = Ri
j

 (10.6.d.2) (E.3)
Other parts of the development translate as follows:

Basis Vectors

 {tui} i = 1,2...n basis for t-space , axis-aligned
 (tui)j = δij components of these basis vectors in t-space . (10.6.e.1) (E.4)

 xui =
⎩
⎨
⎧ R tui i = 1 through n (tangent base vectors)
 as needed i = n+1 through m (10.6.e.4) (E.5)

 R*

* = [xu1, xu2xun] R has full rank n ⇒ basis for TxM complete (10.6.e.5) (E.6)

Non-Dual Pull Backs

 xui = R tui |xui> = R |tui> i = 1,2..n push forward (10.7.1) (E.7)
 tui = S xui |tui> = S |xui> i = 1,2..n pull back (10.7.2) (E.8)

 xui = R tui |xui> = R |tui> i = 1,2..n push forward
 tui = RT

xui |tui> = RT |xui> i = 1,2..n pull back (10.7.4) (E.9)

 xei = R tei |xei> = R |tei> i = 1,2..n push forward
 tei = RT

xei |tei> = RT |xei> i = 1,2..n pull back (10.7.4) (E.10)

Appendix E: Kinematics Package

 314

Dual Pull Backs

 (xui)T= (tui)T RT <xui| = <tui|RT i = 1,2..n push forward
 (tu)T = (xu)T R <tui| = <xui|R i = 1,2..n pull back (10.7.6) (E.11)

 (xei)T= (tei)T RT <xei| = <tei|RT i = 1,2..n push forward
 (tei)T = (xei)T R <tei| = <xei|R i = 1,2..n pull back (10.7.6) (E.12)

 φ*(<xei|) = φ*(xλi) = <xei| R = Ri

j<tuj| = Ri
j tλj (10.7.19) 5

 φ*(<xui|) = <xui| R = <tui| = tλi (E.11) (E.13)

 (10.9.2) (E.14)

Further translations of significant equations appear in Section 10.9.

Appendix F: Volume of n-piped

 315

Appendix F: The Volume of an n-piped embedded in Rm

First, recall these facts about the various basis vectors described in Chapter 2,

 (uj)i = δji axis-aligned basis vectors in x-space // (2.5.3)
 (e'j)i = δji axis-aligned basis vectors in x'-space // (2.5.3)

 (ej)i = Sij tangent base vectors in x-space // (2.3.4) and (2.1.4) Sij = Rj

i
 (u'j)i = Ri

j inverse tangent base vectors in x'-space // (2.5.2)

 ei = Se'i. // (2.5.1) dx = S dx'
 u'i = Rui // (2.5.1) dx' = R dx . (F.1)

We claim that the volume of an m-piped in x-space = Rm spanned by the tangent base vectors e1, e2....em
is given by

 V = det[e1, e2....em] = det(S) . (F.2)

For the case n = 2 the fact that V = det[e1, e2] is easily shown, see text below (4.3.14).

Similarly, the volume of an m-piped in x'-space = Rm spanned by the inverse tangent base vectors u'1,
u'2....u'm is given by

 V = det[u'1, u'2....u'm] = det(R) . (F.3)

First of all, note from (F.1) that

 [e1, e2....em] = S because (ei)b = Sbc(e'i)c = Sbcδic = Sbi, i = column index

 [u'1, u'2....u'm] = R because (u'i)b = Rb
c(ui)c = Rb

cδic = Rb
i, i = column index (F.4)

Statements (F.2) and (F.3) are really the same fact stated first for the forward transformation x' = F(x)
with differential R = S-1, and then for the inverse transformation x = F-1(x') with differential S = R-1.

The fact (F.2) is derived in Tensor (with m = N) so we won't repeat that derivation here. One starts with
an m-cube in x'-space which is spanned by axis-aligned unit basis vectors e'i and which has volume V' =
1. One then transforms this m-cube into a skewed m-piped in x-space spanned by the tangent base vectors
ei = Se'i where S is the mxm matrix that maps the vectors e'i into the ei. One then finds that the m-piped
has the volume shown in (F.2). Tensor Appendix B concerns the geometry of N-pipeds in RN and the
result (F.2) appears as (B.5.d.13).

The different question addressed by our current Appendix F is the following:

 What is the volume of an n-piped in Rm where n < m ?

Appendix F: Volume of n-piped

 316

The answer, to be proven below, is (new meanings for S and R) ,

 V = det(STS) where S = [ei1, ei2....ein] n-piped in x-space = Rm (F.5)

 V = det(RTR) where R = [u'i1, u'i2....u'in] n-piped in x'-space = Rm (F.6)

where the subscripts ir enumerate a subset of the tangent base vectors in each case which "span" the n-
piped. For example, if in R3 we have tangent base vectors (e1, e2, e3) spanning a 3-piped, we know that
any pair (ei1, ei2) with i1 ≠ i2 spans a 2-piped which is a face of the 3-piped.
 Notice that S and R appearing in (F.5) and (F.6) are non-square "tall" matrices because each has m
rows but only n columns since each [...] has only n vectors. Thus det(S) and det(R) do not exist. In the
special case that n = m, then S and R are square matrices, and for example det(STS) = det(S), and the
results (F.2) and (F.3) are recovered.
 Again, (F.5) and (F.6) are really the same statement expressed for x' = F(x) with differential R and
then for a transformation x = G(x') with differential S. We deal with x' = F(x) for a non-square "tall" R
matrix in some detail in Section 10.6.
 The result (F.5) is derived in Tensor [2016] Section 8.4 (h). Below, we shall prove (F.6) where the n-
piped spanning vectors will be called a1,a2,...an . In particular, we shall show that :

Fact : Let ui for i = 1...n be n axis-aligned unit basis vectors in Rn. Let a1,a2,...an be n arbitrary vectors
in Rm where m ≥ n. These vectors span an n-piped in Rm which has a volume V = det(RTR) where RTR
is a nxn matrix, R = [a1,a2,...an] is a m x n matrix, and the arbitrary n vectors may be written ai = Rui .
 (F.4.11)

Our derivation below is a seat-of-the-pants "geometric" approach, appropriate for people like the author
who like to "see" what is going on. Basically we start with simple examples and progress toward the
general case. Sjamaar provides a nice "axiomatic" derivation on pp 99-102.

Warning: In the discussion below R1, R2 and R3 are linear transformations, while R2, R3 are Cartesian
spaces. It just happens that the same symbol R is used for both kinds of objects.

F.1 Volume of a 2-piped in R3

The simplest case to consider is that of a 2-piped (a parallelogram) embedded in R3. Consider then this
set of four spaces connected by three transformations (this picture will be reused several times) :

Appendix F: Volume of n-piped

 317

 (F.1.1)

The names and symbols for the left two spaces are chosen to be compatible with Chapter 2 based on Fig
(2.1.1). The remaining two spaces are given the arbitrary names x"-space and x'''-space.
 The leftmost picture shows a unit square (2-cube) lying in the x'1-x'2 plane. The square is spanned by
two axis-aligned unit basis vectors e'1 and e'2 as described in (2.5.3). The volume (area) of the square is 1
unit.
 The second picture is obtained from the first by a general non-linear transformation x = F-1(x') which
has a linearized form dx' = R1dx and correspondingly dx = S1dx' where R1S1 = 1. These 2x2 R1 and S1
matrices are called R and S in Chapter 2, but here we add subscript 1 since this is the first of three
transformations shown above. The volume of the 2-piped is det(S1) = det(e1,e2) as noted in (F.2). The
transformed basis vectors ("tangent base vectors") are ei = S1e'i (and e'i = R1ei) as shown in (2.5.1).
 The third picture is obtained from the second merely by adding a third axis called x"3. The 2-piped
has not moved and still lies in the x"1-x"2 plane. Then e"i = (ei,0) where we add a third zero component
to the basis vectors. The 2-piped volume is still det(S1). Below we shall discuss the linear transformation
R2 which links x-space to x"-space.
 The fourth picture is obtained from the third by an arbitrary rotation R3 in R3 space. The 2-piped then
ends up in some arbitrary orientation in R3. It's volume is still det(S1) since shape and volume (here area)
are not changed by a rotation. R3 is a 3x3 real orthogonal matrix.

The linear transformation R2 connecting x"-space and x-space is this

 R2 =
⎝
⎜
⎛

⎠
⎟
⎞ 1 0

 0 1
 0 0

 for example: e"i =
⎝
⎜
⎛

⎠
⎟
⎞ 1 0

 0 1
 0 0

 ⎝⎜
⎛

⎠⎟
⎞ (ei)1

 (ei)2 =
⎝⎜
⎜⎛

⎠⎟
⎟⎞

 (ei)1

 (ei)2

 0
 = ⎝

⎛
⎠
⎞ ei

 0 . (F.1.2)

This matrix R2 is just the 2x2 identity matrix with a null third row added. This transformation simply
adds a third null coordinate to a 2D vector in R2 as shown in the example above. Notice that

Appendix F: Volume of n-piped

 318

 R2
TR2 = ⎝

⎛
⎠
⎞ 1 0 0

 0 1 0
⎝
⎜
⎛

⎠
⎟
⎞ 1 0

 0 1
 0 0

 = ⎝
⎛

⎠
⎞ 1 0

 0 1 = 1 . (F.1.3)

As shown at the top of Fig (F.1.1), the concatenated effect of the three transformations on the basis
vectors is this,

 e'''i = R e'i where R ≡ R3R2S1 . i = 1,2 (F.1.4)

The combined matrix R is in fact a "tall" 3 x 2 R matrix which we verify with the following schematic
conformation picture,

 R = R3R2S1 =
⎝
⎜
⎛

⎠
⎟
⎞ * * *

 * * *
 * * *

⎝
⎜
⎛

⎠
⎟
⎞ 1 0

 0 1
 0 0

 ⎝
⎛

⎠
⎞ * *

 * * =
⎝
⎜
⎛

⎠
⎟
⎞ * *

 * *
 * *

 ⎝
⎛

⎠
⎞ * *

 * * =
⎝
⎜
⎛

⎠
⎟
⎞ * *

 * *
 * *

 . (F.1.5)

In fact, from (F.1.4) and (2.5.2) we find that

 (e'''i)a = Ra

b (e'i)b = Ra
b δib = Ra

i i = 1,2 a = 1,2 (F.1.6)

which tells us that the final vectors e'''i are the columns of the matrix R, so

 R = [e'''1, e'''2] (F.1.7)

which we then verify is a matrix with 3 rows and 2 rows as shown at the right of (F.1.5).

Note that non-square R does not have a determinant. But consider,

 RTR = (R3R2S1)TR3R2S1

 = S1TR2
TR3

TR3R2S1 // rule for transpose of a product of matrices

 = S1TR2

TR2S1 // R3
TR3 = 1 because R3 is a rotation (real-orthogonal)

 = S1TS1 . // R2

TR2 = 1 as just shown in (F.1.3) (F.1.8)

As shown in Fig (10.6.c.1), the matrix RTR is a square matrix of dimension 2x2 and so RTR does have a
determinant. In fact, from (F.1.8),

 det(RTR) = det(S1TS1) = det(S1T)det(S1) = det2(S1) . (F.1.9)

In terms of the overall vector transformation R going from the left picture to the right picture above, we
have just shown that the 2-piped volume can be written

 V = det(S1) = det(RTR) where R = [e'''1, e'''2] (F.1.10)

where both S1 and RTR are 2x2 matrices.

Appendix F: Volume of n-piped

 319

F.2 Volume of a 2-piped in R4, R5 and Rm

The equation numbers here mimic those of the previous section. Since some equations need not be
repeated, there are missing equation numbers below.

In blue we make very slight modifications to the previous picture :

 (F.2.1)

R3 is now a real-orthogonal 4x4 rotation matrix in R4. The new R2 transformation has two rows of zeros
added at the bottom instead of one row,

 R2 =
⎝
⎜
⎛

⎠
⎟
⎞ 1 0

 0 1
 0 0
 0 0

 for example: e"i = R2ei =
⎝
⎜
⎛

⎠
⎟
⎞ 1 0

 0 1
 0 0
 0 0

 ⎝⎜
⎛

⎠⎟
⎞ (ei)1

 (ei)2 =
⎝
⎜
⎛

⎠
⎟
⎞ (ei)1

 (ei)2

 0
 0

 =
⎝⎜
⎜⎛

⎠⎟
⎟⎞

 ei
 0
0

 . (F.2.2)

This transformation R2 simply adds a third and fourth null coordinate to a 2D vector in R2 as shown in
the example above. And as before,

 R2
TR2 = ⎝

⎛
⎠
⎞ 1 0 0 0

 0 1 0 0
⎝
⎜
⎛

⎠
⎟
⎞ 1 0

 0 1
 0 0
 0 0

 = ⎝
⎛

⎠
⎞ 1 0

 0 1 = 1 . (F.2.3)

The new conformation picture is this

 R = R3R2S1 =
⎝
⎜
⎛

⎠
⎟
⎞* * * *

* * * *
* * * *
* * * *

⎝
⎜
⎛

⎠
⎟
⎞ 1 0

 0 1
 0 0
 0 0

 ⎝
⎛

⎠
⎞ * *

 * * =
⎝
⎜
⎛

⎠
⎟
⎞ * *

 * *
 * *
 * *

 ⎝
⎛

⎠
⎞ * *

 * * =
⎝
⎜
⎛

⎠
⎟
⎞ * *

 * *
 * *
 * *

 (F.2.5)

Appendix F: Volume of n-piped

 320

and now the tall R matrix has 4 rows and 2 columns. Equation (F.1.6) still applies for this new R, so we
still conclude that

 R = [e'''1, e'''2] (F.2.7)

but now each vector has 4 components instead of 3 as in (F.1.7).

Apart from these matrix shape changes, the steps (F.1.8) through (F.1.10) proceed exactly as above and
again one concludes that

 V = det(S1) = det(RTR) where R = [e'''1, e'''2] (F.2.10)

where both S1 and RTR are 2x2 matrices.

In going from R4 to R5 the reader can see that R2 will acquire yet another null row, one still has R2

TR2 =
1, and everything goes through as before again giving V = det(RTR) where R = [e'''1, e'''2] now has 5
rows since the two vectors exist in R5. The result clearly extends to a 2-piped in Rm for any m ≥ 2.

We then arrive at the following Fact, where we rename e'i → ui and e'''1,2 → a,b :

Fact : Let u1 = (1,0) and u2 = (0,1) be two axis-aligned basis vectors in R2. Let a and b be two arbitrary
vectors in Rm. These vectors span a 2-piped in Rm which has a volume (area in this case) V = det(RTR)
where RTR is a 2x2 matrix, R = [a,b] is an m x 2 matrix, and the arbitrary two vectors may be written
 a = Ru1 and b = Ru2. (F.2.11)

Comment: Recall from (10.6.c.6) that rank(RTR) = rank(R). If a and b are linearly dependent, R = [a,b]
has less than full rank 2 and so does square RTR which means det(RTR) = 0 so V = 0. This is the result
one would expect if a and b are collinear, so the above Fact applies to any pair of vectors a, b.

Appendix F: Volume of n-piped

 321

F.3 Volume of a 3-piped in R4

The logic flows as in the previous examples, so we omit the words. We start with a new but similar
transformation picture,

 (F.3.1)
The R2 matrix (3x3 identity with a null added 4th row) adds a null 4th component to any 3-vector,

 R2 =
⎝
⎜
⎛

⎠
⎟
⎞ 1 0 0

 0 1 0
 0 0 1
 0 0 0

 for example: ei" = R2ei =
⎝
⎜
⎛

⎠
⎟
⎞ 1 0 0

 0 1 0
 0 0 1
 0 0 0

⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞ (ei)1

 (ei)2

 (ei)3
 =

⎝
⎜
⎛

⎠
⎟
⎞ (ei)1

 (ei)2

 (ei)3

 0

 = ⎝
⎛

⎠
⎞ ei

 0 . (F.3.2)

 R2
TR2 =

⎝
⎜
⎛

⎠
⎟
⎞ 1 0 0 0

 0 1 0 0
 0 0 1 0

⎝
⎜
⎛

⎠
⎟
⎞ 1 0 0

 0 1 0
 0 0 1
 0 0 0

 =
⎝
⎜
⎛

⎠
⎟
⎞ 1 0 0

 0 1 0
 0 0 1

 = 1 . (F.3.3)

 e'''i = R e'i where R ≡ R3R2S1 . i = 1,2,3 (F.3.4)

 R = R3R2S1 =
⎝
⎜
⎛

⎠
⎟
⎞* * * *

* * * *
* * * *
* * * *

⎝
⎜
⎛

⎠
⎟
⎞ 1 0 0

 0 1 0
 0 0 1
 0 0 0

⎝
⎜
⎛

⎠
⎟
⎞ * * *

 * * *
 * * *

 =
⎝
⎜
⎛

⎠
⎟
⎞ * * *

 * * *
 * * *
 * * *

⎝
⎜
⎛

⎠
⎟
⎞ * * *

 * * *
 * * *

 =
⎝
⎜
⎛

⎠
⎟
⎞ * * *

 * * *
 * * *
 * * *

 (F.3.5)

 (e'''i)a = Ra

b (e'i)b = Ra
b δib = Ra

i i = 1,2,3 a = 1,2,3 (F.3.6)

 R = [e'''1, e'''2, e'''3] = a 4 x 3 matrix (F.3.7)

 RTR = S1TS1 = a 3x3 matrix (F.3.8)

 det(RTR) = det2(S1) (F.3.9)

 V = det(S1) = det(RTR) where R = [e'''1, e'''2, e'''3] . (F.3.10)

Appendix F: Volume of n-piped

 322

Fact : Let u1 = (1,0,0), u2 = (0,1,0) and u3 = (0,0,1) be three axis-aligned basis vectors in R3. Let a,b,c
be three arbitrary vectors in R4. These vectors span a 3-piped in R4 which has a volume V = det(RTR)
where RTR is a 3x3 matrix, R = [a,b,c] is a 4 x 3 matrix, and the arbitrary three vectors may be written
a = Ru1, b = Ru2 and c = Ru3 . (F.3.11)

Comment: Recall from (10.6.c.6) that rank(RTR) = rank(R). If a,b,c are linearly dependent, R = [a,b,c]
has less than full rank 3 and so does square RTR which means det(RTR) = 0 so V = 0. This is the result
one would expect if a,b,c are linearly dependent: they all lie in the same plane and thus span no 3D
volume. Thus, the above Fact applies to any triplet of vectors a, b, c.

F.4 Volume of a n-piped in Rm

In the general case we have an n-piped in Rm. The method outlined in the previous examples prevails with
generalizations for the objects involved. Again we omit the words.

 Picture generously supplied by the reader capable of making hyperspace drawings (F.4.1)
 [This is one reason mathematicians don't like geometric derivations!]

 R2 = ⎝
⎛

⎠
⎞ 1nxn

 m-n rows of zeros which is an m x n tall R matrix (F.4.2)

 R2

TR2 = 1nxn (F.4.3)

 e'''i = R e'i where R ≡ R3R2S1 . i = 1,2..,n (F.4.4)

 R = R3R2S1 = (m x m rotation matrix R3) (m x n R2 matrix) (n x n matrix S1) = m x n (F.4.5)

 (e'''i)a = Ra

b (e'i)b = Ra
b δib = Ra

i i = 1,2...n a = 1,2...n (F.4.6)

 R = [e'''1, e'''2 e'''n] = m x n tall R matrix (F.4.7)

 RTR = S1TS1 = an nxn matrix (F.4.8)

 det(RTR) = det2(S1) (F.4.9)

 V = det(S1) = det(RTR) where R = [e'''1, e'''2 e'''n] . (F.4.10)

Fact : Let ui for i = 1...n be n axis-aligned unit basis vectors in Rn. Let a1,a2,...an be n arbitrary vectors
in Rm where m ≥ n. These vectors span an n-piped in Rm which has a volume V = det(RTR) where RTR
is a nxn matrix, R = [a1,a2,...an] is a m x n matrix, and the arbitrary n vectors may be written ai = Rui .
 (F.4.11)

Appendix F: Volume of n-piped

 323

Comment 1: Recall from (10.6.c.6) that rank(RTR) = rank(R). If the ai are linearly dependent, R =
[a1,a2,...an] has less than full rank n and so does square RTR which means det(RTR) = 0 so V = 0. This is
the result one would expect if ai are linearly dependent: they span no nD volume. Thus, the above Fact
applies to any set of n vectors ai.

Comment 2: The discussion above is presented for n < m. In the case n = m, things simplify. Looking at
Fig (F.3.1) we can ignore the x"-space and x'''-space pictures and in effect set R2 = R3 = 1 so that R = S1.
The final vectors are the ei in x-space which we then take to be are arbitrary vectors ai. The general
formula still works, but now the R matrix is square, so

 V = det(RTR) = det(S1TS1) = det(S1T)det(S1)) = det(S1)det(S1))

 = det(S1) where S1 = [e1,e2,...em] = R = [a1,a2,...an]

in agreement with (F.2).

F.5 Application: The differential volume element of the tangent space Tx'M

Recall Fig (10.7.5) which shows how the axis-aligned basis vectors ui of x-space are pushed forward to
become the tangent base vectors u'i which span the tangent space Tx'M at point x' in x'-space,

 (10.7.5)
If we take a differential n-cube located at position x in x-space, it has differential volume

 dV = dx1dx2.... dxn . (F.5.1)

This volume is mapped into an n-piped in x'-space by the mapping u'i = R ui. According to Fact (F.4.11),
we may conclude that the volume of the tangent space n-piped in x'-space at point x' is this,

 dV' = det(RTR) dx1dx2.... dxn . (F.5.2)

We have already seen an example of this fact. Recall these equations from Section 10.10,

Appendix F: Volume of n-piped

 324

 A' = ∫S' dA' = ∫S K(x) dx1dx2 . (10.10.21)

 K2 = det(RTR) (10.10.22)

In the area integral, the differential "volume" is dA' = K(x) dx1dx2 = det(RTR) dx1dx2.

Appendix G: det(RTR)

 325

Appendix G : The det(RTR) theorem and its relation to differential forms

G.1 Theorem: det(RTR) is the sum of the squares of the full-width minors of R

We saw and verified an example of this theorem in Section 10.10 for a 3 x 2 R matrix,

 K2 = det(RTR) (10.10.22)

 K2 = det2 ⎝
⎛

⎠
⎞ R1

1 R1
2

 R2
1 R2

2
 + det2 ⎝

⎛
⎠
⎞ R1

1 R1
2

 R3
1 R3

2
 + det2 ⎝

⎛
⎠
⎞ R2

1 R2
2

 R3
1 R3

2
 . (10.10.18)'

Before proving the theorem, we have Maple test it for a messy case, just to make sure it is true. Enter a
generic 6x4 R matrix as follows:

Compute and accumulate into "acc" the squares of all (6,4) = 15 full-width minors,

If we take the resulting "acc" and expand it, we get a series of 4,230 terms each of which contains a
product of eight matrix elements of R,

Here are four of these terms

Appendix G: det(RTR)

 326

.

We next compute det(RTR), note that it also has 4,230 terms, and then we show that det(RTR) = acc.

Fortified with the knowledge that the theorem seems to be true, we proceed:

Theorem: Let R be an m x n matrix with m ≥ n. There are (m,n) full-width minors.
The claim is that det(RTR) = sum of the squares of the full-width minors. (G.1.1)

Comment: For m = n there is only one minor for square R which is det(R), the sum of the squares of the
minors is then just det2(R), and indeed det(RTR) = det2(R).

Proof for n < m :

Define a multiindex I as follows

 I = i1, i2, in (G.1.2)

where the ir indicate which n rows of the R matrix are included in a certain minor. Each ir takes values in
the range 1 to m since R has m rows. Denote a full-width minor of R by

 minorI . (G.1.3)

We shall need the following

Lemma:

 Σ'I [minorI]2 = (1/n!) ΣI [minorI]2 (G.1.4)

where

 Σ'I = Σ1≤i1<i2<....<in≤m = ordered sum
 ΣI = Σi1,i2,...in=1

m = symmetric sum . (G.1.5)

Appendix G: det(RTR)

 327

Proof of Lemma:

 ΣI [minorI]2 = Σi1,i2,...in=1

m [minorI]2

 = Σi1≠i2≠..≠in [minorI]2 // minorI = 0 if two rows are the same

 = (Σi1<i2<....<in + Σi2<i1<....<in + n!-2 other orderings) [minorI]2

 = (ΣP [ΣP(i1)<P(i2)<...<P(in)]) [minorI]2

 = Σi1<i2<...<in [ΣP fP(i1)P(i2)...P(in)] . // by (A.9.1) with fi1i2...in = [minorI]2

But fi1i2...in = [minorI]2 is a totally symmetric function of the indices since row swaps don't affect a
squared determinant. Thus we continue the above to get

 = Σi1<i2<...<in [ΣP fi1i2...in] = Σi1<i2<...<ik fi1i2...in [ΣP 1]

 = Σi1<i2<...<in fi1i2...in [n!] = Σi1<i2<...<ik [minorI]2 [n!]

 = n! Σ'I [minorI]2 QED Lemma

Proof of Theorem:

We can write minorI as the determinant of a matrix using (A.1.19)

 minorI = ΣP(-1)S(P) Ri1P(1) Ri2P(2) RinP(n)

 = Ri11 Ri22 Rinn + all signed permutations

 ≡ ΣP(-1)S(P)RI

P(Z) . // in multiindex notation, Z = 1,2....n (G.1.6)

Then we first claim that

 Sum ≡ sum of all full-width squared minors = Σ'I [minorI]2 . (G.1.7)

In this ordered sum, each full-width minor of R is included exactly once. For example, for a 3x2 R matrix
we had above

 K2 = det2 ⎝
⎛

⎠
⎞ R1

1 R1
2

 R2
1 R2

2
 + det2 ⎝

⎛
⎠
⎞ R1

1 R1
2

 R3
1 R3

2
 + det2 ⎝

⎛
⎠
⎞ R2

1 R2
2

 R3
1 R3

2
 . (10.10.18)'

 i1,i2 = 1,2 i1,i2 = 1,3 i1,i2 = 2,3

Then using the above Lemma we write

Appendix G: det(RTR)

 328

 Sum = Σ'I [minorI]2 = (1/n!) ΣI [minorI]2 = (1/n!) ΣI [minorI] [minorI] // now use (G.1.6),

 = (1/n!) ΣI [ΣP(-1)S(P) Ri1P(1) Ri2P(2) ...RinP(n)] [ΣP'(-1)S(P') Ri1P'(1) Ri2P'(2)..RinP'(n)]

 = (1/n!) ΣI [ΣP(-1)S(P)RI

P(Z)] [ΣP'(-1)S(P')RI
P'(Z)] // multiindex notation

 = (1/n!) ΣP(-1)S(P) ΣP'(-1)S(P')ΣI RI

P(Z)RI
P'(Z) // reorder

 = (1/n!) ΣP(-1)S(P) ΣP'(-1)S(P')ΣI (RT)P(Z)IRI

P'(Z) // matrix transposes

 = (1/n!) ΣP(-1)S(P) ΣP'(-1)S(P')(RTR)P(Z)P'(Z) // n matrix multiplications use up ΣI

 = (1/n!) ΣP(-1)S(P) ΣP'(-1)S(QP')(RTR)P(Z)QP'(Z) // ΣP' rearrangement theorem (A.1.3)

 = (1/n!) ΣP(-1)S(P) ΣP'(-1)S(PP')(RTR)P(Z)PP'(Z) // select Q = P

 = (1/n!) ΣP(-1)S(P) ΣP'(-1)S(PP')(RTR)ZP'(Z) // (A.8.32) since factored form

 = (1/n!) ΣP ΣP'(-1)S(P')(RTR)ZP'(Z) // (A.1.11)

 = (1/n!) ΣP'(-1)S(P')(RTR)ZP'(Z)[ΣP 1] = (1/n!) ΣP'(-1)S(P')(RTR)ZP'(Z)[n!]

 = ΣP'(-1)S(P')(RTR)ZP'(Z)

 = ΣP(-1)S(P)(RTR)ZP(Z)

 = det(RTR) . // (A.1.19) QED Theorem (G.1.8)

G.2 The Connection between Theorem G.1.1 and Differential Forms

Recall from (10.11.7) that the integral of a k-form αx' for F: Rn → Rm is given by

 αx' = Σ'I fI(x') dx'^I (G.2.1)

 ∫S' αx' = ∫S Σ'J Σ'I fI(F(x)) det(RI
J) dxj1 ^ dxj2 ^ ... ^ dxjk

 = ∫S Σ'I fI(F(x)) Σ'J det(RI
J) dx^J . // R = (DF) (G.2.2)

The context here is that x' = F(x) is a point on a manifold M created by the mapping F: Rn→ Rm as
illustrated for example in (10.7.26) which we replicate here

Appendix G: det(RTR)

 329

 (10.7.26)
A case of frequent interest is k = n, and in this case there is only one term in the ordered Σ'J sum, so

 ∫S' αx' = ∫S Σ'I fI(F(x)) det(RI
Z) dx1 ^ dx2 ^ ... ^ dxn

 = ∫S Σ'I fI(F(x)) det(RI
Z) dx^Z . Z ≡ 1,2...n // dx^Z = dV (G.2.3)

The object det(RI

Z) is a full-width minor (a number) of the m x n R matrix. In (G.1.3) we called this
minorI so

 det(RI

Z) = minorI ≡ mI (G.2.4)

where mI is a compact notation for minorI. Since Ri

j(x) is generally a function of x (or x' = F(x)), we
may regard mI = mI(x'), so this minor's value is a function of x' on manifold M.

Then, suppressing the arguments fI and mI, (G.2.3) becomes

 ∫S' αx' = ∫S [Σ'I fI mI] dV . (G.2.5)

We may consider fI and mI to be vectors with (m,n) components which we can dot together to get,

 ∫S' αx' = ∫S [f • m] dV . // f • m ≡ Σ'I fI mI (G.2.6)

For example, for n = 2, m = 3 we would write, showing components of each vector in "standard order",

 f • m = (f12, f13, f23) • (m12, m13, m23) = f12m12 + f13m13 + f23m23 = Σ'I fI mI . (G.2.7)

One could create a minor unit vector m̂ in this manner

Appendix G: det(RTR)

 330

 m̂ ≡
m
|m| (G.2.8)

where

 |m|2 = Σ'I (mI)2 = Σ'I (minorI)2 = det(RTR) // (G.1.1) (G.2.9)

where we just invoked the det(RTR) theorem of Section G.1. One then has,

 ∫S' αx' = ∫S [f • m̂] |m| dV

 = ∫S [f • m̂] [det(RTR) dV] . (G.2.10)

The objects in red above are all functionals in the space Λn(Rn) in our "cosmetic notation". According to
the "second definition" described in (10.1.3) we are always allowed to replace the functional dV by dV to
obtain a normal calculus integral that can be evaluated by standard methods,

 dV ≡ dx1 ^ dx2 ^ ... ^ dxn → dV ≡ dx1dx2.....dxn . (G.2.11)

Now consider the special case where the function f = m̂ . Then,

 ∫S' αx' = ∫S [m̂ • m̂] [det(RTR) dV] = ∫S det(RTR) dV

 = ∫S det(RTR) dV (G.2.12)

which displays the tangent space volume measure dV' = det(RTR) dx1dx2.... dxn shown in (F.5.2). This
last integral gives the volume (area) of the surface S' (example below) and for this reason we refer to the
n-form α'x with this value of f as the volume measure form μ'. From (G.2.1) then,

 μ' = Σ'I fI dx'^I = f • dx^' = m̂ • dx^' . (G.2.13)

Here we use the same dot product idea as in (G.2.6), where fI and dx'^I are each treated as vectors
having (m,n) components.

The pullback of this measure form appears in the integrand of (G.2.10),

 F*(μ') = det(RTR) dV

 = det((DF)T(DF)) dx1 ^ dx2 ^ ... ^ dxn // Sjamaar p 105 above item 8.12 . (G.2.14)

Consider now a different situation where

Appendix G: det(RTR)

 331

 f(x') = | f(x') | m̂ (G.2.15)

so that our new function f, considered as a vector with those (m,n) components, points in the m̂ direction.
In this case we get

 ∫S' αx' = ∫S [f • m̂] [det(RTR) dV] = ∫S | f((F(x))| det(RTR) dV (G.2.16)

and this is how one treats the integration of a scalar function over the surface S' such as the average
temperature calculation in (10.10.20). In this case we can write the corresponding n-form in x'-space as

 αx' = Σ'I fI dx'^I = f • dx^' = | f | m̂ • dx^' = (f • m̂) m̂ • dx^' = (f • m̂) μ' (G.2.17)

from which we extract this equation

 f • dx^' = (f • m̂) μ' . (G.2.18)

Special case: Hypersurface where n = m - 1

Suppose now that n = m-1, so that the manifold M embedded in Rm is a hypersurface, meaning it has
dimension one less than Rm. In this case, (m,n) = (m,m-1) = m and each of our "vectors" above has
exactly m components.

One can define the following Hodge star objects as discussed at the start of Section 10.3 (see (H.1.13)),

 *dx'i = (-1)i-1 dx'1 ^ dx'2 .. [dx'i]... ^ dx'm where dx'i is missing (G.2.19)

so that each *dx'i object is an (m-1)-form (that is, an n-form). These m Hodge dual objects can be
combined to form a vector

 *dx' ≡ (*dx'1, *dx'2,*dx'm) . (G.2.20)

We now define new vectors F and n' as follows,

 Fi ≡ (-1)i-1f12.[i]..m
 n'i ≡ (-1)i-1m12.[i]..m (G.2.21)

where the notation [i] means that index i is missing from 12...m. It follows that

 F • *dx' = f • dx^' (G.2.22)

 n' • *dx' = m • dx^' (G.2.23)

 n' • F = m • f . (G.2.24)

Appendix G: det(RTR)

 332

The proofs of the above three lines are basically the same, so we prove just the first line :

 F • *dx' = Σi=1m Fi (*dx'i)

 = Σi=1m (-1)i-1f12.[i]..m (-1)i-1 dx'1 ^ dx'2 .. [dx'i]... ^ dx'm

 = Σi=1m f12.[i]..m dx'1 ^ dx'2 .. [dx'i]... ^ dx'm

 = [f234..m dx'2 ^ dx'3 ^ dx'4 ^ dx'm + f134..m dx'1 ^ dx'3 ^ dx'4 ^ dx'm + ]

 = Σ'IfI dx'^I with series terms reordered from standard order

 = f • dx^' . (G.2.25)

Because vector n' is a reordering of vector m where certain terms have minus signs, the sum of the
squares of the components of the two vectors is the same, so

 |n'| = |m| . (G.2.26)

Then dividing (G.2.23) and (G.2.24) by |n'| one finds

 n̂' • *dx = m̂ • dx^' (G.2.27)
 n̂' • F = m̂ • f . (G.2.28)

Recall from above that

 μ' = m̂ • dx^' (G.2.13)

 f • dx^' = (f • m̂) μ' . (G.2.18)

Now consider,

 μ' = m̂ • dx^' // (G.2.13) just above

 = n̂' • *dx // (G.2.27)

 f • dx^' = (f • m̂) μ' // (G.2.18) just above

 F • *dx' = (n̂' • F) μ' // (G.2.22) on the left and (G.2.28) on the right

We therefore obtain,

Appendix G: det(RTR)

 333

 μ' = n̂' • *dx' // see Sjamaar p 109 item 8.17 (G.2.29)

 F • *dx' = (F • n̂') μ' . // see Sjamaar p 107 item 8.16 (G.2.30)

Sjamaar's equations are written in the x = φ(t) context rather than x' = F(x) so have *dx, n̂ and μ.

Example: F : R2→ R3, k = n = 2 , m = 3. (G.2.31)

This example was first treated in Section 10.10 as a no-differential-forms problem, and was then
reconsidered as a 2-form problem in Section 10.13 (but in the x = φ(t) context). Here we write out various
objects defined above and show how equations come out with equation number references in italics.

 αx' = Σ'I fI(x') dx'^I = f12 dx'1 ^ dx'2 + f13 dx'1 ^ dx'3 + f23 dx'2 ^ dx'3 // a general 2-form

 = f • dx^' = F • *dx' = F • dA' = (F • n̂') dA' // see below (G.2.1)

 f = (f12, f13, f23) (G.2.7)

 m12 = minor12 = det(R12
12) = det ⎝

⎛
⎠
⎞ R1

1 R1
2

 R2
1 R2

2
 // R is a 3 x 2 matrix with 3 full-width minors

 m13 = minor13 = det(R13
12) = det ⎝

⎛
⎠
⎞ R1

1 R1
2

 R3
1 R3

2

 m23 = minor23 = det(R23
12) = det ⎝

⎛
⎠
⎞ R2

1 R2
2

 R3
1 R3

2
 (G.2.4)

 m = (m12, m13, m23) = (det ⎝
⎛

⎠
⎞ R1

1 R1
2

 R2
1 R2

2
), det ⎝

⎛
⎠
⎞ R1

1 R1
2

 R3
1 R3

2
 , det ⎝

⎛
⎠
⎞ R2

1 R2
2

 R3
1 R3

2
) (G.2.7)

 F = (f23, -f13,f12) // agrees with (10.13.16) (G.2.21)

 n' = (m23, -m13,m12) = (det ⎝
⎛

⎠
⎞ R2

1 R2
2

 R3
1 R3

2
), - det ⎝

⎛
⎠
⎞ R1

1 R1
2

 R3
1 R3

2
 , det ⎝

⎛
⎠
⎞ R1

1 R1
2

 R2
1 R2

2
) (G.2.21)

 = (det ⎝
⎛

⎠
⎞ R2

1 R2
2

 R3
1 R3

2
), + det ⎝

⎛
⎠
⎞ R3

1 R3
2

 R1
1 R1

2
 , det ⎝

⎛
⎠
⎞ R1

1 R1
2

 R2
1 R2

2
)

 = agrees with (10.10.19) where n' is shown as normal to the surface

 | m |2 = | n' |2 = det2 ⎝
⎛

⎠
⎞ R2

1 R2
2

 R3
1 R3

2
 + det2 ⎝

⎛
⎠
⎞ R3

1 R3
2

 R1
1 R1

2
 + det ⎝

⎛
⎠
⎞ R1

1 R1
2

 R2
1 R2

2
 (G.2.26)

 ≡ K2 = det(RTR) // agrees with (10.10.18) and (10.10.22) (G.2.9)

 dx^' = (dx'1 ^ dx'2, dx'1 ^ dx'3, dx'2 ^ dx'3) // standard order

 *dx' ≡ (*dx'1, *dx'2,*dx'3) = (dx'2 ^ dx'3 , - dx'1 ^ dx'3, dx'1 ^ dx'2) ≡ dA' (10.13.23)

Appendix G: det(RTR)

 334

 f • dx^' = (f12, f13, f23) • (dx'1 ^ dx'2, dx'1 ^ dx'3 , dx'2 ^ dx'3)

 = f12 dx'1 ^ dx'2 + f13 dx'1 ^ dx'3 + f23 dx'2 ^ dx'3 = Σ'I fI dx'^I

 F • *dx' = (f23, -f13,f12) • (dx'2 ^ dx'3 , - dx'1 ^ dx'3, dx'1 ^ dx'2)

 = f23 dx'2 ^ dx'3 + f13 dx'1 ^ dx'3 + f12 dx'1 ^ dx'2 = Σ'I fI dx'^I = f • dx^' (G.2.22)

 n' • F = (m23, -m13,m12) • (f23, -f13,f12) = m23f23 + m13f13 + m12f12

 = m12f12 + m13f13 + m23f23 = (m12, m13, m23) • (f12, f13, f23) = m • f (G.2.24)

 μ' = n̂' • *dx' = n̂' • dA' = dA' // area measure on surface (G.2.29)

 F • dA' = (F • n̂') dA' = (F • n̂') μ' // this is αx, the integration integrand (G.2.30)

Example: F : R2→ R4, k = n = 2 , m = 4. (G.2.32)

We leave this as a reader exercise. The exercise is to write out new versions of all the equations of the
previous example. One entry is f = (f12, f13, f14,f23, f24, f34) .

Appendix H: Hodge Star

 335

Appendix H : Hodge Star, Differential Operators, Integral Theorems and Maxwell

Here we study the relationship between the d and * operators, differential forms, and the classical
differential operators of analysis such as the Laplacian. Some classical integral theorems are derived from
the generalized Stokes' Theorem, and the Maxwell Equations are reformulated in terms of differential
forms as an exercise. The cosmetic notation dxi is used throughout for the functional λi. Since λi is a
functional acting on the Cartesian vector space V = Rn, up and down tensor indices are the same.

H.1 Properties of the Hodge star operator in Rn

Start with,

 dx^I = some ordered multi-index wedge product of k dxi in Rn (a basis vector k-form) . (H.1.1)

This dx^I has k vectors wedged together in "standard order". The only non-zero n-form in Rn is this,

 dV ≡ dx1 ^ dx2 ^ ... dxn . // "the volume form" in Rn (H.1.2)

The Hodge dual object *dx^I is defined as (sign is treated below),

 *dx^I ≡ (sign)I,k dx^Ic // Ic = complement of I (H.1.3)

where dx^Ic is the full wedge product dV in which the vectors of dx^I are deleted.

Fact: Since dx^I is a k-form, *dx^I is an (n-k)-form which is "dual" to dx^I . (H.1.4)

For example, for the k-form

 dx^I = dxa ^ dxb ^^ dxq // a < b < c.... < q

one has

 dx^Ic = dx1 ^ dx2 ^ ...[dxa] [dxb].....[dxq]^ dxn (H.1.5)

where the notation [dxa] means that dxa is missing.

Example: In R3 let dx^I = dx2 . Then dx^Ic = dx1 ^ dx3 .

Example: In R6 let dx^I = dx2 ^ dx4 . Then dx^Ic = dx1 ^ dx3 ^ dx5 ^ dx6 .

Fact: The sign (sign)I,k in (H.1.3) is selected so that the following is true :

 dx^I ^ (*dx^I) = dV . (H.1.6)

Appendix H: Hodge Star

 336

Fact: For a k-form dx^I = dxa ^ dxb ^^ dxq the sign in (H.1.3) is given by

 (sign)I,k = (-1)a+b+..+q (-1)k(k+1)/2 . (H.1.7)

Proof:

 dx^I ^ (*dx^I) = (sign)I,k dx^I ^ dx^Ic

 = (sign)I,k (dxa ^ dxb ^^ dxq) // first factor has k vectors wedged
 (dx1 ^ dx2 ^ ...[dxa] [dxb].....[dxq]^ dxn) . (H.1.8)

The task is then to slide each of the dxi of the first factor into its corresponding "hole" in the second
factor and count up the number of adjacent vector position swaps required :

 slide dxa to the right, number of swaps = (k-1) + (a-1).
 then slide dxb to the right, number of swaps = (k-2) + (b-1)
 then slide dxc to the right, number of swaps = (k-3) + (c-1)

 then slide dxq to the right, number of swaps = (k-k) + (q-1) . (H.1.9)

Total swaps then is

 swaps = Σi=1k (k-i) + (a+b+...+q) - k . (H.1.10)

But
 Σi=1k (k-i) = k Σi=1k [1] - Σi=1k [i] = k * k - k(k+1)/2 = k2/2 - k/2
so
 Σi=1k (k-i) - k = k2/2 - 3k/2 = (k-3)(k/2)
and
 swaps = (k-3)(k/2) + (a+b+...+q) . (H.1.11)

Then since each adjacent pairwise vector swap creates a (-1) factor according to (8.2.4), we get

 phase = (-1)a+b+...+q (-1)(k-3)k/2

But 1 = (-1)2k = (-1)4k/2 so

 (-1)(k-3)k/2 = (-1)(k-3)k/2 (-1)4k/2 = (-1)(k+1)k/2

and the result is

 phase = (-1)a+b+...+q (-1)(k+1)k/2 . (H.1.12)

Appendix H: Hodge Star

 337

After all these "slides" are completed, equation (H.1.8) says

 dx^I ^ (*dx^I) = (sign)I,k * phase * dx1 ^ dx2 ^ ... dxn

 = (sign)I,k * phase * dV .

According to the requirement (H.1.6) that dx^I ^ (*dx^I) = dV we find

 (sign)I,k = phase = (-1)a+b+...+q (-1)(k+1)k/2 . QED

Example: dx^I = dxi in Rn , so k = 1 and (-1)(k+1)k/2 = (-1)(1+1)1/2 = (-1). Then,

 (sign)I,k = (-1)i (-1) = (-1)i+1 = (-1)i-1

 *dxi = (-1)i-1 dx1 ^ dx2 ^ ... [dxi]... ^ dxn . (H.1.13)

Verify: dx^I ^ (*dx^I) = dxi ^ { (-1)i-1 dx1 ^ dx2 ^ ... [dxi]... ^ dxn }

 = (-1)i-1 dxi ^ dx1 ^ dx2 ^ ... [dxi]... ^ dxn = dx1 ^ dx2 ^ ... dxn = dV .

One can form an n-component vector from the *dxi objects

 *dx ≡ (*dx1, *dx2, *dxn) . (H.1.14)

One can think of

 *dxi = dAi or *dx = dA (H.1.15)

as an element of "area" in n-1 dimensions. For R3 we have (cyclic order)

 *dx1 = dx2 ^ dx3 = dA1 dx^I ^ (*dx^I) = dx1 ^ (dx2 ^ dx3) = dV
 *dx2 = dx3 ^ dx1 = dA2 dx^I ^ (*dx^I) = dx2 ^ (dx3 ^ dx1) = dV
 *dx3 = dx1 ^ dx2 = dA3 dx^I ^ (*dx^I) = dx3 ^ (dx1 ^ dx2) = dV (H.1.16)
or
 dAk = *dxk = (1/2) εkij dxi ^ dxj . (H.1.17)

Another useful example:

Fact: *dV = 1 (H.1.18)

Proof: Then dx^I ^ (*dx^I) = dV ^ (*dV) = dV ^ 1 = dV, satisfying (H.1.6) .

Appendix H: Hodge Star

 338

Fact: dxi ^ *dxj = δi,j dV (H.1.19)

Proof: If i ≠ j, then dxi appears in *dxj since *dxj only has dxj missing. But then dxi appears twice, and
so the wedge product must vanish, hence the factor δi,j. And then dxi ^ *dxi = dV by (H.1.6) .

Fact: *(*dx^I) = (-1)kn+k dx^I (H.1.20)

Proof: The requirement is that

 dx^I ^ (*dx^I) = dV . (H.1.6)

which applied to *dx^I says

 *dx^I ^ *(*dx^I) = dV . (H.1.21)

We know that there exists some sign such that

 *(*dx^I) = (sign) dx^I (H.1.22)

since doing the complement twice restores all the original dxi factors. Thus, (H.1.21) says

 *dx^I ^ [(sign) dx^I] = dV
or
 (sign) *dx^I ^ dx^I = dV .

Now consider

 *dx^I ^ dx^I = (sign') dx^I ^ *dx^I = (sign') dV (H.1.23)

where (sign') arises from sliding dx^I to the left. Once we find (sign'), we then have

 dV = (sign) *dx^I ^ dx^I = (sign)(sign') dV

so the solution to our problem is then sign = sign'. To find sign' we slide each dxi in dx^I to the left in
(H.1.23). Doing so, we pick up a sign (-1)n-k since n-k is the number of vectors in *dx^I . Doing this one
at a time for each of the vectors in dx^I one gets,

 (sign') = (-1)(n-k)k = (-1)kn-k2 = (-1)kn (-1)k2 = (-1)kn (-1)k = (-1)kn+k .

Therefore

 *(*dx^I) = (sign) dx^I = (sign') dx^I = (-1)kn+k dx^I . QED

Appendix H: Hodge Star

 339

Corollary: If α is a k-form in Rn, then *(*α) = (-1)kn+k α. (H.1.24)

Proof: α = Σ'I fI dx^I
 ⇒ *(*α) = Σ'I fI *(*dx^I) = Σ'I fI (-1)kn+k dx^I = (-1)kn+k Σ'I fI dx^I = (-1)kn+k α

in agreement with Sjamaar p 28 Exercise 2.15.

Fact: If α = aidxi and β = bjdxj are 1-forms in Rn, then α ^(*β) = a•b dV. (H.1.25)

Proof: α ^(*β) = (aidxi)^(bj*dxj) = aibjdxi^(*dxj) = aibj δi,jdV by (H.1.19) = a•b dV

So one can say that α ^(*β) is "Hodge-associated" with a•b. In the non-dual space L2(Rn) one would have
instead a ^ (*b) = (a • b) u^Z = (a • b) u1 ^ u2 ^...un. We already saw in (4.3.18b) the Hodge association
a ^ b = A • (a x b) in L2(R3), where A = vector area = *u = (*u1, *u2, *u3) = (A1,A2,A3). Sometimes
these two Hodge correspondences are written,

 a ^ (*b) ↔ a • b for Rn a ^ b ↔ a x b for R3 . (H.1.26)

H.2 Gradient

Start with a simple 0-form and compute dα,

 α = f // 0-form

 dα = (∂if) dxi = ∇f • dx . // (10.3.3) (H.2.1)

One then has the following "Hodge correspondence",

 α = f 0-form in Rn α ↔ f
 dα = ∇f • dx 1-form in Rn dα ↔ ∇f . (H.2.2)

Apply Stokes's theorem (boundary here is two oriented endpoints of a curve C)

 ∫M dα = ∫∂M α

 ∫M ∇f • dx = ∫∂M f

 ∫C ∇f • dx = f(b) - f(a) . (H.2.3)

When both sides are converted to regular calculus integrals (two definitions of Section 10.11), one gets

 ∫C ∇f • dx = f(b) - f(a) (H.2.4)

which we shall call the "line integral of a gradient theorem" .

Appendix H: Hodge Star

 340

H.3 Laplacian

Start again with a simple 0-form and compute various interesting objects :

 α = f // 0-form

 dα = (∂if) dxi // (10.3.3) (H.3.1)

 *(dα) = (∂if) *dxi

 d(*dα) = (∂j∂if) dxj ^ *dxi // (10.3.3)

 = (∂j∂if) δi,j dV // (H.1.19)

 = (∂2if) dV

 = (∇2f) dV

 *(d(*dα)) = ∇2f (*dV) = ∇2f . // (H.1.18) (H.3.2)

One then has the following "Hodge correspondence",

 α = f 0-form in Rn α ↔ f
 *(d(*dα)) = ∇2f 0-form on Rn *(d(*dα)) ↔ ∇2f . (H.3.3)

Consider now,

 β ≡ f ∇g • (*dx) = f ∇g • dA = f (∂ig) (*dxi) // (H.1.15) (H.3.4)

 dβ = d [f (∂ig)] (*dxi)

 = ∂j [f (∂ig)] dxj ^ (*dxi) // (10.3.3)

 = ∂j [f (∂ig)] δi,j dV // (H.1.19)

 = ∂i [f (∂ig)] dV

 = [f (∂i2g) + (∂if)(∂ig)] dV

 = [f (∇2g) + ∇f • ∇g] dV . (H.3.5)

Apply Stokes's theorem,

 ∫M dβ = ∫∂M β

 ∫M [f (∇2g) + ∇f • ∇g] dV = ∫∂M f ∇g • dA . (H.3.6)

Appendix H: Hodge Star

 341

When both sides are converted to regular calculus integrals (two definitions of Section 10.11), one gets

 ∫V [f ∇2g + ∇f • ∇g] dV = ∫S f ∇g • dA = ∫S f ∇g • [n̂ dA] = ∫S f (∂ng)dA (H.3.7)

which is known as Green's first identity. Swapping f↔g and subtracting gives

 ∫V [f ∇2g – g ∇2f] dV = ∫S [f (∂ng) - g (∂nf)] dA (H.3.8)

which is Green's second identity.

H.4 Divergence

Start this time with a 1-form and compute various interesting objects :

 α = Fi dxi = F • dx // 1-form (H.4.1)

 *α = Fi (*dxi) = F • *dx = F • dA // (H.1.15) (H.4.2)

 d(*α) = ∂jFi dxj ^ (*dxi) // (10.3.3)

 = ∂jFi δi,j dV // (H.1.19)

 = (∂iFi) dV

 = (div F) dV (H.4.3)

 *(d(*α)) = (div F) *dV = div F . //(H.1.18) (H.4.4)

One then has the following "Hodge correspondence",

 α = F • dx 1-form on Rn

 α ↔ F
 *(d(*α)) = div F 0-form on Rn *(d(*α)) ↔ div F . (H.4.5)

Apply Stokes' Theorem with β = *α :

 ∫M dβ = ∫∂M β

 ∫M d(*α) = ∫∂M (*α)

 ∫M div F dV = ∫∂M F • dA . (H.4.6)

When both sides are converted to regular calculus integrals (two definitions of Section 10.11), one gets

Appendix H: Hodge Star

 342

 ∫V div F dV = ∫S F • dA (H.4.7)

which is the divergence theorem in n dimensions. For R3 this is Gauss's Theorem.

H.5 Curl

Start again with a 1-form and compute objects of interest:

 α = ΣjFj dxj = F • dx // 1-form (H.5.1)

 dα = Σi<j (∂iFj - ∂jFi) dxi ^ dxj // (10.3.24b), dα written in standard form (H.5.2)

 *(dα) = Σi<j (∂iFj - ∂jFi) *(dxi ^ dxj) // on next line specialize to R3 :

 = (∂1F2 - ∂2F1) *(dx1 ^ dx2) + (∂1F3 - ∂3F1) *(dx1 ^ dx3) + (∂2F3 - ∂3F2) *(dx3 ^ dx2)

 = (∂1F2 - ∂2F1) *(dx1 ^ dx2) + (∂3F1 - ∂1F3) *(dx3 ^ dx1) + (∂2F3 - ∂3F2) *(dx3 ^ dx2)

 = (curl F)3 dx3 + (curl F)2 dx2 + (curl F)1 dx1

 = (curl F) • dx . (H.5.3)

One then has the following "Hodge correspondence",

 α = F • dx 1-form in R3 α ↔ F
 *(dα) = [curl F] • dx 1-form in R3 *(dα) ↔ curl F . (H.5.4)

Apply Stokes' Theorem in Rn to get

 ∫M dα = ∫∂M α

 ∫M Σi<j (∂iFj - ∂jFi) dxi ^ dxj = ∫∂M F • dx (H.5.5)

• In R2 there is only one term in the sum on the left and one gets,

 ∫M (∂1F2 - ∂2F1) dx1 ^ dx2 = ∫∂M [F1dx1 + F2 dx2] . (H.5.6)

When both sides are converted to regular calculus integrals (two definitions of Section 10.11),

 ∫A (∂1F2 - ∂2F1) dx1dx2 = ∫C [F1dx1 + F2dx2] . (H.5.7)

Appendix H: Hodge Star

 343

Setting x1 = x, x2 = y, F1 = f and F2 = g one gets

 ∫A (∂xg - ∂yf) dxdy = ∫C [fdx + gdy] (H.5.8)

which is known as Green's Theorem in the plane.

• In R3 , we can write out the three terms on the left side of (H.5.2)

 dα = (∂1F2 - ∂2F1) dx1 ^ dx2 + (∂1F3 - ∂3F1) dx1 ^ dx3 + (∂2F3 - ∂3F2) dx2 ^ dx3

 = (∂1F2 - ∂2F1) dA3 + (∂1F3 - ∂3F1) [-dA2] + (∂2F3 - ∂3F2) dA1

 = (∂2F3 - ∂3F2) dA1 + (∂3F1 - ∂1F3) dA2 + (∂1F2 - ∂2F1) dA3

 = (curl F)1 dA1 + (curl F)2 dA2 + (curl F)3 dA3

 = (curl F) • dA . (H.5.9)

Then Stokes' Theorem says

 ∫M dα = ∫∂M α

 ∫M (curl F) • dA = ∫∂M F • dx . (H.5.10)

When both sides are converted to regular calculus integrals (two definitions of Section 10.11), one gets

 ∫A (curl F) • dA = ∫C F • dx = ∫C F • dx (H.5.11)

which is the traditional Stokes' Theorem in R3 where C is the boundary of the area A. Note that the
boundary C and its enclosed area A can be non-planar.

An exercise using the ε tensor

Consider the following area 2-form dAk in R3 (implied sums on all repeated indices),

 dAk ≡ (1/2)εijk dxi ^ dxj ⇒ dxi ^ dxj = εijm dAm . (H.5.12)

This can be verified by applying Σij(1/2)εijk to the equation on the right,

 (1/2)εijk[εijmqm] = (1/2) {εijk εijm}dAm = (1/2) {2 δk,m}dAm = dAk .

Appendix H: Hodge Star

 344

Then consider a general 0-form,

 α = f // 0-form

 dα = (∂jf) dxj

 d2α = ∂i(∂jf) dxi ^ dxj

 = (∂ijf) εijm dAm // (H.5.12), = 0 by symmetry on the i,j indices

 = dAm [εmij ∂i(∂jf)] // cyclic rule εabc= εbca = εcab

 = dA • [curl grad f] . (H.5.13)

Thus one can associate d2α = 0 for a 0-form f with the fact that curl grad f = ∇x(∇f) = 0.

Similarly, consider the following 3-form in R3 (implied sums on all repeated indices),

 dV ≡ (1/6) εijk dxi ^ dxj ^ dxk ⇒ dxi ^ dxj ^ dxk = εijk dV . (H.5.14)

This can be verified by applying Σijk(1/6) εijk to the equation on the right,

 (1/6) { εijkεijk} dV = (1/6) { 3!} dV = dV .

Then consider a general 1-form in R3,

 α = fk dxk = f • dx

 dα = (∂jfk) dxj ^ dxk

 d2α = ∂i(∂jfk) dxi ^ dxj ^ dxk

 = ∂i(∂jfk)[εijk dV] // (H.5.14), = 0 by symmetry on the i,j indices

 = dV ∂i[εijk(∂jfk)]

 = dV ∂i [curl f]i

 = dV div curl f . (H.5.15)

Thus one can associate d2α = 0 for a 1-form α = f • dx with the fact that div curl f = ∇• (∇xf) = 0 .

Appendix H: Hodge Star

 345

H.6 Exercise: Maxwell's Equations in Differential Forms

This section is based on Sjamaar p 30 Exercise 2.23, but we use SI units instead of cgs units.

Maxwell's equations in SI units are,

 curl H = ∂tD + J Maxwell curl H equation

 curl E = - ∂tB Maxwell curl E equation

 div D = ρ Maxwell div D equation

 div B = 0 . Maxwell div B equation (H.6.1)

Write these equations in components and think of time cdt = dx4 with c = 1, so we are working here in
spacetime R4. The metric tensor is ±diag(1,1,1,-1) but this fact has no effect on the presentation below.

 (∂iHj- ∂jHi) - εijk(∂4Dk) = εijk Jk // for example, (∂1H2- ∂2H1) - ∂4D3 = J3

 (∂iEj- ∂jEi) + εijk(∂4Bk) = 0

 ∂iDi = ρ

 ∂iBi = 0 . (H.6.2)

In the above, indices i,j,k range from 1 to 3 and all implied sums have this range.

Define two differential 2-forms α and β as follows,

 α ≡ (E • dx) ^ dx4 + B • dA // dA = *dx

 β ≡ - (H • dx) ^ dx4 + D • dA (H.6.3)

where dx and dA and dV refer to R3 objects as used in earlier sections above.

Start with α written in components and compute dα. Again, all implied sums are summed 1 to 3. Then,

 α = Ej dxj ^ dx4 + Bj *dxj

 dα = Σi=14 (∂iEj) dxi ^ dxj ^ dx4 + Σi=14 (∂iBj) dxi ^ *dxj // (10.3.6)

 = (∂iEj) dxi ^ dxj ^ dx4 + (∂iBj) dxi ^ *dxj
 + (∂4Ej) dx4 ^ dxj ^ dx4 + (∂4Bj) dx4 ^ *dxj .

The third term vanishes since there are two dx4 vectors present. In the second term use

Appendix H: Hodge Star

 346

 dxi ^ *dxj = δi,j dxi ^ *dxi = δi,j dV // (H.1.19)
so
 (∂iBj) dxi ^ *dxj = (∂iBj)δi,j dV = (∂iBi) dV .

Then

 dα = (∂iEj) dxi ^ dxj ^ dx4 + (∂iBi) dV + 0 + (∂4Bk) dx4 ^ *dxk

 = (∂iEj) dxi ^ dxj ^ dx4 + (∂4Bk) dx4 ^ *dxk + (∂iBi) dV . (H.6.4)

Recall from (H.1.17) that

 *dxk = dAk = (1/2) εkij dxi ^ dxj = (1/2) εijk dxi ^ dxj . (H.1.17)

Using this fact, and writing the first term in dα as two terms, we find

 dα = (1/2) (∂iEj - ∂jEi) dxi ^ dxj ^ dx4 + (∂4Bk) (1/2) εijk dx4 ^ dxi ^ dxj + (∂iBi) dV

 = (1/2) [(∂iEj - ∂jEi) + εijk(∂4Bk)] dxi ^ dxj ^ dx4 + (∂iBi) dV . (H.6.5)

According to Maxwell's equations (H.6.2) each of these terms vanishes so the result is simply

 dα = 0 . (H.6.6)

The form β in (H.6.3) is the same as α with replacements: E → -H and B → D. We can then convert
result (H.6.5) to get

 dβ = (1/2) [- (∂iHj - ∂jHi) + εijk(∂4Dk)] dxi ^ dxj ^ dx4 + (∂iDi) dV . (H.6.7)

According to Maxwell's equations (H.6.2) we then get (writing the result many ways),

 dβ = (1/2) [- εijk Jk] dxi ^ dxj ^ dx4 + ρ dV

 = - Jk [(1/2) εijk dxi ^ dxj] ^ dx4 + ρ dV

 = - Jk dAk ^ dx4 + ρ dV = - (J • dA) ^ dx4 + ρ dV

 = - Jk *dxk ^ dx4 + ρ dV = - (J • *dx) ^ dx4 + ρ dV . (H.6.8)

Now compute

 d(dβ) = d [- Jk *dxk ^ dx4 + ρ dV]

 = - Σj=14 (∂jJk) dxj ^ *dxk ^ dx4 + Σj=14 (∂jρ) dxj ^ dV

Appendix H: Hodge Star

 347

 = - (∂jJk) dxj ^ *dxk ^ dx4 + (∂jρ) dxj ^ dV
 - (∂4Jk) dx4 ^ *dxk ^ dx4 + (∂4ρ) dx4 ^ dV

 = - (∂jJk) δj,k dV ^ dx4 + 0 // (H.1.19)
 - 0 - (∂4ρ) dV ^dx4

 = - [(∂jJj) + (∂4ρ)] dV ^dx4

 = - [div J + (∂tρ)] dV ^dx4 . (H.6.9)

But d2β = 0 from (10.3.10) so we conclude that

 div J + (∂tρ) = 0 (H.6.10)

which is the well-known equation of continuity stating that charge is conserved,

 - ∂t[∫V ρ dV] = ∫S J • dS . (H.6.11)

 "charge enclosed in V decreases at a rate equal to the current flowing out through boundary S"

Here then is a summary of our results :

 α ≡ (E • dx) ^ dx4 + B • dA // dA = *dx

 dα = 0 ⇔ curl E = - ∂tB and divB = 0

 β ≡ - (H • dx) ^ dx4 + D • dA

 dβ = - (J • dA) ^ dx4 + ρ dV ⇔ curl H = ∂tD + J and divD = ρ

 d2β = 0 ⇔ div J + (∂tρ) = 0 . // ∂μJμ = 0 (H.6.12)

In free space where J = ρ = 0, Maxwell's Equations take this impressively simple form,

 dα = 0
 dβ = 0 . (H.6.13)

References

 348

References

Listed in alphabetical order by last name of first author. A quick web search on article title can usually
locate documents with broken links. Those below were last checked June 4, 2016.

I.M. Benn and R.W. Tucker, An Introduction to Spinors and Geometry with Applications in Physics
(Adam Hilger/IOP Publishing, Bristol, 1987).

G. Birkhoff and S. Mac Lane, A Survey of Modern Algebra, 4th Ed. (McMillan, New York, 1977).

R.C. Buck with E.F. Buck, Advanced Calculus, 2nd Ed. (McGraw-Hill, New York, 1965). Our references
are to this 2nd edition, but there is a third edition (McGraw-Hill, New York, 1978), reprinted by
(Waveland Press, Long Grove IL, 2003). This excellent and now classic book was first published in 1956.

K. Conrad, Exterior Powers (2013, find at http://www.math.uconn.edu/~kconrad/blurbs/).

J. Denker, Introduction to Clifford Algebra, (2003, https://www.av8n.com/physics/clifford-intro.pdf).

P.A.M. Dirac, The Principles of Quantum Mechanics, 3rd Ed. (Oxford University Press, London, 1947).

S. Lang, Fundamentals of Differential Geometry (Springer-Verlag, New York, 1999).

S. Lang, Algebra, 3rd Ed. (Springer, New York, 2002). A soft-cover edition appeared in 2012.

P. Lucht, Tensor Analysis and Curvilinear Coordinates (2016, http://user.xmission.com/~rimrock).

S. Mac Lane and G. Birkhoff, Algebra, 3rd Ed (Amer. Math. Soc. / Chelsea Pub, New York, 1988).

A. Messiah, Quantum Mechanics (John Wiley, New York, 1958), two volumes.

S. Roman, Advanced Linear Algebra, 3rd Ed. (Springer, New York, 2008).

R. Shankar, Principles of Quantum Mechanics, 2nd Ed. (Plenum Press, New York, 1994).

R. Sjamaar, Manifolds and Differential Forms (2015, http://www.math.cornell.edu/~sjamaar/manifolds).

M. Spivak, Calculus on Manifolds (Addison-Wesley, New York, 1965).

M. Spivak, A Comprehensive Introduction to Differential Geometry, Volume 1, 3rd Ed. Volume 1
(Publish or Perish Inc, Houston, 1999), part of a well-regarded five volume set.

J. Suter. Geometric Algebra Primer (2003, www.jaapsuter.com/geometric-algebra.pdf).

L.W. Tu, An Introduction to Manifolds, 2nd Ed. (Springer, New York, 2011).

http://www.math.uconn.edu/~kconrad/blurbs/�
https://www.av8n.com/physics/clifford-intro.pdf�
http://user.xmission.com/~rimrock�
http://www.math.cornell.edu/~sjamaar/manifolds�
http://www.jaapsuter.com/geometric-algebra.pdf�

	Overview and Summary
	Notation
	1. The Tensor Product
	1.1 The Tensor Product as a Quotient Space
	1.2 The Tensor Product in Category Theory

	2. A Review of Tensors in Covariant Notation
	2.1 R, S and how tensors transform : Picture A
	2.2 The metric tensors g and g' and the dot product
	2.3 The basis vectors en and en
	2.4 The basis vectors un and un
	2.5 The basis vectors e'n and u'n and a summary
	2.6 How to compute a viable x' = F(x) from a set of constant basis vectors en
	2.7 Expansions of vectors onto basis vectors
	2.8 The Outer Product of Tensors and Use of (
	2.9 The Inner Product (Contraction) of Tensors
	Dot products in spaces V(V, V(W, V(V(V and V(W(X

	2.10 Tensor Expansions
	(a) Rank-2 Tensor Expansion and Projection
	(b) Rank-k Tensor Expansions and Projections

	2.11 Dual Spaces and Tensor Functions
	(a) The Dual Space V* in Matrix and Dirac Notation
	(b) Functional notation
	(c) Basis vectors for the dual space V*
	(d) Rank-2 functionals and tensor functions
	(e) Rank-k functionals and tensor functions
	(f) The Covariant Transpose
	(g) Linear Dirac Space Operators
	(h) Completeness

	3. Outer Products and Kronecker Products
	3.1 Outer Products Reviewed: Compatibility of Chapter 1 and Chapter 2
	3.2 Kronecker Products

	4. The Wedge Product of 2 vectors built on the Tensor Product
	4.1 The tensor product of 2 vectors in V2
	4.2 The tensor product of 2 dual vectors in V*2
	4.3 The wedge product of 2 vectors in L2
	4.4 The wedge product of 2 dual vectors in Λ2

	5. The Tensor Product of k vectors : the vector spaces Vk and T(V)
	5.1 Pure elements, basis elements, and dimension of Vk
	5.2 Tensor Expansion for a tensor in Vk ; the ordinary multiindex
	5.3 Rules for product of k vectors
	5.4 The Tensor Algebra T(V)
	5.5 Comments about tensors
	5.6 The Tensor Product of two or more tensors in T(V)

	6. The Tensor Product of k dual vectors : the vector spaces V*k and T(V*)
	6.1 Pure elements, basis elements, and dimension of V*k
	6.2 Tensor Expansion for a tensor in V*k ; the ordinary multiindex
	6.3 Rules for product of k vectors
	6.4 The Tensor Algebra T(V*)
	6.5 Comments about Tensor Functions
	6.6 The Tensor Product of two or more tensors in T(V*)

	7. The Wedge Product of k vectors : the vector spaces Lk and L(V)
	7.1 Definition of the wedge product of k vectors
	7.2 Properties of the wedge product of k vectors
	7.3 The vector space Lk and its basis
	7.4 Tensor Expansions for a tensor in Lk
	7.5 Various expansions for the wedge product of k vectors
	7.6 Number of elements in Lk compared with Vk.
	7.7 Multiindex notation
	7.8 The Exterior Algebra L(V)
	Associativity of the Wedge Product

	7.9 The Wedge Product of two or more tensors in L(V)
	(a) Wedge Product of two tensors T^ and S^
	(b) Special cases of the wedge product T^^ S^
	(c) Commutivity Rule for the Wedge Product of two tensors T^ and S^
	(d) Wedge Product of three or more tensors
	(e) Commutativity Rule for product of N tensors
	(f) Theorems from Appendix C : pre-antisymmetrization makes no difference
	(g) Spivak Normalization

	8. The Wedge Product of k dual vectors : the vector spaces Λk and Λ(V)
	8.1 Definition of the wedge product of k dual vectors
	8.2 Properties of the wedge product of k dual vectors
	8.3 The vector space Λk and its basis
	8.4 Tensor Expansions for a dual tensor in Λk
	8.5 Various expansions for the wedge product of k dual vectors
	8.6 Number of elements in Λk compared with V*k.
	8.7 Multiindex notation
	8.8 The Exterior Algebra Λ(V)
	Associativity of the Wedge Product

	8.9 The Wedge Product of two or more dual tensors in Λ(V)
	(a) Wedge Product of two dual tensors T^ and S^
	(b) Special cases of the wedge product T^^ S^
	(c) Commutivity Rule for the Wedge Product of two dual tensors T^ and S^
	(d) Wedge Product of three or more dual tensors
	(e) Commutativity Rule for product of N dual tensors
	(f) Theorems from Appendix C : pre-antisymmetrization makes no difference
	(g) Spivak Normalization

	9. The Wedge Product as a Quotient Space
	9.1. Development of Lk as Vk/S
	9.2. Development of L as T/I

	10. Differential Forms
	10.1. Differential Forms Defined
	10.2. Differential Forms on Manifolds
	10.3. The exterior derivative of a differential form
	10.4. Commutation properties of differential forms
	10.5. Closed and Exact, Poincaré and the Angle Form
	10.6 Transformation Kinematics
	(a) Axis-Aligned Vectors and Tangent Base Vectors : The Kinematics Package
	(b) What happens for a non-square tall R matrix?
	(c) Some Linear Algebra for non-square matrices
	(d) Implications for the Kinematics Package
	(e) Basis vectors for the Tangent Space at point x' on M

	10.7 The Pullback Operator R and properties of the Pullback Function F*
	10.8 Alternate ways to write the pullback of a k-form
	10.9 A Change of Notation and Comparison with Sjamaar and Spivak
	10.10 Integration of functions over surfaces and curves
	10.11 Integration of differential k-forms over Surfaces
	10.12 Integration of 1-forms
	10.13 Integration of 2-forms

	Appendix A: Permutation Support
	A.1 Rearrangement Theorems and Determinants
	A.2 The Alt Operator in Generic Notation
	A.3 The Sym Operator in Generic Notation
	A.4 Alt, Sym and decomposition of functions
	A.5 Application to Tensors
	(a) Alt Equations (translated from Section A.2)
	(b) Sym Equations (translated from Section A.3)
	(c) Alt, Sym and decomposition of tensors (translated from Section A.4)

	A.6 The permutation tensor ε
	A.7 The wedge-product-of-vectors Alt equation
	A.8 Application to Tensor Functions
	(a) Alt Equations (translated from Section A.2)
	(b) Sym Equations (translated from Section A.3)
	(c) Alt/Sym and Other Equations (translated from Section A.4, A.6 and A.7)
	(d) Alt/Sym when there are two sets of indices

	A.9 The Ordered Sum Theorem
	A.10 Tensor Products in Generic Notation

	Appendix B: Direct Sum of Vector Spaces
	Appendix C: Theorems on Pre-Symmetrization
	C.1 Theorem One
	C.2 Theorem Two
	C.3 Theorem Three
	C.4 Summary and Generalization

	Appendix D: A Unified View of Tensors and Tensor Functions
	D.1 Tensor functions in Dirac notation
	D.2 Basis change matrix
	D.3 Transformations of tensors and tensor functions
	D.4 Tensor Functions and Quantum Mechanics

	Appendix E: Kinematics Package with x' = F(x) changed to x = φ(t)
	Appendix F: The Volume of an n-piped embedded in Rm
	F.1 Volume of a 2-piped in R3
	F.2 Volume of a 2-piped in R4, R5 and Rm
	F.3 Volume of a 3-piped in R4
	F.4 Volume of a n-piped in Rm
	F.5 Application: The differential volume element of the tangent space Tx'M

	Appendix G : The det(RTR) theorem and its relation to differential forms
	G.1 Theorem: det(RTR) is the sum of the squares of the full-width minors of R
	G.2 The Connection between Theorem G.1.1 and Differential Forms

	Appendix H : Hodge Star, Differential Operators, Integral Theorems and Maxwell
	H.1 Properties of the Hodge star operator in Rn
	H.2 Gradient
	H.3 Laplacian
	H.4 Divergence
	H.5 Curl
	H.6 Exercise: Maxwell's Equations in Differential Forms

	References

